
Overview of the Course

Critical Facts

Welcome to CISC 471 / 672 — Compiler Construction

•  Instructor: Dr. John Cavazos (cavazos@cis.udel.edu)
•  Office Hours: Mon 12-1PM / Wed 1-2PM or by appointment
•  Office Location: Smith Hall 412
•  Text: Engineering a Compiler, second edition (2011)

by Keith Cooper and Linda Torzcan
•  Web Site: http://www.cis.udel.edu/~cavazos/cisc471-672

→  Project handouts, lecture slides, online documentation, …
→  I will not have handouts in class; get them from the webl

Topics in the design of programming language translators,
including parsing, semantic analysis, error recovery, code
generation, and optimization

Difference between CISC471 and CISC672

Two main differences:

1.  CISC471 have less challenging projects

2.  CISC471 have less challenging midterm and final

Basis for Grading

•  Exams
→  Midterm 20%
→  Final 20%

•  Quizzes 10%
•  Projects

→  Cool Test Programs 4%
→  Scanner 5%
→  Parser 8%
→  Semantic Analyzer 14%
→  Code Generation 15%

This only adds up to
96%. Where is the
other 4%?

Class participation!

Notice: Any student with a disability requiring accommodations in this
class is encouraged to contact me after class or during office hours,
and to contact UDel’s Coordinator for Disabled Student Services.

Basis for Grading

•  Exams
→  Midterm
→  Final

•  Quizzes

•  Projects
→  Parser & Scanner
→  Semantic Analyzer
→  Code Generation

  Closed-notes, closed-book

  Reinforce concepts
  Number of quizzes t.b.d.

  First two projects (Test codes and
Scanner) are individual projects
  Last three projects to be done in teams
  High ratio of thought to programming
  Will build a compiler for a language called
COOL (Java)

Rough Syllabus

•  Overview § 1
•  Scanning § 2
•  Parsing § 3
•  Context Sensitive Analysis § 4
•  Inner Workings of Compiled Code § 6, 7
•  Introduction to Optimization § 8
•  Instruction Selection § 11
•  Instruction Scheduling § 12
•  Register Allocation § 13
•  More Optimization (time permitting)

Class-taking technique for Course

•  I will use projected material extensively
→  I will moderate my speed, you sometimes need to say “STOP”

•  You should read the book
→  Not all material will be covered in class
→  Book complements the lectures

•  You are responsible for material from class
→  The tests will cover both lecture and reading
→  I will probably hint at good test questions in class

•  This is not a programming course
→  Projects are graded on functionality, documentation, and lab

reports more than style (results matter)
•  It will take me time to learn your names (please remind me)

Compilers

•  What is a compiler?

Compilers

•  What is a compiler?
→  A program that translates a program in one language into a

program in another language
→  The compiler should improve the program, in some way

•  What is an interpreter?

Compilers

•  What is a compiler?
→  A program that translates a program in one language into a

program in another language
→  The compiler should improve the program, in some way

•  What is an interpreter?
→  A program that reads a program and produces the results of

executing that program

Compilers

•  What is a compiler?
→  A program that translates a program in one language into a

program in another language
→  The compiler should improve the program, in some way

•  What is an interpreter?
→  A program that reads a program and produces the results of

executing that program

•  C is typically compiled, Scheme is typically interpreted
•  Java is compiled to bytecodes (code for the Java VM)

→  which can then interpreted
→  Or a hybrid strategy is used

  Just-in-time compilation

Taking a Broader View
•  Compiler Technology

→  Offline
  Typically C, C++, Fortran

→  Online
  Typically Java, C##

→  Goals: improved performance and language usability
  Making it practical to use the full power of the language

→  Trade-off: preprocessing time versus execution time (or space)
→  Rule: performance of both compiler and application must be

acceptable to the end user

Why Study Compilation?
•  Compilers are important system software components

→  They are intimately interconnected with architecture, systems,
programming methodology, and language design

•  Compilers include many applications of theory to practice
→  Scanning, parsing, static analysis, instruction selection

•  Many practical applications have embedded languages
→  Commands, macros, formatting tags …

•  Many applications have input formats that look like
languages,
→  Matlab, Mathematica, Databases (e.g., Oracle)

•  Writing a compiler exposes practical algorithmic &
engineering issues
→  Approximating hard problems; efficiency & scalability

Intrinsic interest

  Compiler construction involves ideas from many different
parts of computer science

Artificial intelligence
Greedy algorithms
Heuristic search techniques

Algorithms Graph algorithms,
Dynamic programming

Theory DFAs & PDAs, pattern matching
Fixed-point algorithms

Systems
Allocation & naming,
Synchronization, locality

Architecture Pipeline & hierarchy management
Instruction set use

Intrinsic merit

  Compiler construction poses challenging and interesting
problems:
→  Compilers must do a lot but also run fast

→  Compilers have responsibility for run-time performance

→  Compilers are responsible for making it acceptable to use the
full power of the programming language

→  Computer architects perpetually create new challenges for the
compiler by building more complex machines

→  Compilers must hide that complexity from the programmer

→  Success requires mastery of complex interactions of compiler
phases

Aren’t compilers a solved problem?

“Optimization for scalar machines is a
problem that was solved ten years ago.”
 David Kuck, Fall 1990

Aren’t compilers a solved problem?

“Optimization for scalar machines is a
problem that was solved ten years ago.”
 David Kuck, Fall 1990

– Architectures keep changing
–  Languages keep changing
– Applications keep changing
– When to compile keeps changing

About the instructor

•  My own research
→  Applying machine learning to solve hard systems problems
→  Compiling for advanced microprocessor systems
→  Interplay between static and dynamic compilation
→  Optimization for embedded systems (space, power, speed)
→  Interprocedural analysis and optimization
→  Nitty-gritty things that happen in compiler back ends
→  Distributing compiled code in a heterogeneous environment
→  Rethinking the fundamental structure of optimizing compilers

•  Thus, my interests lie in
→  Building “Intelligent” Compilers
→  Quality of generated code(smaller, more efficient, faster)
→  Interplay between compiler and architecture
→  Static analysis to discern program behavior
→  Run-time performance analysis

Next class

•  The view from 35,000 feet
→  How a compiler works
→  What I think is important
→  What is hard and what is easy

