
The Procedure Abstraction
Part I: Basics

Procedure Abstraction
•  Begins Chapter 6 in EAC
•  The compiler must deal with interface

between compile time and run time
→ Most of the tricky issues arise in implementing

“procedures”

Procedure Abstraction Issues
•  Compile-time versus run-time behavior
•  Finding storage for EVERYTHING and

mapping names to addresses
•  Generating code to compute addresses
•  Interfaces with other programs, other

languages, and the OS (libraries)
•  Efficiency of implementation

Where are we?

•  This is “compilation,” as opposed to “parsing” or
“translation”

•  Implementing promised behavior
→  What defines the meaning of the program

•  Managing target machine resources
→  Registers, memory, issue slots, locality, power, …
→  These issues determine the quality of the compiler

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

Well understood Engineering

Contains more open problems and more challenges

The Procedure & Its Three Abstractions

The Procedure as a Name Space

The Procedure as a Name Space

The Three Procedure Abstractions: Naming

The Three Procedure Abstractions: Control

The Three Procedure Abstractions: External

Linkage
Convention

The Three Procedure Abstractions Summary

•  Clean Name Space
→ Clean slate for writing locally visible names
→ Local names may obscure identical, non-local names
→ Local names cannot be seen outside

•  Control Abstraction
→ Well defined entries & exits
→ Mechanism to return control to caller

•  External Interface
→ Access is by procedure name & parameters
→ Clear protection for both caller & callee
→ Invoked procedure can ignore calling context

The Procedure (Realist’s View)
Procedures are the key to building large systems
•  Requires system-wide contract

→ Conventions on memory layout, protection, resource
allocation, calling sequences, & error handling

→ Must involve contract between
♦ architecture (ISA), OS, & compiler

The Procedure (Realist’s View)

Procedures allow us to use separate
compilation
•  Separate compilation allows us to build

non-trivial programs
•  Keeps compile times reasonable
•  Lets multiple programmers collaborate
•  Requires independent procedures
Without separate compilation, we would not

build large systems

The Procedure (More Abstract View)
A procedure is an abstract structure constructed via software

Underlying hardware directly supports little of
the abstraction—it understands bits, bytes,
integers, reals, and addresses, but not:

•  Entries and exits
•  Interfaces
•  Call and return mechanisms

→ may be a special instruction to save context at point
of call

•  Name space
•  Nested scopes

Run Time versus Compile Time
These concepts are often confusing to the

newcomer
•  Linkages execute at run time
•  Code for the linkage is emitted at compile time
•  The linkage is designed long before either of

these

Compile time vs run time can be confusing to
compiler students.

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The procedure call
•  Invoked at a call site, with some set of

actual parameters
•  Control returns to call site, immediately

after invocation

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The procedure call
•  Invoked at a call site, with some set of actual parameters
•  Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The procedure call
•  Invoked at a call site, with some set of actual parameters
•  Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The procedure call
•  Invoked at a call site, with some set of actual parameters
•  Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The procedure call
•  Invoked at a call site, with some set of actual parameters
•  Control returns to call site, immediately after invocation

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

Implementing procedures with this behavior
•  Requires code to save and restore a “return address”

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

 Compiler emits code to
save and restore address.

Implementing procedures with this behavior
•  Must map actual parameters to formal parameters
 (c→x, b→y)

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

 Compiler emits code to copy
parameters from caller to callee.
Usually passed through call
stack.

Implementing procedures with this behavior
•  Must create storage for local variables (&, maybe,

parameters)
→ p needs space for d (&, maybe, a, b, & c)
→ where does this space go in recursive invocations?

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

 Compiler emits code to construct local area
for callee procedure.

The Procedure as a Control Abstraction

Implementing procedures with this behavior
•  Must preserve p’s state while q executes
•  Strategy: Create unique location for each procedure

activation
→  Can use a “stack” of memory blocks to hold local storage

and return addresses

Compiler emits code that causes all this to
happen at run time

int p(a,b,c)
 int a, b, c;
{
 int d;
 d = q(c,b);
 ...
}

int q(x,y)
 int x,y;
{
 return x + y;
}

…
s = p(10,t,u);
…

