Code Shape I
Procedure Calls, Dispatch,

Procedure Linkages

Standard procedure linkage

procedure p
prolog procedure g
prolog
pre-call
post-return \ g
| epilog

A 4

epilog

Procedure has
* standard prolog
* standard epilog

Each call site involves a
* pre-call sequence
® post-refurn sequence

Caller-saves versus callee saves

If pcalls g, one of them must

* Preserve register values
— Caller-saves registers stored/restored by pin p's AR

procedure p

prolog procedure g
prolog

Caller-saves

Code to saves p's regs — v
—> pre-call

Code to restore p's regs /7 post-retfurn

A 4

epilog

/

A 4

epilog

Caller-saves versus callee saves

If pcalls g, one of them must

* Preserve register values
— Callee-saves registers stored/restored by gin g's AR

procedure p

prolog procedure g
rolo
v proiog Callee-saves
pre-call Code to saves p's regs
post-return "

/

epilog \
Code to restore p's regs

A 4

epilog

Implementing Procedure Calls
* Allocate the AR

— Heap allocation = callee allocates its own AR

— Stack allocation = caller & callee cooperate to
allocate AR

Space tradeoff
* Pre-call & post-return occur on every call
* Prolog & epilog occur once per procedure

* More calls than procedures
— Moving operations into prolog/epilog saves space

Evalua’ring parameters

* Usually language definition issue

* Call by reference => evaluate parameter to
an lvalue

* Call by value = evaluate parameter to an
rvalue & store it

Age

/\

lvalue rvalue

/[\

123456

Evalua’ring parameters

Aggregates (structs), arrays, & strings are
usually call by reference

* Alternatives
— Small structures can be passed in registers

— Can pass large c-b-v objects c-b-r and copy on
modification

Procedure-valued parameters
* Must pass starting address of procedure

What about arrays as actual parameters?

Whole array as call-by-reference parameter

Callee needs dimension information
— Builds a descriptor called a dope vector

Store the values in the calling sequence
Pass the address of the dope vector in the

parameter slot

Generate complete address polynomial at each

reference

low,

high,

low,

high,

dope vector

38t

ITYor
e

What about A[12] as an actual parameter? (]

If corresponding parameter is a scalar, it's easy
* Pass the address or value, as needed

What if corresponding parameter is an array?
* See previous slide

What about a string-valued argument?

* Call by reference
— pass a pointer “"descriptor” to start of string

* Call by value = copy the string & pass it
—Can store it in callee's AR
— Can pass by reference & have callee copy
it if necessary

Pointer of string serves as "descriptor” for the
string, stored in the appropriate location
(register or slot in the AR)

What about a structure-valued parameter?

* Again, pass a descriptor or "handle”

* Call by reference
— descriptor (pointer) refers to origin

* Call by value = create copy & pass descriptor

— Can allocate it in callee’'s AR
— Can pass by reference & have callee copy
it if necessary

If it is actually an array of structures, then use a
dope vector

What About Calls in an OOL (Dispatch)?

In an OOL, most calls are indirect calls

* Compiled code does not contain address of
callee
—Finds it by indirection through class' method table
— Required to make subclass calls find right methods

— Code compiled in class € cannot know of subclass
methods that override methods in €

38t

ITYor
i

What About Calls in an OOL (Dispatch)? (1]

* Tn the general case, need dynamic dispatch
- Map method name to a search key
—Perform a run-time search through hierarchy

¢ Start with object’s class, search for 15
occurrence of key

¢ This can be expensive
— Use a method cache to speed search
¢ Cache holds < key, class, method pointer >

