Introduction to Optimization

John Cavazos

University of Delaware

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Course Evaluations

= Available now, Friday, Dec. 2
= Until midnight Dec. 8%

m Feedback confidential and not associated with
your names

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Lecture Overview

s Motivation

= Loop Transformations

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Good Old days (before ~2005)

Moore’s Law

= Chip density doubles every 18 months
m PAST : Reflected CPU performance doubling every 18 months

m | year of code optimization research = 1 month of hardware
improvements

= No need for compiler research... Just wait a few months!

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Free Lunch is over

Moore’s Law

Chip density doubles every 18 months
o PAST : Reflecte

- CURRENT: Density doub]mg reflected in motre cores on chlpl

Corollary
Cores will become simpler
- Just wait a few months... Your code might get slowet!

Many optimizations now being done by hand!

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Optimizations: The Big Picture

What are our goals?

s Simple Goal: Make execution time as small as
possible

Which leads to:

= Achieve execution of many (all, in the best case)
instructions in parallel

= IFind independent instructions

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Data Dependences

s, P < 3.14 (5 (8

S, R=5.0

S; AREA = PI * R ** 2 @

m Statement S; cannot be moved before S, or S,

without changing correct results

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Data Dependences

= Formally: (5:)
Data dependence from S, to S,
(S, depends on S,) if: (82)

1. Both statements access same memory location

and one of them stores onto it, and

2. There is a feasible execution path from S, to S,

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Load Store Classification

True Dependence

A=4>*C +3
B=Ax+1
A=3*C+4

Read after Write (RAW)

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Load Store Classification

Anti-Dependence

Write after Read (WAR)

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Load Store Classification

Output Dependence

A=4>C +3
B=A+1
A=3*C+4

Write after Write (WAW)

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Dependence in Loops

DOI =1, N
S, A(I+l) = A(I)+ B(I)
ENDDO

TP

A(I) |A(I+1)

* Statement S, depends on itself

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Dependence in Loops

DOI =1, N
S, A(I+2) = A(I)+ B(I)

ENDDO
A(I) A(I+2)

* Statement S, depends on itself

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Transformations

m We call a transformation safe if the transformed
program has the same "meaning" as the original
program

= But, what is the "meaning" of a program?

For our purposes:

= Two programs are equivalent if, on the same inputs:

= They produce the same outputs in the same order

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Transformations

s Compilers have always focused on loops
= Higher execution counts

= Repeated, related operations

s Much of real work takes place in loops

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Several effects to attack

m Overhead

s Decrease control-structure cost per iteration

0 Branching expensive

= [ocality
= Spatial locality versus Temporal locality

m Parallelism

= Execute independent iterations of loop 1n parallel

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Spatial Locality

Concept that likelihood of accessing a resource is
higher if a resource near it was just referenced.

A(I) A(I+1) | A(I+2)A(I+3)

- A(I) .. — Likely o be in cache

. [A(I+1) %

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Temporal Locality

Concept that that a resource referenced at one point
in fime will be referenced again in the near future.

A(I) A(I+1) | A(I+2)A(I+3)

. A(I) — Likely to be in cache

. |[A(I)

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Eliminating Overhead

Loop unrolling (the oldest trick in the book)
= To reduce overhead, replicate the loop body

w0is101000y1 becomes 1INV

enil(i) = a(i) + b(i) (unroll by 4) a(i+1) = a(i+1) + b(i+1)
a(i+2) = a(i+2) + b(i+2)
a(i+3) = a(i+3) + b(i+3)

end

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Fusion

= Two loops over same iteration space = one loop

m Safe if does not change the values used or defined by any
statement in either loop (i.e., does not violate dependences)

doi=1ton doi=1t

c(i) = a(i) + b(i) becomes ° (':('I) _ :(ir)' + b(i)
end (fuse) d(i) = a(i) * e(i)
doj=1ton end

d(j) = a(j) * e(j)
end

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Fusion Advantages

= Enhance temporal locality
m Reduce control overhead

m [onger blocks for local optimization &
scheduling

= Can convert inter-loop (ditferent loop) reuse
to intra-loop (same loop) reuse

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop distribution (fission)

m Single loop with independent statements =
multiple loops

m Starts by constructing statement level
dependence graph

m Safe to perform distribution if:
= No cycles in the dependence graph

= Statements forming cycle in dependence graph
put in same loop

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop distribution (fission)

(1) for1=1to N do
(2) A[l] =A[i] *+ B[i-1]

Has the
(3) B[] =C[I-]*X+C following
(4) C[I] = 1/B[I] dependence
(5) DI =sqrt(C[1) graph
(6) endfor

ofololo

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop distribution (fission)

(1) for1=1to N do
(1) for1=1to N do (2) A[l] = A[i] + B[i-1]

(2) A[l]=A[i] + B[i-1] becomes (3) endfor
(3) B[l]=C[I-1]"X+C (fission) (4) for
(4) C[l]=1/BI[l] (5) B[l = C[I-]*X+C
(5) D[] =sqrt(C[l]) (6) C[I]=1/B[l]
(6) endfor (7) endfor
(8) for
(9) D[] =sqrt(C[1])
(10) endfor

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Fission Advantages

m Enables other transformations

= E.g., Vectorization

= Resulting loops have smaller cache footprints

s More reuse hits in the cache

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

Eeasaacs—— eaaoe
dot= 1,T — e e e
doi=1,n m
doj=1,n BRASSEESS s B

e A(0L]) . v rsestesacee

end do T P
end do —— T - - - - e
end do o e — — o

-t

Want to exploit temporal locality
in loop nest.

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

doic=1,n, B /\S control loops
dojc=1,n,B
dot=1,T
doi = ic, min(n,ic+B-1), 1
doj =jc, min(n, jc+B-1), 1
.a(i,j) ...
end do
end do

end do
end do

end do

ic=1

B: Block Size

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

doic=1,n, B control loops eeeoe
dojc=1,n,B o ona
dot=1T 3433
do i = ic, min(n,ic+B-1), 1 e
do j = jc, min(n, jc+B-1), 1 ceeee
-+ A1) ...
end do eecccceccccccoce
end do cecessssssssesss
enddo L BN R BN BN BN BN BN BN BN BN BN BN BN BN BN J
end do
end do

B: Block Size

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

doic=1,n,B ¢ controlloops Trissoiiiiiiiie:
dojc=1,n,B cocccssssscssesse
dot=1,T cocccssscccsssee
do i = ic, min(n,ic+B-1), 1 aeEtIiiii
doj =jc, min(n, jc+B-1), 1 seeeceee
,"a(i,j)," o000 000
end do ic=B cocssces
end do cocscsss
enddo S99 000 00
end do »
end do

B: Block Size

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

doac=1,n,s’\5 control loops il
dojc=1,n,B ceccsecsessesses
dot=1T cecccssessscsses
do i = ic, min(n,ic+B-1), 1 TrlliEllieEBl:
doj =jc, min(n, jc+B-1), 1 M I
.. aliyj) ... ceccedoe
end do =By,
end do ceceede
enddo o0 000 Q
end do
end do

B: Block Size
When is this legal?

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling Effects

m Reduces volume of data between reuses

= Works on one “tile” at a time (¢ile size is B by B)

m Choice of tile size 1s crucial

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Scalar Replacement

= Allocators never keep c(i) in a register

s We can trick the allocator by rewriting the references

The plan

m [ocate patterns of consistent reuse

s Make loads and stores use temporary scalar variable

= Replace references with temporary’s name

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Scalar Replacement

, doi=zi1ton
doi=1%on Tza(l)
a0y Pdier
G 1) = G) + J .'. - b :
end end T (J)
end becomes a(i) -+
(scalar replacement) end

Almost any register
allocator can get 1t
into a register

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

Scalar Replacement Effects

m Decreases number of loads and stores

m Keeps reused values in names that can be
allocated to registers

= In essence, this exposes the reuse of a(1) to
subsequent passes

UNIVERSITY OF DELAWARE - COMPUTER & INFORMATION SCIENCES DEPARTMENT

