
The Procedure Abstraction
Part III: Establishing Addressability

Simple C program

A. Source code

Simple C program with runtime stack

A. Source code B. Runtime Stack

main
frame
pointer PC

Simple C program with runtime stack

A. Source code B. Runtime Stack

main
frame
pointer

PC

Simple C program with runtime stack

A. Source code B. Runtime Stack

main
frame
pointer

PC

printx

Simple C program with runtime stack

A. Source code B. Runtime Stack

main

printx
frame
pointer

PC

Simple C program with runtime stack

A. Source code B. Runtime Stack

main

foo
frame
pointer

PC

Simple C program with runtime stack

A. Source code B. Runtime Stack

main

foo
frame
pointer

PC

Simple C program with runtime stack

A. Source code B. Runtime Stack

main

foo

frame
pointer

printx

PC

Local Storage

•  Central part of activation record is static
→ All fields have known fixed lengths

•  Code can acccess items at fixed offsets from
frame pointer (ARP)

•  End of AR reserved for variable-length data

...

Storage for Blocks within a Single Procedure
procedure A {

 int a, b, c
 {
 ….
B1: {

 int x, y, z
 ….
 }

B2: {
 int x, a, v
 .…
 }
 …
 }

}

a

Local Variables
of A’s

Activation
Record

b
c

...

Byte
Offset

0
4

8

12

16
20

24

...

procedure A {
 int a, b, c

 {
 ….
B1: {

 int x, y, z
 ….
 }

B2: {
 int x, a, v
 .…
 }
 …
 }

}

a

Local Variables
of A’s

Activation
Record

b
c

...

Byte
Offset

0
4

8

12

16
20

24

What about x in scope’s B1 and B2?

...

procedure A {
 int a, b, c

 {
 ….
B1: {

 int x, y, z
 ….
 }

B2: {
 int x, a, v
 .…
 }
 …
 }

}

a

Local Variables
of A’s

Activation
Record

b
c

...

Byte
Offset

0
4

8

12

16
20

24

What about x in scope’s B1 and B2?

x
y
z

...

procedure A {
 int a, b, c

 {
 ….
B1: {

 int x, y, z
 ….
 }

B2: {
 int x, a, v
 .…
 }
 …
 }

}

a

Local Variables
of A’s

Activation
Record

b
c

...

Byte
Offset

0
4

8

12

16
20

24

What about x in scope’s B1 and B2?

x
a
v

Storage for Blocks within a Single Procedure

•  Could implement activation record for each
block. Too expensive!

•  Share storage for blocks that don’t overlap
→ B2 and B3 do not overlap
→ Offsets computed statically

Blocks B1 and B2 share same offsets!

Activation Record Details
How does the compiler find the variables?
•  They are at known offsets from AR pointer
•  Leads to a “loadAO” inst.

→ loadAO arp, 8 # arp register and offset 8 bytes
•  Compiler creates a static coordinate of variable

Activation Record Details

Variable-length data
•  If AR can be extended, put it after local

variables
•  Leave a pointer at a known offset from ARP
•  Otherwise, put variable-length data on the

heap

Initializing local variables
•  Must generate explicit code to store the values
•  Among the procedure’s first actions

Establishing Addressability
Must create base addresses
•  Global & static variables

→ Construct a label by mangling names (i.e., &_fee)

Establishing Addressability
•  Local variables

→ Convert to static data coordinate and use ARP +
offset

•  Local variables of other procedures
→ Convert to static coordinates
→ Find appropriate ARP
→ Use that ARP + offset {

 Must find the right AR

 Need links to nameable ARs

What about Nested Subprograms?

•  Cannot determine distance to AR of non-local variable

Body of zab

What about Nested Subprograms?

•  Cannot determine distance to AR of non-local variable

Body of baz

What about Nested Subprograms?

•  Cannot determine distance to AR of non-local variable

Body of foo

What about Nested Subprograms?

•  Can determine number of activation
records down the stack

Use Static Coordinate and Access Links
•  Name is translated into a static coordinate

→  < level,offset > pair
→ “level” is lexical nesting level of the procedure
→ “offset” is unique within that scope

Establishing Addressability
Using access links
•  Each AR has a pointer to AR of lexical ancestor
•  Lexical ancestor need not be the caller

•  Reference to <p,16> runs up access link chain to p
•  Cost of access is proportional to lexical distance

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

AR
P

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

Establishing Addressability
Using access links

Access & maintenance cost varies with level
All accesses are relative to ARP (r0)

SC Generated Code

<2,8> loadAI r0, 8 ⇒ r2

<1,12> loadAI r0, -4 ⇒ r1

loadAI r1, 12 ⇒ r2

<0,16> loadAI r0, -4 ⇒ r1

loadAI r1, -4 ⇒ r1

loadAI r1, 16 ⇒ r2

Establishing Addressability
Using access links

access link

access link

access link

access link

PC

Establishing Addressability
Using access links

access link

access link

access link

access link
PC

Establishing Addressability
Using access links

access link

access link

access link

access link

PC

Establishing Addressability
Using access links

access link

access link

access link

access link

PC

Back to Activation Records

If activation records are stored on the stack
•  Easy to extend — simply bump top of stack pointer
•  Caller & callee share responsibility

→  Caller can push parameters, space for registers, return value
slot, return address, addressability info, & its own ARP

→  Callee can push space for local variables (fixed & variable
size)

Back to Activation Records

If activation records are stored on the heap
•  Hard to extend
•  Caller passes everything it can in registers
•  Callee allocates AR & stores register contents into it

→  Extra parameters stored in caller’s AR !

