
Code Shape I 
Procedure Calls, Dispatch, 



Procedure Linkages 
Standard procedure linkage 

procedure p 

prolog 

epilog 

pre-call  

post-return  

procedure q 

prolog 

epilog 

Procedure has 
•  standard prolog 
•  standard epilog 
Each call site involves a 
•  pre-call sequence 
•  post-return sequence 



Caller-saves versus callee saves 

If p calls q, one of them must 
•  Preserve register values     

→ Caller-saves registers stored/restored by p in p ‘s AR 

procedure p 
prolog 

epilog 

pre-call  

post-return  

procedure q 
prolog 

epilog 

Caller-saves 

Code to saves p’s regs 

Code to restore p’s regs  



Caller-saves versus callee saves 

If p calls q, one of them must 
•  Preserve register values     

→ Callee-saves registers stored/restored by q in q ‘s AR 

procedure p 
prolog 

epilog 

pre-call  

post-return  

procedure q 
prolog 

epilog 

Callee-saves 

Code to saves p’s regs 

Code to restore p’s regs  



Implementing Procedure Calls 

•  Allocate the AR  
→ Heap allocation ⇒ callee allocates its own AR 
→ Stack allocation ⇒ caller & callee cooperate to 

allocate AR 

Space tradeoff 
•  Pre-call & post-return occur on every call 
•  Prolog & epilog occur once per procedure 
•  More calls than procedures 

→ Moving operations into prolog/epilog saves space  



Evaluating parameters 
•  Usually language definition issue 
•  Call by reference ⇒ evaluate parameter to 

an lvalue 
•  Call by value ⇒ evaluate parameter to an 

rvalue & store it 



Evaluating parameters 
Aggregates (structs), arrays, & strings are 

usually call by reference 
•  Alternatives 

→ Small structures can be passed in registers 
→ Can pass large c-b-v objects c-b-r and copy on 

modification 

Procedure-valued parameters 
•  Must pass starting address of procedure 



What about arrays as actual parameters? 

Whole array as call-by-reference parameter 
•  Callee needs dimension information  

→  Builds a descriptor called a dope vector 
•  Store the values in the calling sequence 
•  Pass the address of the dope vector in the 

parameter slot 
•  Generate complete address polynomial at each 

reference 

@A 

low1 

high1 

low2 

high2 

 dope vector 



What about A[12] as an actual parameter? 

If corresponding parameter is a scalar, it’s easy 
•  Pass the address or value, as needed  

What if corresponding parameter is an array? 
•  See previous slide 



What about a string-valued argument? 

•  Call by reference  
→  pass a pointer “descriptor” to start of string 

•  Call by value ⇒ copy the string & pass it  
→ Can store it in callee’s AR 
→ Can pass by reference & have callee copy  
   it if necessary 

Pointer of string serves as “descriptor” for the 
string, stored in the appropriate location 
(register or slot in the AR) 



What about a structure-valued parameter? 

•  Again, pass a descriptor or “handle”  
•  Call by reference  

→  descriptor (pointer) refers to origin 
•  Call by value ⇒ create copy & pass descriptor 

→ Can allocate it in callee’s AR 
→ Can pass by reference & have callee copy  

it if necessary 

If it is actually an array of structures, then use a 
dope vector 



What About Calls in an OOL (Dispatch)? 

In an OOL, most calls are indirect calls 
•  Compiled code does not contain address of 

callee 
→ Finds it by indirection through class’ method table 
→ Required to make subclass calls find right methods 
→ Code compiled in class C cannot know of subclass 

methods that override methods in C 



What About Calls in an OOL (Dispatch)? 

•  In the general case, need dynamic dispatch 
→ Map method name to a search key 
→ Perform a run-time search through hierarchy 

♦ Start with object’s class, search for 1st 
occurrence of key 

♦ This can be expensive 
→ Use a method cache to speed search 

♦ Cache holds < key,class,method pointer >  


