
Register Allocation

2

Register Allocation: Definition

  Register allocation assigns registers to values
  Candidate values:

  Variables
  Temporaries
  Large constants

  When needed, spill registers to memory

  Important low-level optimization
  Registers are 2x – 7x faster than cache

  Judicious use = big performance improvements

3

Register Allocation: Complications

  Explicit names
  Unlike all other levels of hierarchy

  Scarce
  Small register files (set of all registers)
  Some reserved by operating system, virtual machine

  e.g., “FP”, “SP”…

  Complicated
  Weird constraints, esp. on CISC architectures

  For example: Non-orthogonality of instructions

4

History

  As old as intermediate code
  Used in the original FORTRAN compiler (1950’s)

  No breakthroughs until 1981!
  Chaitin invented register allocation scheme based on

graph coloring
  Simple heuristic, works well in practice

5

Register Allocation Example

  Consider this program with six variables:
a := c + d
e := a + b
f := e - 1

with the assumption that a and e die after use
  Variable a can be “reused” after e := a + b
  Same with variable e

  Can allocate a, e, and f all to one register (r1):
r1 := r2 + r3
r1 := r1 + r4
r1 := r1 - 1

6

Basic Register Allocation Idea

  Value in dead variable not needed for rest of
the computation
  Register containing dead variable can be reused

  Basic rule:
  Variables t1 and t2 can share same register

if at any point in the program at most one
of t1 or t2 is live !

7

Algorithm: Part I

  Compute live variables for each point:
a := b + c
d := -a

e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c

{b}

{c,e}

{b}

{c,f} {c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}

{c,d,f}
{a,c,f}

8

Interference Graph

  Two variables live simultaneously
  Cannot be allocated in the same register

  Construct an interference graph (IG)
  Node for each variable
  Undirected edge between t1 and t2

  If live simultaneously at some point in the program

  Two variables can be allocated to same register
 if no edge connects them

9

Interference Graph: Example

  For our example:
a

f

e

d

c

b

b and c cannot be in the same register
b and d can be in the same register

{b,c,f}
{a,c,f}
{c,d,f}
{c,d,e,f}
{c,e}
{b,c,e,f}
{c,f}
{b}

10

Graph Coloring

  Graph coloring:
assignment of colors to nodes
  Nodes connected by edge have different colors

  Graph k-colorable =
can be colored with k colors

11

Register Allocation
Through Graph Coloring

  In our problem, colors = registers
  We need to assign colors (registers) to graph

nodes (variables)
  Let k = number of machine registers

  If the IG is k-colorable, there is a register
assignment that uses no more than k
registers

12

Color the following graph

  What is the smallest k needed to color the
graph?

a

f

e

d

c

b

13

Graph Coloring Example

  Consider the example IG
a

f

e

d

c

b

There is no coloring with fewer than 4 colors
There are 4-colorings of this graph

r4

r1

r2

r3

r2

r3

14

Graph Coloring Example,
Continued

  Under this coloring the code becomes:
r2 := r3 + r4

r3 := -r2
r2 := r3 + r1

r1 := 2 * r2
r3 := r3 + r2
r2 := r2 - 1

r3 := r1 + r4

15

Computing Graph Colorings

  How do we compute coloring for IG?
  NP-hard!
  For given # of registers,

coloring may not exist

  Solution
  Use heuristics

16

Graph Coloring Algorithm (Chaitin)
while G cannot be k-colored
 while graph G has node N with degree less than k
 Remove N and its edges from G and push N on a stack S
 end while
 if all nodes removed then graph is k-colorable
 while stack S contains node N
 Add N to graph G and assign it a color from k colors
 end while
 else graph G cannot be colored with k colors
 Simplify graph G choosing node N to spill and remove node
 (spill nodes chosen based number of definitions and uses)
end while

17

Graph Coloring Heuristic

  Observation: “degree < k rule”
  Reduce graph:

  Pick node N with < k neighbors in IG
  Eliminate N and its edges from IG

  If the resulting graph has k-coloring,
so does the original graph

  Why?
  Let c1,…,cn be colors assigned to neighbors of t in

reduced graph
  Since n < k, we can pick some color for t different from

those of its neighbors

18

Graph Coloring Heuristic (cont’d)

  Heuristic:
  Pick node t with fewer than k neighbors
  Put t on a stack and remove it from the IG
  Repeat until all nodes have been removed

  Start assigning colors to nodes on the stack
(starting with the last node added)
  At each step, pick color different from those

assigned to already-colored neighbors

19

Graph Coloring Example (1)

  Remove a and then d

a

f

e

d

c

b Stack: {}

  Start with the IG and with k = 4
  Try 4-coloring the graph

20

Graph Coloring Example (2)

  Now all nodes have fewer than 4 neighbors and
can be removed: c, b, e, f

f

e c

b
Stack: {d, a}

21

Graph Coloring Example (2)

  Start assigning colors to: f, e, b, c, d, a

b
a

e c r4

f r1

r2

r3

r2

r3

d

22

What if the Heuristic Fails?

  What if during simplification we get to a
state where all nodes have k or more
neighbors?

  Example: try to find a 3-coloring of the IG:
a

f

e

d

c

b

23

What if the Heuristic Fails?
  Remove a and get stuck (as shown below)

  Pick a node as a candidate for spilling
  Assume that f is picked

f

e

d

c

b

24

What if the Heuristic Fails?

  Remove f and continue the simplification
  Simplification now succeeds: b, d, e, c

e

d

c

b

25

What if the Heuristic Fails?

  During assignment phase, we get to the point when
we have to assign a color to f

  Hope: among the 4 neighbors of f,
we use less than 3 colors ⇒ optimistic coloring

f

e

d

c

b r3

r1 r2

r3

?

26

Spilling

  Optimistic coloring failed = must spill variable f
  Allocate memory location as home of f

  Typically in current stack frame
  Call this address fa

  Before each operation that uses f, insert
 f := load fa

  After each operation that defines f, insert
 store f, fa

27

Spilling Example

  New code after spilling f
a := b + c
d := -a

f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e - 1

f := load fa
b := f + c

28

Recomputing Liveness Information

  New liveness info almost as before, but:
f is live only
  Between f := load fa and the next instruction
  Between store f, fa and the preceding

instruction

  Spilling reduces the live range of f
  Reduces its interferences
  Results in fewer neighbors in IG for f

29

Recompute IG After Spilling

  Remove some edges of spilled node
  Here, f still interferes only with c and d

  Resulting IG is 3-colorable

a

f

e

d

c

b

30

Spilling, Continued

  Additional spills might be required before
coloring is found

  Tricky part: deciding what to spill
  Possible heuristics:

  Spill variables with most conflicts
  Spill variables with few definitions and uses
  Avoid spilling in inner loops

  All are “correct”

31

Conclusion

  Register allocation: “must have” optimization
in most compilers:
  Intermediate code uses too many temporaries
  Makes a big difference in performance

  Graph coloring:
  Powerful register allocation scheme

32

Recomputing Liveness Information

  New liveness information after spilling:
a := b + c
d := -a

f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e - 1

f := load fa
b := f + c

{b}

{c,e}

{b}
{c,f}

{c,f}
{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

{c,d,f}

{c,f}

{c,f}

