
Introduction to Optimization

John Cavazos
University of Delaware

Course Evaluations

  Available now, Friday, Dec. 2
  Until midnight Dec. 8th
  Feedback confidential and not associated with

your names

Lecture Overview

  Motivation
  Loop Transformations

Good Old days (before ~2005)

Moore’s Law
  Chip density doubles every 18 months

  1 year of code optimization research = 1 month of hardware
improvements

  No need for compiler research… Just wait a few months!

Free Lunch is over

Moore’s Law
•  Chip density doubles every 18 months

Corollary
•  Cores will become simpler
•  Just wait a few months… Your code might get slower!

•  Many optimizations now being done by hand!

Optimizations: The Big Picture
What are our goals?
  Simple Goal: Make execution time as small as

possible

Which leads to:
  Achieve execution of many (all, in the best case)

instructions in parallel
  Find independent instructions

Data Dependences

 S1 PI = 3.14
 S2 R = 5.0
 S3 AREA = PI * R ** 2

  Statement S3 cannot be moved before S1 or S2
without changing correct results

S1 S2

S3

Data Dependences

  Formally:
Data dependence from S1 to S2
(S2 depends on S1) if:
1. Both statements access same memory location
and one of them stores onto it, and
2. There is a feasible execution path from S1 to S2

S1

S2

Load Store Classification

True Dependence

 A = 4 * C + 3
 B = A + 1
 A = 3 * C + 4

Read after Write (RAW)

Load Store Classification

Anti-Dependence

 A = 4 * C + 3
 B = A + 1
 A = 3 * C + 4

Write after Read (WAR)

Load Store Classification

Output Dependence

 A = 4 * C + 3
 B = A + 1
 A = 3 * C + 4

Write after Write (WAW)

Dependence in Loops

 DO I = 1, N
S1 A(I+1) = A(I)+ B(I)
 ENDDO

•  Statement S1 depends on itself

A(I+1) A(I)

+ B(I)

Dependence in Loops

 DO I = 1, N
S1 A(I+2) = A(I)+ B(I)
 ENDDO

•  Statement S1 depends on itself

A(I+2) A(I)

+ B(I)

Transformations

  We call a transformation safe if the transformed
program has the same "meaning" as the original
program

  But, what is the "meaning" of a program?

For our purposes:
  Two programs are equivalent if, on the same inputs:

  They produce the same outputs in the same order

Loop Transformations

  Compilers have always focused on loops
  Higher execution counts
  Repeated, related operations

  Much of real work takes place in loops

Several effects to attack
  Overhead

  Decrease control-structure cost per iteration
  Branching expensive

  Locality
  Spatial locality versus Temporal locality

  Parallelism
  Execute independent iterations of loop in parallel

Spatial Locality

A(I+3) A(I) A(I+1) A(I+2)

 = … A(I) …
 = … A(I+1) …

Concept that likelihood of accessing a resource is
higher if a resource near it was just referenced.

Likely to be in cache

Temporal Locality

A(I+3) A(I) A(I+1) A(I+2)

 = … A(I) …
 = … A(I) …

Concept that that a resource referenced at one point
in time will be referenced again in the near future.

Likely to be in cache

Eliminating Overhead

Loop unrolling (the oldest trick in the book)
  To reduce overhead, replicate the loop body

do i = 1 to 100 by 1
 a(i) = a(i) + b(i)
end

do i = 1 to 100 by 4
 a(i) = a(i) + b(i)
 a(i+1) = a(i+1) + b(i+1)
 a(i+2) = a(i+2) + b(i+2)
 a(i+3) = a(i+3) + b(i+3)
end

becomes
(unroll by 4)

Loop Fusion
  Two loops over same iteration space ⇒ one loop
  Safe if does not change the values used or defined by any

statement in either loop (i.e., does not violate dependences)

do i = 1 to n
 c(i) = a(i) + b(i)
end
do j = 1 to n
 d(j) = a(j) * e(j)
end

becomes
(fuse)

do i = 1 to n
 c(i) = a(i) + b(i)
 d(i) = a(i) * e(i)
 end

Loop Fusion Advantages

  Enhance temporal locality
  Reduce control overhead

  Longer blocks for local optimization &
scheduling

  Can convert inter-loop (different loop) reuse
to intra-loop (same loop) reuse

Loop distribution (fission)

  Single loop with independent statements ⇒
multiple loops

  Starts by constructing statement level
dependence graph

  Safe to perform distribution if:
  No cycles in the dependence graph
  Statements forming cycle in dependence graph

put in same loop

Loop distribution (fission)

Has the
following

dependence
graph

(1) for I = 1 to N do

(2) A[I] = A[i] + B[i-1]

(3) B[I] = C[I-1]*X+C

(4) C[I] = 1/B[I]

(5) D[I] = sqrt(C[I])

(6) endfor

Loop distribution (fission)

becomes
(fission)

(1) for I = 1 to N do

(2) A[I] = A[i] + B[i-1]

(3) B[I] = C[I-1]*X+C

(4) C[I] = 1/B[I]

(5) D[I] = sqrt(C[I])

(6) endfor

(1) for I = 1 to N do

(2)   A[I] = A[i] + B[i-1]

(3) endfor

(4) for

(5)   B[I] = C[I-1]*X+C

(6)   C[I] = 1/B[I]

(7)   endfor

(8)   for

(9)   D[I] = sqrt(C[I])

(10)   endfor

25

Loop Fission Advantages

  Enables other transformations
  E.g., Vectorization

  Resulting loops have smaller cache footprints
  More reuse hits in the cache

Loop Tiling (blocking)

Want to exploit temporal locality
in loop nest.

Loop Tiling (blocking)

Loop Tiling (blocking)

Loop Tiling (blocking)

Loop Tiling (blocking)

31

Loop Tiling Effects

  Reduces volume of data between reuses
  Works on one “tile” at a time (tile size is B by B)

  Choice of tile size is crucial

Scalar Replacement

  Allocators never keep c(i) in a register
  We can trick the allocator by rewriting the references

The plan
  Locate patterns of consistent reuse
  Make loads and stores use temporary scalar variable
  Replace references with temporary’s name

Scalar Replacement

do i = 1 to n
 do j = 1 to n
 a(i) = a(i) + b(j)
 end
end

do i = 1 to n
 t = a(i)
 do j = 1 to n
 t = t + b(j)
 end
 a(i) = t
end

becomes
(scalar replacement)

Almost any register
allocator can get t

into a register

34

Scalar Replacement Effects

  Decreases number of loads and stores
  Keeps reused values in names that can be

allocated to registers
  In essence, this exposes the reuse of a(i) to

subsequent passes

