
The Procedure Abstraction 
Part I: Basics 



Procedure Abstraction 
•  Begins Chapter 6 in EAC 
•  The compiler must deal with interface 

between compile time and run time 
→ Most of the tricky issues arise in implementing 

“procedures” 



Procedure Abstraction Issues 
•  Compile-time versus run-time behavior 
•  Finding storage for EVERYTHING and 

mapping names to addresses 
•  Generating code to compute addresses 
•  Interfaces with other programs, other 

languages, and the OS (libraries) 
•  Efficiency of implementation 



Where are we? 

•  This is “compilation,” as opposed to “parsing” or 
“translation” 

•  Implementing promised behavior 
→  What defines the meaning of the program 

•  Managing target machine resources 
→  Registers, memory, issue slots, locality, power, … 
→  These issues determine the quality of the compiler 
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Contains more open problems and more challenges 



The Procedure & Its Three Abstractions 



The Procedure as a Name Space 
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The Three Procedure Abstractions: Naming 



The Three Procedure Abstractions: Control 



The Three Procedure Abstractions: External 

Linkage  
Convention 



The Three Procedure Abstractions Summary 

•  Clean Name Space 
→ Clean slate for writing locally visible names 
→ Local names may obscure identical, non-local names 
→ Local names cannot be seen outside 

•  Control Abstraction 
→ Well defined entries & exits  
→ Mechanism to return control to caller 

•  External Interface 
→ Access is by procedure name & parameters 
→ Clear protection for both caller & callee 
→ Invoked procedure can ignore calling context 



The Procedure                  (Realist’s View) 
Procedures are the key to building large systems 
•  Requires system-wide contract 

→ Conventions on memory layout, protection, resource 
allocation, calling sequences, & error handling 

→ Must involve contract between  
♦ architecture (ISA), OS, & compiler 



The Procedure                  (Realist’s View) 

Procedures allow us to use separate 
compilation 
•  Separate compilation allows us to build 

non-trivial programs 
•  Keeps compile times reasonable 
•  Lets multiple programmers collaborate 
•  Requires independent procedures 
Without separate compilation, we would not 

build large systems 



The Procedure         (More Abstract View) 
A procedure is an abstract structure constructed via software 

Underlying hardware directly supports little of 
the abstraction—it understands bits, bytes, 
integers, reals, and addresses, but not: 

•  Entries and exits 
•  Interfaces  
•  Call and return mechanisms  

→ may be a special instruction to save context at point 
of call 

•  Name space  
•  Nested scopes  



Run Time versus Compile Time 
These concepts are often confusing to the 

newcomer 
•  Linkages execute at run time 
•  Code for the linkage is emitted at compile time 
•  The linkage is designed long before either of 

these 

Compile time vs run time can be confusing to 
compiler students. 



The Procedure as a Control Abstraction 
Procedures have well-defined control-flow 

The procedure call 
•  Invoked at a call site, with some set of 

actual parameters  
•  Control returns to call site, immediately 

after invocation 
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int p(a,b,c) 
    int a, b, c; 
{ 
   int   d; 
   d = q(c,b); 
   ... 
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s = p(10,t,u); 
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Implementing procedures with this behavior 
•  Requires code to save and restore a “return address” 

int p(a,b,c) 
    int a, b, c; 
{ 
   int   d; 
   d = q(c,b); 
   ... 
} 

int q(x,y) 
    int x,y; 
{ 
    return x + y; 
} 

… 
s = p(10,t,u); 
… 

 Compiler emits code to 
save and restore address. 



Implementing procedures with this behavior 
•  Must map actual parameters to formal parameters  
       (c→x, b→y) 

int p(a,b,c) 
    int a, b, c; 
{ 
   int   d; 
   d = q(c,b); 
   ... 
} 

int q(x,y) 
    int x,y; 
{ 
    return x + y; 
} 

… 
s = p(10,t,u); 
… 

 Compiler emits code to copy 
parameters from caller to callee.  
Usually passed through call 
stack. 



Implementing procedures with this behavior 
•  Must create storage for local variables  (&, maybe, 

parameters) 
→ p needs space for d  (&, maybe, a, b, & c) 
→ where does this space go in recursive invocations? 

int p(a,b,c) 
    int a, b, c; 
{ 
   int   d; 
   d = q(c,b); 
   ... 
} 

int q(x,y) 
    int x,y; 
{ 
    return x + y; 
} 

… 
s = p(10,t,u); 
… 

 Compiler emits code to construct local area 
for callee procedure. 



The Procedure as a Control Abstraction 

Implementing procedures with this behavior 
•  Must preserve p’s state while q executes 
•  Strategy: Create unique location for each procedure 

activation 
→  Can use a “stack” of memory blocks to hold local storage 

and return addresses 

Compiler emits code that causes all this to 
happen at run time  

int p(a,b,c) 
    int a, b, c; 
{ 
   int   d; 
   d = q(c,b); 
   ... 
} 

int q(x,y) 
    int x,y; 
{ 
    return x + y; 
} 

… 
s = p(10,t,u); 
… 


