Lexical Analysis:
Constructing a Scanner from Regular Expressions
Goal

• Show how to construct a FA to recognize any RE
• This Lecture
 → Convert RE to a **nondeterministic finite automaton (NFA)**
 ▪ Use Thompson’s construction
Quick Review

Previous class:

→ The scanner is the first stage in the front end
→ Specifications can be expressed using regular expressions
→ Build tables and code from a DFA
Consider the problem of recognizing register names

\[\text{Register} \rightarrow r \ (0|1|2| \ldots | 9) \ (0|1|2| \ldots | 9)^* \]

- Allows registers of arbitrary number
- Requires at least one digit
Register Name DFA Solution

Consider the problem of recognizing register names

\[\text{Register} \to r \ (0|1|2| \ldots | 9) \ (0|1|2| \ldots | 9)^* \]

RE corresponds to a recognizer (or DFA)

(0|1|2| \ldots | 9)

Recognizer for \text{Register}

Transitions on other inputs go to an error state, \(s_e \)
DFA operation

- Start in state S_0 & take transitions on each input character
- DFA accepts a word x iff x leaves it in a final state (S_2)

So,
- $r17$ takes it through s_0, s_1, s_2 and accepts
- r takes it through s_0, s_1 and fails
- a takes it straight to s_e
Example

To be useful, recognizer must turn into code

Char ← next character
State ← s₀
while (Char ≠ EOF)
 State ← δ(State, Char)
 Char ← next character
if (State is a final state)
 then report success
else report failure

Skeleton recognizer

<table>
<thead>
<tr>
<th>δ</th>
<th>r</th>
<th>0,1,2,3,4,5,6,7,8,9</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₀</td>
<td>s₁</td>
<td>sₑ</td>
<td>sₑ</td>
</tr>
<tr>
<td>s₁</td>
<td>sₑ</td>
<td>s₂</td>
<td>sₑ</td>
</tr>
<tr>
<td>s₂</td>
<td>sₑ</td>
<td>s₂</td>
<td>sₑ</td>
</tr>
<tr>
<td>sₑ</td>
<td>sₑ</td>
<td>sₑ</td>
<td>sₑ</td>
</tr>
</tbody>
</table>

Table encoding RE
Each RE corresponds to a **deterministic finite automaton (DFA)**

- May be hard to directly construct the right DFA

For example, consider the RE \((a \mid b)^* \text{abb}\).
Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
- May be hard to directly construct the right DFA

What about an RE such as \((a \mid b)^* \text{abb}\)?

This is a little different from typical DFAs!
- \(S_1\) has two transitions on \(a\)

This is a non-deterministic finite automaton (NFA)
Non-deterministic Finite Automata

Each RE corresponds to a *deterministic finite automaton* (DFA)
- May be hard to directly construct the right DFA

What about an RE such as \((a \mid b)^* abb\)?

This is a little different from typical DFAs!
- \(S_1\) has two transitions on \(a\)
- \(S_0\) has a transition on \(\varepsilon\)

This is a *non-deterministic finite automaton* (NFA)
Nondeterministic Finite Automata

- An NFA accepts a string x iff \exists a path though the graph from s_0 to a final state such that the edge labels spell x
- Transitions on ε consume no input
- To “run” the NFA, start in s_0 and guess the right transition at each choice point with multiple possibilities
 - Always guess correctly
 - If some sequence of correct guesses accepts x then accept
Why study NFAs?

- They are the key to automating the RE→DFA construction
- We can paste together NFAs with ε-transitions
Relationship between NFAs and DFAs

DFA is a special case of an NFA

• DFA has no ε transitions
• DFA’s transition function is single-valued
• Same rules will work

DFA can be simulated with an NFA

→ Obviously
Relationship between NFAs and DFAs

NFA can be simulated with a DFA \((less\ obvious) \)

- Simulate sets of possible states
- Possible exponential blowup in the state space
- Still, one state per character in the input stream

Subset construction builds a DFA that simulates an NFA.
Automating Scanner Construction

To convert a specification into code:

1. Write down the RE for the input language
2. Build a big NFA
3. Build the DFA that simulates the NFA
4. Systematically shrink the DFA
5. Turn it into code

Scanner generators

- Lex, Flex, and JLex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser (define all parts of speech)
Automating Scanner Construction

RE → NFA (Thompson’s construction)
- Build an NFA for each term
- Combine them with \(\varepsilon\)-transitions

NFA → DFA (Subset construction)
- Build the simulation

DFA → Minimal DFA
- Hopcroft’s algorithm

DFA → RE (Not part of the scanner construction)
- All pairs, all paths problem
- Take the union of all paths from \(s_0\) to an accepting state
RE \rightarrow NFA using Thompson's Construction

Key idea
- NFA pattern for each symbol and each operator
- Join them with ε transitions in precedence order

Concatenation

NFA for ab

Alternation

NFA for $a \mid b$

Ken Thompson, CACM, 1968
RE \rightarrow NFA using Thompson’s Construction

Let’s try: $a \ (b \mid c)^*$

Concatenation

NFA for ab

Alternation

NFA for $a \mid b$

Closure

NFA for a^*
Example of Thompson’s Construction

Let’s try \(a \ (b \mid c)^* \)

1. \(a, b, c \)

\[
\begin{align*}
S_0 & \xrightarrow{a} S_1 \\
S_0 & \xrightarrow{b} S_1 \\
S_0 & \xrightarrow{c} S_1
\end{align*}
\]

2. \(b \mid c \)

\[
\begin{align*}
S_0 & \xrightarrow{\varepsilon} S_1 \\
S_0 & \xrightarrow{\varepsilon} S_3 \\
S_3 & \xrightarrow{c} S_4 \\
S_3 & \xrightarrow{\varepsilon} S_2 \\
S_2 & \xrightarrow{b} S_5 \\
S_5 & \xrightarrow{\varepsilon} S_0 \\
S_5 & \xrightarrow{\varepsilon} S_4 \\
S_4 & \xrightarrow{\varepsilon} S_1 \\
S_4 & \xrightarrow{\varepsilon} S_3 \\
S_4 & \xrightarrow{\varepsilon} S_5
\end{align*}
\]

3. \((b \mid c)^* \)

\[
\begin{align*}
S_0 & \xrightarrow{\varepsilon} S_1 \\
S_1 & \xrightarrow{\varepsilon} S_2 \\
S_2 & \xrightarrow{b} S_3 \\
S_3 & \xrightarrow{\varepsilon} S_4 \\
S_4 & \xrightarrow{c} S_5 \\
S_4 & \xrightarrow{\varepsilon} S_0 \\
S_5 & \xrightarrow{\varepsilon} S_6 \\
S_6 & \xrightarrow{\varepsilon} S_7 \\
S_7 & \xrightarrow{\varepsilon} S_0 \\
S_7 & \xrightarrow{\varepsilon} S_1 \\
S_7 & \xrightarrow{\varepsilon} S_2 \\
S_7 & \xrightarrow{\varepsilon} S_3 \\
S_7 & \xrightarrow{\varepsilon} S_4 \\
S_7 & \xrightarrow{\varepsilon} S_5 \\
S_7 & \xrightarrow{\varepsilon} S_6
\end{align*}
\]

Example of Thompson's Construction (cont'd)

4. \(a (b \mid c)^*\)

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...