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Lecture Overview 

  Motivation 
  Loop Transformations 



Good Old days (before ~2005) 

Moore’s Law 
  Chip density doubles every 18 months 

  1 year of code optimization research = 1 month of hardware 
improvements 

  No need for compiler research… Just wait a few months! 



Free Lunch is over 

Moore’s Law 
•  Chip density doubles every 18 months 

Corollary 
•  Cores will become simpler 
•  Just wait a few months… Your code might get slower! 

•  Many optimizations now being done by hand! 



Optimizations: The Big Picture 
What are our goals? 
   Simple Goal: Make execution time as small as 

possible 

Which leads to: 
  Achieve execution of many (all, in the best case) 

instructions  in parallel 
  Find independent instructions  



Data Dependences 

    S1  PI = 3.14 
   S2  R = 5.0 
   S3  AREA = PI * R ** 2 

  Statement S3 cannot be moved before S1 or S2 
without changing correct results 

S1 S2 

S3 



Data Dependences 

  Formally: 
Data dependence from S1 to S2  
(S2 depends on S1) if:   
1. Both statements access same memory location  
and one of them stores onto it, and 
2. There is a feasible execution path from S1 to S2 

S1 

S2 



Load Store Classification 

True Dependence 

     A = 4 * C  + 3 
     B = A + 1 
     A = 3 * C + 4 

Read after Write (RAW)         



Load Store Classification 

Anti-Dependence 

     A = 4 * C  + 3 
     B = A + 1 
     A = 3 * C + 4 

Write after Read (WAR)         



Load Store Classification 

Output Dependence 

     A = 4 * C  + 3 
     B = A + 1 
     A = 3 * C + 4 

Write after Write (WAW)         



Dependence in Loops 

 DO I = 1, N 
S1   A(I+1) = A(I)+ B(I) 
 ENDDO 

•  Statement S1 depends on itself  

A(I+1)  A(I)  

+ B(I) 



Dependence in Loops 

 DO I = 1, N 
S1   A(I+2) = A(I)+ B(I) 
 ENDDO 

•  Statement S1 depends on itself  

A(I+2)  A(I)  

+ B(I) 



Transformations 

  We call a transformation safe if the transformed 
program has the same "meaning" as the original 
program 

  But, what is the "meaning" of a program? 

For our purposes: 
  Two programs are equivalent if, on the same inputs: 

  They produce the same outputs in the same order 



Loop Transformations 

  Compilers have always focused on loops 
  Higher execution counts 
  Repeated, related operations 

  Much of real work takes place in loops 



Several effects to attack 
  Overhead 

  Decrease control-structure cost per iteration 
  Branching expensive  

  Locality  
  Spatial locality versus Temporal locality 

  Parallelism 
  Execute independent iterations of loop in parallel 



Spatial Locality 

A(I+3)  A(I)  A(I+1)  A(I+2)  

 = … A(I) … 
 = … A(I+1) … 

Concept that likelihood of accessing a resource is 
higher if a resource near it was just referenced.   

Likely to be in cache 



Temporal Locality 

A(I+3)  A(I)  A(I+1)  A(I+2)  

 = … A(I) … 
 = … A(I) … 

Concept that that a resource referenced at one point 
in time will be referenced again in the near future.   

Likely to be in cache 



Eliminating Overhead 

Loop unrolling (the oldest trick in the book)  
  To reduce overhead, replicate the loop body 

do i = 1 to 100 by 1 
    a(i) = a(i) + b(i) 
end 

do i = 1 to 100 by 4 
    a(i)     = a(i) + b(i) 
    a(i+1) = a(i+1) + b(i+1) 
    a(i+2) = a(i+2) + b(i+2) 
    a(i+3) = a(i+3) + b(i+3) 
end 

becomes  
(unroll by 4) 



Loop Fusion 
  Two loops over same iteration space ⇒ one loop 
  Safe if does not change the values used or defined by any 

statement in either loop (i.e., does not violate dependences) 

do i = 1 to n 
    c(i) = a(i) + b(i) 
end 
do j = 1 to n 
    d(j) = a(j) * e(j) 
end 

becomes  
(fuse) 

do i = 1 to n 
     c(i) = a(i) + b(i) 
     d(i) = a(i) * e(i) 
 end 



Loop Fusion Advantages 

  Enhance temporal locality 
  Reduce control overhead 

  Longer blocks for local optimization & 
scheduling 

  Can convert inter-loop (different loop) reuse                
to intra-loop (same loop) reuse 



Loop distribution (fission) 

  Single loop with independent statements ⇒ 
multiple loops 

  Starts by constructing statement level 
dependence graph 

  Safe to perform distribution if: 
  No cycles in the dependence graph 
  Statements forming cycle in dependence graph 

put in same loop 



Loop distribution (fission) 

Has the 
following 

dependence 
graph 

(1) for I = 1 to N do 

(2)    A[I] = A[i] + B[i-1] 

(3)    B[I] = C[I-1]*X+C 

(4)    C[I] = 1/B[I] 

(5)    D[I] = sqrt(C[I]) 

(6) endfor 



Loop distribution (fission) 

becomes 
(fission) 

(1) for I = 1 to N do 

(2)    A[I] = A[i] + B[i-1] 

(3)    B[I] = C[I-1]*X+C 

(4)    C[I] = 1/B[I] 

(5)    D[I] = sqrt(C[I]) 

(6) endfor 

(1) for I = 1 to N do 

(2)     A[I] = A[i] + B[i-1] 

(3) endfor 

(4) for 

(5)       B[I] = C[I-1]*X+C 

(6)       C[I] = 1/B[I] 

(7)   endfor 

(8)    for 

(9)        D[I] = sqrt(C[I]) 

(10)   endfor 
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Loop Fission Advantages 

  Enables other transformations    
  E.g., Vectorization 

  Resulting loops have smaller cache footprints  
  More reuse hits in the cache 



Loop Tiling (blocking) 

Want to exploit temporal locality 
in loop nest. 



Loop Tiling (blocking) 



Loop Tiling (blocking) 



Loop Tiling (blocking) 



Loop Tiling (blocking) 
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Loop Tiling Effects 

  Reduces volume of data between reuses 
  Works on one “tile” at a time  (tile size is B by  B) 

  Choice of tile size is crucial 



Scalar Replacement 

  Allocators never keep c(i) in a register 
  We can trick the allocator by rewriting the references 

The plan 
  Locate patterns of consistent reuse 
  Make loads and stores use temporary scalar variable 
  Replace references with temporary’s name 



Scalar Replacement 

do i =  1 to n 
    do j = 1 to n    
       a(i) = a(i) + b(j) 
    end 
end 

do i = 1 to n 
    t = a(i) 
    do j = 1 to n    
         t =  t + b(j) 
    end 
    a(i) = t 
end 

becomes  
(scalar replacement) 

Almost any register      
allocator can get  t             

into a register 
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Scalar Replacement Effects 

  Decreases number of loads and stores 
  Keeps reused values in names that can be 

allocated to registers 
  In essence, this exposes the reuse of a(i) to 

subsequent passes 


