The Procedure Abstraction
Part I: Basics

Procedure Abstraction

* Begins Chapter 6 in EAC
* The compiler must deal with interface
between compile time and run fime

— Most of the tricky issues arise in implementing
“procedures”

Procedure Abstraction Issues

* Compile-time versus run-time behavior

* Finding storage for EVERYTHING and
mapping hames to addresses

* Generating code to compute addresses

* Interfaces with other programs, other
languages, and the OS (libraries)

* Efficiency of implementation

Where are we?

P ey g e - - - - -

' Well understood Engineering
Source | Front ii| IR Middle | IR Back M:achine .
Code End End End code
> Errors i

Contains more open problems and more challenges

* This is "compilation,” as opposed to "parsing” or
“franslation”

* Implementing promised behavior
—~ What defines the meaning of the program

* Managing target machine resources

— Registers, memory, issue slots, locality, power, ...
— These issues determine the quality of the compiler

The Procedure & Its Three Abstractions

The compiler produces code for each procedure

Compiled Code

Procedure

The individual code bodies must fit together to form a working
program

The Procedure as a Name Space

y LOMD led Cade \, Commiea Coa \, Commlea Cade

- s - * ~ \ /™ Ao I~ {
. Compiled Code Commiled Code

\ - ol - A= ! \ 7 | - S nm
- l..-..T-... eQ COC0E - ~ l.f'-"..- 1eC C2C

. “nel " lord P nri
. Commiled Code Commiled Code

The Procedure as a Name Space

In essence, the procedure Iinkage wraps around the unique
code of each procedure to give it a uniform mTer'face

.Ol""l... 0'0.""!... 0' ".' .
. H : -
— [Ju—— [Jp— »
N N M
'] ’ » -
Compiled Code ; Compiled Code : Compiled Code \ s
» » :
|] .
» L]

] v

]]
.OO’J.Q.Q.0.0....l.‘O.M..l...........‘o.mg-co' ooooooooo -
- . .
: i :
-~ " " " 3 { { .
Compiled Code E . Compiled Code e N Compiled Code -
. . -
™ .
» . .
. .

. ® y

ionp.l.cooaooocooooo‘oomgoooaooooooooo*o.m'ooqq..oo.of.og.
- 5 . -

»

. , , o /o /e
« \, Compiled Code \ s\ Compiled Code \ : \ Compiled Cade \ .
» »

L L
t
]
'.oa"IQooo.ooooooooo‘oop.f.ooo.ooooooooo‘oo,&f.oc..ooooooooo.‘
. H H Yo

— [p— .
l »
- 1] 3 i] : ’ ’ i N . | -
e N\, Compiled Code s N Compiled Codge .S ("'r" led Coge .
. 3, . .

|]

» »

]]

L L]
Tl RIS I NI TN ETNOINENTTTYE \oo-. oooooooooooooooo .boo-o oooooooooooooooo

The Three Procedure Abstractions: Naming

‘Naming Environment |

Compiled Code

"Naming" includes
the ability to find
and access the

object in memory

Procedure

Each procedure inherits a set of names*
= Variables, values, procedures, objects, locations, ...

= Clean slate for new names, "scoping” can hide other names

The Three Procedure Abstractions: Control

. . ntr stor
Naming Envmonmen’r‘ ’ 01' oY |

Compiled Code

Procedure

Each procedure inherits a control history
= Chain of calls that led to its invocation
= Mechanism to return control to caller

The Three Procedure Abstractions: External

Control History

Naming Environment
- l l Linkage
| Convention

_ | /l \ System Services
Complled Code (allocation, communication,

APIs I/0, control, naming, ...)

Procedure

Each procedure has access to external interfaces
= Access by name, with parameters (may include dynamic link & load)
= Protection for both sides of the interface

The Three Procedure Abstractions Summary

* Clean Name Space
— Clean slate for writing locally visible names
— Local names may obscure identical, non-local names
— Local names cannot be seen outside

e Control Abstraction

— Well defined entries & exits
— Mechanism to return control to caller

* External Interface
— Access is by procedure name & parameters
— Clear protection for both caller & callee
— Invoked procedure can ignore calling context

The Procedure (Realist's View)

Procedures are the key to building large systems

* Requires system-wide contract

— Conventions on memory layout, protection, resource
allocation, calling sequences, & error handling

— Must involve contract between
¢ architecture (IsA), 0s, & compiler

The Procedure (Realist's View)

Procedures allow us to use separate
compilation

* Separate compilation allows us to build
non-trivial programs

* Keeps compile times reasonable
* Lets multiple programmers collaborate
* Requires independent procedures

Without separate compilation, we would not
build large systems

The Procedure (More Abstract View)

A procedure is an abstract structure constructed via software

Underlying hardware directly supports little of
the abstraction—it understands bits, bytes,
integers, reals, and addresses, but not:

e Entries and exits
e Tnterfaces

e Call and return mechanisms

—may be a special instruction to save context at point
of call

* Name space
* Nested scopes

Run Time versus ComEile Time

These concepts are often confusing to the
hewcomer

* Linkages execute at run ftime
* Code for the linkage is emitted at compile time

* The linkage is designed long before either of
these

Compile time vs run time can be confusing to
compiler students.

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The procedure call

e Tnvoked at a call site, with some set of
actual parameters

* Control returns to call site, immediately
after invocation

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The procedure call
* Invoked at a call site, with some set of actual parameters
* Control returns to call site, immediately after invocation

int p(a,b,c)
inta, b, c;
{
int d;

s = p(10,t,u); d = g(c,b);

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The procedure call
* Invoked at a call site, with some set of actual parameters
* Control returns to call site, immediately after invocation

int p(a,b,c)
inta, b, c; int q(x,y)
{ int x,y;
int d; {

s =p(10,t,u); d = q(c,b); return x +y;
e }

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The procedure call
* Invoked at a call site, with some set of actual parameters
* Control returns to call site, immediately after invocation

int p(a,b,c)
inta, b, c; int q(x,y)
{ int x,y;
int d; {

s = p(10,t,u); d = q(c,b); return x +y;

Y

The Procedure as a Control Abstraction

Procedures have well-defined control-flow

The procedure call
* Invoked at a call site, with some set of actual parameters
* Control returns to call site, immediately after invocation

int p(a,b,c)
mta b, c; mt a(x,y)
int x,y;
mt d; {
}

Implementing procedures with this behavior

* Requires code to save and restore a “return address”

int p(a,b,c)
inta, b, c; int g(x,y)
{ / int x,y;
int d; {
s = p(10,t,u); d=q(c,b); - return x +y;

— }

}

Compiler emits code to
save and restore address.

Implementing procedures with this behavior

* Must map actual parameters to formal parameters
(c—=x, b—y)

int p(a,b,c)
inta, b, c; int g(x,y)
/{ / intxy:
int d; {
s = p(10,t,u); d=q(c,b); - return x + y;

— }

}

Compiler emits code to copy
parameters from caller to callee.
Usually passed through call
stack.

38t

ITYor
i

Implementing procedures with this behavior o

* Must create storage for local variables (&, maybe,
parameters)

— p needs space for d (&, maybe, a, b, & ¢)
—where does this space go in recursive invocations?

int p(a,b,c)
inta, b, c; int q(x,y)
{ int x,y;
int d {
s = p(10,t,u): =q(C return x +vy;

}

Compiler emits code to construct local area
for callee procedure.

The Procedure as a Control Abstraction

Implementing procedures with this behavior
* Must preserve p's state while g executes

* Strategy. Create unique location for each procedure
activation

— Can use a "stack” of memory blocks to hold local storage
and return addresses

int p(a,b,c)
mta b, c; mt a(x,y)
int x,y;
mt d; {
}

Compiler emits code that causes all this to
happen at run time

