
The Procedure Abstraction
Part II: Symbol Tables, Storage

Last Lecture
•  Control Abstraction

→  Well defined entries & exits
→  Mechanism to return control to caller

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure Abstractions: Today

•  Name Space

•  External Interface

The Procedure as a Name Space
Why introduce lexical scoping?
•  A compile-time mechanism for binding variables
•  Lets programmer introduce “local” names
How can compiler keep track of all those names?

procedure p {
 int a, b, c
 ….

 {
 int v, b, x, w
 ….

 }
}

The Procedure as a Name Space
The Problem
•  At point X, which declaration of b is current?

procedure p {
 int a, b, c
 ….

 {
 int v, b, x, w
 ….

 }
 …
}

Different
points where
b can be
accessed

The Procedure as a Name Space

The Problem
•  At run-time, where is b found?

procedure p {
 int a, b, c
 ….

 {
 int v, b, x, w
 ….

 }
}

Where does b
go at runtime?

The Procedure as a Name Space

The Problem
•  As parser goes in & out of scopes, how does it

delete b?

procedure p {
 int a, b, c
 ….

 {
 int v, b, x, w
 ….

 }
 …
}

As parser goes
in and out of
scopes, need to
delete b.

Answer: Lexically-scoped Symbol Tables

The problem
•  The compiler needs a distinct record for each

declaration
•  Nested lexical scopes admit duplicate declarations

The interface
•  insert(name, level) – creates record for name at level
•  lookup(name, level) – returns pointer or index
•  delete(level) – removes all names declared at level

Example

B0: procedure b {
 int a, b, c

B1: {
 int v, b, x, w

B2: {
 int x, y, z
 ….
 }

B3: {
 int x, a, v
 …
 }
 …
 }
 …

}

B1
B0

B2

Lexically-scoped Symbol Tables

High-level idea
•  Create a new table for each scope
•  Chain them together for lookup

B1
B0

B2

Symbol Table Operations: Insert()

•  insert() may need to create table
 it always inserts at current level

B1
B0

B2

Symbol Table Operations: Lookup()

•  lookup() walks chain of tables &
 returns first occurrence of name

B1
B0

B2

Symbol Table Operations: Delete()

•  delete() throws away table for level B0, if it is
top table in the chain

B1
B0

B2

The Procedure as an External Interface
OS needs a way to start the program’s execution
•  When user invokes “grep” at a command line

→  OS finds the executable
→  OS creates a process and arranges for it to run “grep”
→  “grep” is code from the compiler, linked with run-time system

♦ Starts the run-time environment & calls “main”
♦ After main, it shuts down run-time environment & returns

•  When “grep” needs system services
→  It makes a system call, such as fopen()

The Procedure as an External Interface
OS needs a way to start the program’s execution
> grep “foo” hello.txt

C
o
d
e

S G
t l
a & o
t b
i a
c l

S
t
a
c
k

H
e
a
p

“grep” running in memory

0 high

main function here “foo” and hello.txt here

Virtual
addresses

Grep may call fopen with “hello.txt”

The Procedure as an External Interface

“foo” and hello.txt

in main’s activiation record

C
o
d
e

S G
t l
a & o
t b
i a
c l

S
t
a
c
k

H
e
a
p

“grep” running in memory
0 high

main function

on stack of ARs

AR of fopen

main
fopen

AR of main

Call
Stack

Activation Record

Top of Stack

Current Function

Previous Functions

Local variables

Return address

Return value

Register
save area

parameters

...

Activation
Record

Activation Record

Top of Stack

Current Function

Previous Functions

Local variables

Return address

Return value

Register
save area

parameters

...

Space for parameters to
the current routine

Activation Record

Top of Stack

Current Function

Previous Functions

Local variables

Return address

Return value

Register
save area

parameters

...

Saved register contents

Activation Record

Top of Stack

Current Function

Previous Functions

Local variables

Return address

Return value

Register
save area

parameters

...

Space for return value if
needed.

Activation Record

Top of Stack

Current Function

Previous Functions

Local variables

Return address

Return value

Register
save area

parameters

...
Address to resume caller.

Activation Record

Top of Stack

Current Function

Previous Functions

Local variables

Return address

Return value

Register
save area

parameters

...
Space for local value and
variables (including spills).

Where Do Local Variables Go?

Local
•  Keep them in procedure activation
record or in a register
•  Automatic ⇒ lifetime matches

procedure’s lifetime

Where Do Static Variables Go?

Static
•  File scope ⇒ storage area affixed with

file name
•  Lifetime is entire execution

Where Do Global Variables Go?

Global
•  One or more named global data areas
•  One per variable, or per file, or per

program, …
•  Lifetime is entire execution

Placing Run-time Data Structures

Classic Organization
•  Code, static, & global data have known size
•  Heap & stack both grow & shrink over time
•  This is a virtual address space

C
o
d
e

S G
t l
a & o
t b
i a
c l

S
t
a
c
k

H
e
a
p

Single Logical Address Space
0 high

How Does This Really Work?
The Big Picture

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

C
o
d
e

S G
t l
a & o
t b
i a
c l

 H
e
a
p

S
t
a
c
k

...

...

Hardware’s view

Compiler’s view

OS’s view

Physical address
space_

virtual address
spaces

0 high

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

Variable-length Data

Arrays
→  If size is fixed at compile time, store in

fixed-length data area

B0: {
 int a, b
 int v(a), c, x
 int z, y(8)
 ….
 }

a b v c x z y(8) v(a)

Variable-length data Includes variable length data for
all blocks in the procedure …

Variable-length Data

Arrays
→  If size is variable, store descriptor in

fixed length area, with pointer to variable
length area

→  Variable-length data area is assigned at
the end of the fixed length area for block
in which it is allocated

B0: {
 int a, b
 int v(a), c, x
 int z, y(8)
 ….
 }

a b v c x z y(8) v(a)

Variable-length data Includes variable length data for
all blocks in the procedure …

Variable-length Data

Arrays
→  If size is variable, store descriptor in

fixed length area, with pointer to variable
length area

B0: {
 int a, b
 int v(a), c, x
 int z, y(8)
 ….
 }

a b v c x z y(8) v(a)

Variable-length data Includes variable length data for
all blocks in the procedure …

Activation Record Details

Where do activation records live?
•  If lifetime of AR matches lifetime of

invocation, AND
•  If code normally executes a “return”
⇒ Keep ARs on a stack

C
o
d
e

S G
t l
a & o
t b
i a
c l

H
e
a
p

S
t
a
c
k

Activation Record Details

•  If a procedure can outlive its caller, OR
•  If it can return an object that can

reference its execution state
⇒ ARs must be kept in the heap

•  If a procedure makes no calls
⇒ AR can be allocated statically

Efficiency prefers static, stack, then heap

Communicating Between Procedures
Most languages provide a parameter passing mechanism
⇒  Expression used at “call site” becomes variable in callee

Two common binding mechanisms
•  Call-by-reference passes a pointer to actual

parameter
→  Requires slot in the AR (for address of parameter)
→  Multiple names with the same address?

•  Call-by-value passes a copy of its value at time of
call
→  Requires slot in the AR
→  Each name gets a unique location (may have same value)
→  Arrays are mostly passed by reference, not value

•  Can always use global variables …

call fee(x,x,x);

Extra Slides

•  The following slides review topics
discussed in

Lecture: The Procedure Abstraction, Part I
(11/16)

Procedure Linkages
Standard procedure linkage

procedure p

prolog

epilog

pre-call

post-return

procedure q

prolog

epilog

Procedure has

•  standard prolog

•  standard epilog

Each call involves a

•  pre-call sequence

•  post-return sequence

These are completely
predictable from the
call site ⇒ depend on
the number & type of
the actual parameters

Procedure Linkages
Pre-call Sequence
•  Sets up callee’s basic AR
•  Helps preserve its own environment

The Details
•  Allocate space for the callee’s AR

→  except space for local variables
•  Evaluates each parameter & stores value or address
•  Saves return address, caller’s ARP into callee’s AR
•  If access links are used

→  Find appropriate lexical ancestor & copy into callee’s AR
•  Save any caller-save registers

→  Save into space in caller’s AR
•  Jump to address of callee’s prolog code

Procedure Linkages
Post-return Sequence
•  Finish restoring caller’s environment
•  Place any value back where it belongs

The Details
•  Copy return value from callee’s AR, if necessary
•  Free the callee’s AR
•  Restore any caller-save registers
•  Restore any call-by-reference parameters to registers, if

needed
→  Also copy back call-by-value/result parameters

•  Continue execution after the call

Procedure Linkages
Prolog Code
•  Finish setting up the callee’s environment
•  Preserve parts of the caller’s environment that will be

disturbed

The Details
•  Preserve any callee-save registers
•  If display is being used

→  Save display entry for current lexical level
→  Store current ARP into display for current lexical level

•  Allocate space for local data
→  Easiest scenario is to extend the AR

•  Find any static data areas referenced in the callee
•  Handle any local variable initializations

With heap allocated AR,
may need to use a
separate heap object for
local variables

Procedure Linkages
Epilog Code
•  Wind up the business of the callee
•  Start restoring the caller’s environment

The Details
•  Store return value? No, this happens on the return

statement
•  Restore callee-save registers
•  Free space for local data, if necessary (on the heap)
•  Load return address from AR
•  Restore caller’s ARP
•  Jump to the return address

If ARs are stack allocated,
this may not be necessary.
(Caller can reset stacktop
to its pre-call value.)

