

Register Allocation

Register Allocation: Definition

• **Register allocation** assigns registers to values

- Candidate values:
 - Variables
 - Temporaries
 - Large constants
- When needed, **spill** registers to memory
- Important low-level optimization
 - Registers are 2x 7x faster than cache
 - > Judicious use = big performance improvements

Register Allocation: Complications

- Explicit names
 - Unlike all other levels of hierarchy
- Scarce
 - Small register files (set of all registers)
 - Some reserved by operating system, virtual machine
 e.g., "FP", "SP"...
- Complicated
 - Weird constraints, esp. on CISC architectures
 - For example: Non-orthogonality of instructions

History

- As old as intermediate code
 - Used in the original FORTRAN compiler (1950's)
- No breakthroughs until 1981!
 - Chaitin invented register allocation scheme based on graph coloring
 - Simple heuristic, works well in practice

Register Allocation Example

Consider this program with six variables:
 a := c + d
 e := a + b

```
f := e - 1
```

with the assumption that a and e die after use

- Variable a can be "reused" after e := a + b
- Same with variable e
- > Can allocate a, e, and f all to one register (r_1) : $r_1 := r_2 + r_3$ $r_1 := r_1 + r_4$ $r_1 := r_1 - 1$

Basic Register Allocation Idea

- Value in dead variable not needed for rest of the computation
 - Register containing dead variable can be reused
- Basic rule:
 - Variables t₁ and t₂ can share same register if at any point in the program at most one of t₁ or t₂ is live !

Algorithm: Part I

Interference Graph

- Two variables live simultaneously
 - Cannot be allocated in the same register
- Construct an interference graph (IG)
 - Node for each variable
 - Undirected edge between t₁ and t₂
 - If live simultaneously at some point in the program
- Two variables can be allocated to same register if no edge connects them

Interference Graph: Example

Graph Coloring

- Graph coloring: assignment of colors to nodes
 - Nodes connected by edge have different colors
- Graph k-colorable =
 can be colored with k colors

- In our problem, colors = registers
 - We need to assign colors (registers) to graph nodes (variables)
 - Let k = number of machine registers
- If the IG is k-colorable, there is a register assignment that uses no more than k registers

Color the following graph

• What is the smallest k needed to color the graph?

Graph Coloring Example

There is no coloring with fewer than 4 colors There are 4-colorings of this graph

• Under this coloring the code becomes:

Computing Graph Colorings

- How do we compute coloring for IG?
 - NP-hard!
 - For given # of registers, coloring may not exist
- Solution
 - Use heuristics

Graph Coloring Algorithm (Chaitin)

while G cannot be k-colored

while graph G has node N with degree less than \mathbf{k}

Remove **N** and its edges from G and push **N** on a stack S end while

if all nodes removed then graph is k-colorable

while stack S contains node ${\bf N}$

Add **N** to graph G and assign it a color from **k** colors **end while**

else graph G cannot be colored with k colors

Simplify graph G choosing node N to spill and remove node (spill nodes chosen based number of definitions and uses)

end while

Graph Coloring Heuristic

- Observation: "degree < k rule"
 - Reduce graph:
 - Pick node N with < k neighbors in IG
 - Eliminate N and its edges from IG
 - If the resulting graph has k-coloring, so does the original graph
- Why?
 - Let c₁,...,c_n be colors assigned to neighbors of t in reduced graph
 - Since n < k, we can pick some color for t different from those of its neighbors

Graph Coloring Heuristic (cont'd)

- Heuristic:
 - Pick node t with fewer than k neighbors
 - Put t on a stack and remove it from the IG
 - Repeat until all nodes have been removed
- Start assigning colors to nodes on the stack (starting with the last node added)
 - At each step, pick color different from those assigned to already-colored neighbors

Graph Coloring Example (I)

- Start with the IG and with k = 4
- Try 4-coloring the graph

Stack: {}

 Now all nodes have fewer than 4 neighbors and can be removed: c, b, e, f

Stack: {d, a}

Graph Coloring Example (2)

Start assigning colors to: f, e, b, c, d, a

- What if during simplification we get to a state where all nodes have k or more neighbors?
- Example: try to find a 3-coloring of the IG:

- Remove a and get stuck (as shown below)
 - Pick a node as a candidate for spilling
 - Assume that **f** is picked

• Remove **f** and continue the simplification

• Simplification now succeeds: b, d, e, c

- During assignment phase, we get to the point when we have to assign a color to f
- Hope: among the 4 neighbors of f,
 we use less than 3 colors ⇒ optimistic coloring

Spilling

- Optimistic coloring failed = must spill variable f
- Allocate memory location as home of f
 - Typically in current stack frame
 - Call this address fa
- Before each operation that uses f, insert
 f := load fa
- After each operation that defines f, insert store f, fa

Spilling Example

New code after spilling f

Recomputing Liveness Information

- New liveness info almost as before, but:
 f is live only
 - Between f := load fa and the next instruction
 - Between store f, fa and the preceding instruction
- Spilling reduces the live range of f
 - Reduces its interferences
 - Results in fewer neighbors in IG for f

Recompute IG After Spilling

- Remove some edges of spilled node
- Here, f still interferes only with c and d
 - Resulting IG is 3-colorable

Spilling, Continued

- Additional spills might be required before coloring is found
- Tricky part: deciding what to spill
 - Possible heuristics:
 - Spill variables with most conflicts
 - Spill variables with few definitions and uses
 - Avoid spilling in inner loops
 - All are "correct"

Conclusion

- Register allocation: "must have" optimization in most compilers:
 - Intermediate code uses too many temporaries
 - Makes a big difference in performance
- Graph coloring:
 - Powerful register allocation scheme

Recomputing Liveness Information

