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Register Allocation: Definition 

  Register allocation assigns registers to values 
  Candidate values: 

  Variables 
  Temporaries 
  Large constants 

  When needed, spill registers to memory 

  Important low-level optimization 
  Registers are 2x – 7x faster than cache 

  Judicious use = big performance improvements 
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Register Allocation: Complications 

  Explicit names 
  Unlike all other levels of hierarchy 

  Scarce 
  Small register files (set of all registers) 
  Some reserved by operating system, virtual machine 

  e.g., “FP”, “SP”… 

  Complicated 
  Weird constraints, esp. on CISC architectures 

  For example: Non-orthogonality of instructions 
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History 

  As old as intermediate code 
  Used in the original FORTRAN compiler (1950’s) 

  No breakthroughs until 1981! 
  Chaitin invented register allocation scheme based on 

graph coloring 
  Simple heuristic, works well in practice 
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Register Allocation Example 

  Consider this program with six variables: 
a := c + d 
e := a + b 
f := e - 1 

with the assumption that a and e die after use 
  Variable a can be “reused” after e := a + b 
  Same with variable e 

  Can allocate a, e, and f all to one register (r1): 
r1 := r2 + r3 
r1 := r1 + r4 
r1 := r1 - 1 
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Basic Register Allocation Idea 

  Value in dead variable not needed for rest of 
the computation 
  Register containing dead variable can be reused 

  Basic rule:  
  Variables t1 and t2 can share same register 

if at any point in the program at most one 
of t1 or t2 is live ! 
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Algorithm: Part I 

  Compute live variables for each point: 
a := b + c 
d := -a 

e := d + f 

f := 2 * e 
b := d + e 
e := e - 1 

b := f + c 

{b} 

{c,e} 

{b} 

{c,f} {c,f} 

{b,c,e,f} 

{c,d,e,f} 

{b,c,f} 

{c,d,f} 
{a,c,f} 



8 

Interference Graph 

  Two variables live simultaneously 
  Cannot be allocated in the same register 

  Construct an interference graph (IG) 
  Node for each variable 
  Undirected edge between t1 and t2 

  If live simultaneously at some point in the program 

  Two variables can be allocated to same register 
 if no edge connects them 
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Interference Graph: Example 

  For our example: 
a 

f 

e 

d 

c 

b 

b and c cannot be in the same register 
b and d can be in the same register 

{b,c,f} 
{a,c,f} 
{c,d,f} 
{c,d,e,f} 
{c,e} 
{b,c,e,f} 
{c,f} 
{b} 
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Graph Coloring 

  Graph coloring: 
assignment of colors to nodes 
  Nodes connected by edge have different colors 

  Graph k-colorable = 
can be colored with k colors 
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Register Allocation 
Through Graph Coloring 

  In our problem, colors = registers 
  We need to assign colors (registers) to graph 

nodes (variables) 
  Let k = number of machine registers 

  If the IG is k-colorable, there is a register 
assignment that uses no more than k 
registers 
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Color the following graph 

  What is the smallest k needed to color the 
graph? 

a 

f 

e 

d 

c 

b 
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Graph Coloring Example 

  Consider the example IG 
a 

f 

e 

d 

c 

b 

There is no coloring with fewer than 4 colors 
There are 4-colorings of this graph 

r4 

r1 

r2 

r3 

r2 

r3 
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Graph Coloring Example, 
Continued 

  Under this coloring the code becomes: 
r2 := r3 + r4 

r3 := -r2 
r2 := r3 + r1 

r1 := 2 * r2 
r3 := r3 + r2 
r2 := r2 - 1 

r3 := r1 + r4 
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Computing Graph Colorings 

  How do we compute coloring for IG? 
  NP-hard! 
  For given # of registers, 

coloring may not exist 

  Solution 
  Use heuristics 
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Graph Coloring Algorithm (Chaitin) 
while G cannot be k-colored 
     while graph G has node N with degree less than k 
           Remove N and its edges from G and push N on a stack S 
     end while  
     if all nodes removed then graph is k-colorable  
         while stack S contains node N 
              Add N to graph G and assign it a color from k colors 
          end while 
     else graph G cannot be colored with k colors 
         Simplify graph G choosing node N to spill and remove node 
        (spill nodes chosen based number of definitions and uses) 
end while 
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Graph Coloring Heuristic 

  Observation: “degree < k rule” 
  Reduce graph: 

  Pick node N with < k neighbors in IG 
  Eliminate N and its edges from IG 

  If the resulting graph has k-coloring, 
so does the original graph 

  Why? 
  Let c1,…,cn be colors assigned to neighbors of t in 

reduced graph 
  Since n < k, we can pick some color for t different from 

those of its neighbors 
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Graph Coloring Heuristic (cont’d) 

  Heuristic: 
  Pick node t with fewer than k neighbors 
  Put t on a stack and remove it from the IG 
  Repeat until all nodes have been removed 

  Start assigning colors to nodes on the stack 
(starting with the last node added) 
  At each step, pick color different from those 

assigned to already-colored neighbors 
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Graph Coloring Example (1) 

  Remove a and then d 

a 

f 

e 

d 

c 

b Stack: {}  

  Start with the IG and with k = 4 
  Try 4-coloring the graph 
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Graph Coloring Example (2) 

  Now all nodes have fewer than 4 neighbors and 
can be removed: c, b, e, f 

f 

e c 

b 
Stack: {d, a}  
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Graph Coloring Example (2) 

  Start assigning colors to: f, e, b, c, d, a  

b 
a 

e c r4 

f r1 

r2 

r3 

r2 

r3 

d 
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What if the Heuristic Fails? 

  What if during simplification we get to a 
state where all nodes have k or more 
neighbors? 

  Example: try to find a 3-coloring of the IG: 
a 

f 

e 

d 

c 

b 
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What if the Heuristic Fails? 
  Remove a and get stuck (as shown below) 

  Pick a node as a candidate for spilling 
  Assume that f is picked 

f 

e 

d 

c 

b 
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What if the Heuristic Fails? 

  Remove f and continue the simplification 
  Simplification now succeeds: b, d, e, c 

e

d

c

b
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What if the Heuristic Fails? 

  During assignment phase, we get to the point when 
we have to assign a color to f 

  Hope: among the 4 neighbors of f, 
we use less than 3 colors ⇒ optimistic coloring  

f 

e 

d 

c 

b r3 

r1 r2 

r3 

? 
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Spilling 

  Optimistic coloring failed = must spill variable f 
  Allocate memory location as home of f 

  Typically in current stack frame  
  Call this address fa 

  Before each operation that uses f, insert 
                      f := load fa 

  After each operation that defines f, insert 
                      store f, fa 
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Spilling Example 

  New code after spilling f 
a := b + c 
d := -a 

f := load fa 
e := d + f 

f := 2 * e 
store f, fa 

b := d + e 
e := e - 1 

f := load fa 
b := f + c 
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Recomputing Liveness Information 

  New liveness info almost as before, but: 
f is live only 
  Between f := load fa and the next instruction 
  Between store f, fa and the preceding 

instruction 

  Spilling reduces the live range of f 
  Reduces its interferences 
  Results in fewer neighbors in IG for f 
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Recompute IG After Spilling 

  Remove some edges of spilled node 
  Here, f still interferes only with c and d 

  Resulting IG is 3-colorable 

a

f

e

d

c

b
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Spilling, Continued 

  Additional spills might be required before 
coloring is found 

  Tricky part: deciding what to spill 
  Possible heuristics: 

  Spill variables with most conflicts 
  Spill variables with few definitions and uses 
  Avoid spilling in inner loops 

  All are “correct” 
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Conclusion 

  Register allocation: “must have” optimization 
in most compilers: 
  Intermediate code uses too many temporaries 
  Makes a big difference in performance  

  Graph coloring: 
  Powerful register allocation scheme 
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Recomputing Liveness Information 

  New liveness information after spilling: 
a := b + c 
d := -a 

f := load fa 
e := d + f 

f := 2 * e 
store f, fa 

b := d + e 
e := e - 1 

f := load fa 
b := f + c 

{b} 

{c,e} 

{b} 
{c,f} 

{c,f} 
{b,c,e,f} 

{c,d,e,f} 

{b,c,f} 
{c,d,f} 
{a,c,f} 

{c,d,f} 

{c,f} 

{c,f} 


