
The Procedure Abstraction 
Part III: Establishing Addressability 
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Local Storage 

•  Central part of activation record is static 
→ All fields have known fixed lengths 

•  Code can acccess items at fixed offsets from 
frame pointer (ARP) 

•  End of AR reserved for variable-length data  
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Storage for Blocks within a Single Procedure 
procedure A { 

   int a, b, c 
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Storage for Blocks within a Single Procedure 

•  Could implement activation record for each 
block.  Too expensive! 

•  Share storage for blocks that don’t overlap  
→ B2 and B3 do not overlap 
→ Offsets computed statically 

Blocks B1 and B2 share same offsets! 



Activation Record Details 
How does the compiler find the variables? 
•  They are at known offsets from AR pointer  
•  Leads to a “loadAO” inst.  

→ loadAO  arp, 8  # arp register and offset 8 bytes 
•  Compiler creates a static coordinate of variable 



Activation Record Details 

Variable-length data 
•  If AR can be extended, put it after local 

variables 
•  Leave a pointer at a known offset from ARP 
•  Otherwise, put variable-length data on the 

heap 

Initializing local variables 
•  Must generate explicit code to store the values 
•  Among the procedure’s first actions  



Establishing Addressability  
Must create base addresses 
•  Global & static variables 

→ Construct a label by mangling names (i.e., &_fee) 



Establishing Addressability  
•  Local variables 

→ Convert to static data coordinate and use ARP + 
offset 

•  Local variables of other procedures 
→ Convert to static coordinates 
→ Find appropriate ARP 
→ Use that ARP + offset { 

 Must find the right AR 

 Need links to nameable ARs  
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What about Nested Subprograms? 

•  Can determine number of activation 
records down the stack 

Use Static Coordinate and Access Links  
•  Name is translated into a static coordinate 

→  < level,offset > pair 
→ “level” is lexical nesting level of the procedure 
→ “offset” is unique within that scope 



Establishing Addressability 
Using access links 
•  Each AR has a pointer to AR of lexical ancestor 
•  Lexical ancestor need not be the caller 

•  Reference to <p,16> runs up access link chain to p 
•  Cost of access is proportional to lexical distance 
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Establishing Addressability 
Using access links 

Access & maintenance cost varies with level 
All accesses are relative to ARP    (r0 ) 

SC Generated Code

<2,8> loadAI r0, 8 ⇒ r2

<1,12> loadAI r0, -4 ⇒ r1

loadAI r1, 12 ⇒ r2

<0,16> loadAI r0, -4 ⇒ r1

loadAI r1, -4 ⇒ r1

loadAI r1, 16 ⇒ r2
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Back to Activation Records 

If activation records are stored on the stack 
•  Easy to extend — simply bump top of stack pointer 
•  Caller & callee share responsibility 

→  Caller can push parameters, space for registers, return value 
slot, return address, addressability info, & its own ARP 

→  Callee can push space for local variables (fixed & variable 
size) 



Back to Activation Records 

If activation records are stored on the heap 
•  Hard to extend 
•  Caller passes everything it can in registers 
•  Callee allocates AR & stores register contents into it 

→  Extra parameters stored in caller’s AR ! 


