
Lexical Analysis:
Constructing a Scanner from Regular

Expressions

Goal

•  Show how to construct a FA to recognize any RE
•  This Lecture

→  Convert RE to an nondeterministic finite automaton (NFA)
  Use Thompson’s construction

Quick Review

Previous class:
→  The scanner is the first stage in the front end
→  Specifications can be expressed using regular expressions
→  Build tables and code from a DFA

Scanner

Scanner
Generator

specifications

source code parts of speech & words

code
and

tables

Consider the problem of recognizing register names
Register → r (0|1|2| … | 9) (0|1|2| … | 9)*

•  Allows registers of arbitrary number
•  Requires at least one digit

Register Name DFA Class Problem?

Consider the problem of recognizing register names
Register → r (0|1|2| … | 9) (0|1|2| … | 9)*

 RE corresponds to a recognizer (or DFA)

Transitions on other inputs go to an error state, se

Register Name DFA Solution

S0 S1

r

(0|1|2| … 9)

accepting state

 (0|1|2| … 9)

Recognizer for Register

S2

•  Start in state S0 & take transitions on each input
character

•  DFA accepts a word x iff x leaves it in a final state (S2)

So,
•  r17 takes it through s0, s1, s2 and accepts
•  r takes it through s0, s1 and fails
•  a takes it straight to se

DFA operation

S0 S1

r

(0|1|2| … 9)

accepting state

 (0|1|2| … 9)

Recognizer for Register

S2

Example

To be useful, recognizer must turn into code

se se se se

se s2 se s2

se s2 se s1

se se s1 s0

All
others

0,1,2,3,4,
5,6,7,8,9 r δ	
Char ← next character

State ← s0

while (Char ≠ EOF)
 State ← δ(State,Char)
 Char ← next character

if (State is a final state)
 then report success
 else report failure

Skeleton recognizer Table encoding RE

Each RE corresponds to a deterministic finite automaton (DFA)
•  May be hard to directly construct the right DFA

For example, consider the RE (a | b)* abb.

Non-deterministic Finite Automata

a , b

S1 S4 S2 S3

a b b

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
•  May be hard to directly construct the right DFA

What about an RE such as (a | b)* abb?

This is a little different from typical DFAs!

•  S1 has two transitions on a

This is a non-deterministic finite automaton (NFA)

a , b

S1 S4 S2 S3

a b b

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
•  May be hard to directly construct the right DFA

What about an RE such as (a | b)* abb?

This is a little different from typical DFAs!

•  S1 has two transitions on a

•  S0 has a transition on ε
This is a non-deterministic finite automaton (NFA)

a , b

S0 S1 S4 S2 S3

ε	
 a b b

Nondeterministic Finite Automata

•  An NFA accepts a string x
 iff ∃ a path though the graph from s0 to a final

state such that the edge labels spell x
•  Transitions on ε consume no input
•  To “run” the NFA, start in s0 and guess the right

transition at each choice point with multiple
possibilities
→  Always guess correctly
→  If some sequence of correct guesses accepts x then accept

Why study NFAs?

•  They are the key to automating the RE→DFA construction

•  We can paste together NFAs with ε-transitions

NFA NFA becomes an NFA ε

Relationship between NFAs and DFAs
DFA is a special case of an NFA

•  DFA has no ε transitions
•  DFA’s transition function is single-valued
•  Same rules will work

DFA can be simulated with an NFA
→  Obviously

Relationship between NFAs and DFAs
NFA can be simulated with a DFA (less obvious)
•  Simulate sets of possible states
•  Possible exponential blowup in the state space
•  Still, one state per character in the input stream

Subset construction builds a DFA that simulates an NFA.

Automating Scanner Construction
To convert a specification into code:
1  Write down the RE for the input language
2  Build a big NFA
3  Build the DFA that simulates the NFA
4  Systematically shrink the DFA
5  Turn it into code

Scanner generators
•  Lex, Flex, and JLex work along these lines
•  Algorithms are well-known and well-understood
•  Key issue is interface to parser (define all parts of speech)

Automating Scanner Construction

RE→ NFA (Thompson’s construction)
•  Build an NFA for each term

•  Combine them with ε-transitions

NFA → DFA (Subset construction)
•  Build the simulation

DFA → Minimal DFA

•  Hopcroft’s algorithm

DFA →RE (Not part of the scanner construction)

•  All pairs, all paths problem
•  Take the union of all paths from s0 to an accepting state

minimal
DFA RE NFA DFA

The Cycle of Constructions

RE →NFA using Thompson’s Construction
Key idea
•  NFA pattern for each symbol and each operator

•  Join them with ε transitions in precedence order

S0 S1
a

NFA for a

S0 S1
a

S3 S4
b

NFA for ab

ε

NFA for a | b

S0

S1 S2
a

S3 S4
b

S5

ε

ε ε

ε

S0 S1
ε	
 S3 S4

ε	

NFA for a*

a

ε	

ε	
 Ken Thompson, CACM, 1968

S0 S1
b

NFA for b

Concatenation Alternation

Closure

RE →NFA using Thompson’s Construction

 Let’s try: a (b | c)*

S0 S1
a

NFA for a

S0 S1
a

S3 S4
b

NFA for ab

ε

NFA for a | b

S0

S1 S2
a

S3 S4
b

S5

ε

ε ε

ε

S0 S1
ε	
 S3 S4

ε	

NFA for a*

a

ε	

ε	

S0 S1
b

NFA for b

Concatenation Alternation

Closure

Example of Thompson’s Construction
Let’s try a (b | c)*

1. a, b, c

2. b | c

3. (b | c)*

S0 S1
a

S0 S1
b

S0 S1
c

S2 S3
b

S4 S5
c

S1 S6 S0 S7

ε	

ε	

ε	
 ε	

ε	
 ε	

ε	
 ε	

S1 S2
b

S3 S4
c

S0 S5

ε	

ε	

ε	

ε	

Example of Thompson’s Construction (cont'd)

4. a (b | c)*

Of course, a human would design something simpler ...

S0 S1
a

b | c

But, we can automate production of
the more complex one ...

S0 S1
a ε	

S4 S5
b

S6 S7
c

S3 S8 S2 S9

ε	

ε	

ε	
 ε	

ε	
 ε	

ε	
 ε	

