8t

ITYoF
Py

1743
L]

Intermediate Representations
Part IT

Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique
node for each value

Z<—X-2 W<x/ 2

Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique
node for each value

Z<—X-2 W<x/ 2

Stack Machine Code

Originally used for stack-based computers,
how Java

* Example:
X-2*y becomes

push x
push 2
push y
multiply
subtract

Stack Machine Code

Operations take operands from a stack
Compact form

A form of one-address code

Introduced names are implicit, not explicit
Simple to generate and execute code

Stack Machine Code Advantages

push 2
X - push y
multiply
push x
Result is stored in subtract
a femporary! .
Explicit name for MU"{'P'Y pops
result. two items of f of stack

and pushes resulft!
Implicit name for
result

Three Address Code

Different representations of three address code
* In general, three address code has statements
of the form:
X<Yyopz
With 1 operator (op) and
(at most) 3 names (x,y, & z)

Three Address Code

LR "
s "a

® s
LT

Example:

Explicit name for result.

Three Address Code Advan’rages

* Resembles many real (RISC) machines
* Introduces a hew set of names
* Compact form

Three Address Code: Quadruples

Naive representation of three address code
* Table of k * 4 small integers

Destination

Two operands

L]

load l vy
load rl, y
loadI r2, 2 loadi 2 | 2
mult r3, r2, ril mult 3 2 1
load 1r4, X
sub r5, rd4, r3 Load 1 X
sub 5 3

RISC assembly code Quadruples

Three Address Code: Array of Pointers

* Tndex causes level of indirection
* Easy (and cheap) to reorder
* Easy to add (delete) instructions

°1T—>|load rl [Y
© > | loadi ré | 2
o > | mult r3 | r2|rl
0 > | load r4 | X
0 > | sub r5| r4 |r3

Three Address Code: Array of Pointers

* Tndex causes level of indirection
* Easy (and cheap) to reorder
* Easy to add (delete) instructions

© > [load rl | Y
® > | loadi ré | 2
O r3| ré2|rl

<>< mUH'
z load r4 | X

o > | sub r5| r4 |r3

Three Address Code: Array of Pointers

* No additional array of indirection

* Easy (and cheap) to reorder than simple table
* Easy to add (delete) instructions

°—>9 oad rl | Y

qo oadi | r2 | 2
-«

mult r3| r2|rl
o | load r4 | X

<o sub r5| r4 |r3

Control-flow GmEh

Models the transfer of control in the procedure

* Nodes in the graph are basic blocks

— Can be represented with quads or any other linear
representation

* Edges in the graph represent control flow

Example
if (x=y) Basic blocks —
/ Maximal length
T~ sequences of
a< 2 a<3 straight-line code
b<5 b<4

\/

c<—a*b

Control-Flow Graphs

* Node: an instruction or sequence of
instructions (a basic block)

— Two instructions i, j in same basic block
iff execution of i guarantees execution of |

* Directed edge: potential flow of control

* Distinguished start node Entry
—First instruction in program

Identifying Basic Blocks

* Tnput: sequence of instructions instr(i)

* Identify leaders:
first instruction of basic block

* Tterate: add subsequent instructions to
basic block until we reach another leader

Basic Block Partition Algorithm

leaders = instr(1) // first instruction

for i =1 to |n] // iterate thru all instrs
if instr(i) 1is a branch
leaders = leaders U targets of instr(i)

leaders = leaders U instr(i+l) // instr after
branch

worklist = leaders
while worklist not empty
X = first instruction in worklist
worklist = worklist - {x}
block(x) = {x}
for (1 = x +1; i <= |n| & 1 not in leaders; i++)
block(xX) = block(x) U {i}

Static Single Assignment Form

Original

X < ..

YV < ..

while (x < k)
X < x + 1
Yy << Y t X

SSA-form

Xg < e
Yo < -
1if (x, >= k) goto next
loop: X; < ¢(Xy,X,)
Yi < 0(YorY2)
X, < x; +1
Y, < Y1 T X
1f(x, < k) goto loop
next:

Static Single Assignment Form

Original SSA-form

X < . Xg < e

y < . Vo —

while (x < k) if (%X, >= k) goto next
Xx «— x + 1 loop: X; < ¢(Xy,X,)
y < vy + X Y1 < 0(YorY2)

X, < x; +1
Yo < Y1 t X
1f(x, < k) goto loop
next:

Static Single Assignmen’r Form

Original

X e [X X J

V < ..
while (x < k)

SSA-form

XO e (XX]

Yo <
1if (x, >= k) goto next

X < x + 1
y <y + X

loop: X; < ¢(Xy,X,)
Y1 < 0(YorY2)

X, < x; +1

Y, < Y1 t X,
(x, < k) goto loop

Static Single Assignmen’r Form

Original SSA-form

X <= . Xg S o

V < .. Vo < .

while (x < k) i]f (X, >= k) goto next
X «— x + 1 loop: X; < ¢(Xy,X,)
y < vy + X Y1 < 0(YorY2)

X, < x; +1
Yo <= ¥y + X,

1f(x, < k) goto loop

next:

Static Single Assignment Form

Original SSA-form
X <= Xg S o
Y < .. Vo < -

if (x, >= k) goto next
loops X, < 0(X(,X%;)
Yi < 0(YorY2)

X, < x; +1

Y, < Y1 T X,
1f(x, < k) goto loop

while (x < k)
X < xXx + 1
y <y + X

This is new! Inserted
at points where diff.
control flow merge.

next:

Static Single Assignment Form

Original SSA-form
X <= Xg S o
Y < .. Vo < -

while (x < k)
X < xXx + 1
y <y + X

1if (x, >= k) goto next
loop: X; < ¢(Xy,X,)
Yi < 0(YorY2)

X, < x; + 1

Y, < Y1 T X,
1f(x, < k) goto loop

Keeps single assign.

property. next:

38t

Static Single Assignment Form Advantages [ﬂﬁgﬁ%

Strengths of SSA-form

* Sharper analysis because values never
redefined

* Simplifies and improves optimizations
* (Sometimes) faster algorithms

Using Multiple Representations

Source Front | IR 1 _|Middle IR 2 |Middle| IR 3 | Back Target

—

Code End End End End Code

A

* Repeatedly lower the level of the intermediate
representation

— Each intermediate representation is suited tfowards certain
optimizations
* Example: the Open6é64 compiler
— WHIRL intermediate format

= Consists of 5 different IRs that are progressively more
detailed and less abstract

Memory Models

Two major models

* Register-to-register model
— Keep all values that can legally be stored in a register in registers
— Ignore machine limitations on number of registers
— Compiler back-end must insert loads and stores

* Memory-to-memory model
— Keep all values in memory
— Only promote values to registers directly before they are used
— Compiler back-end can remove loads and stores

* Compilers for RISC machines usually use register-to-register
— Reflects programming model
— Easier to determine when registers are used

The Rest of the Story...

Representing the code is only part of an IR

There are other necessary components
* Symbol table

e Constant table

— Representation, type
— Storage class, of fset

* Storage map
— Overall storage layout
— Overlap information
— Virtual register assignments

Symbol Tables

Classic approach to building a symbol table uses hashing
* Personal preference: a two-table scheme
— Sparse index to reduce chance of collisions
— Dense table to hold actual data
= Easy to expand, to traverse, to read & write from/to files
* Use chains in index to handle

See §B.3 in EaC for
a longer explanation

collisions
Collision occurs when Stack-like
h() returns a slot in wf N growth
the sparse index that h(*foe’)
is already full.
h("fee") .
\"* fum | float | scalar | ..
NextSlot fee | integer | scalar | ...
» fie | char* | array | ..

Comp 412, Fall 2010 28 Sparse index Dense table

Hash-less Symbol Tables

Classic approach to building a symbol table uses hashing
* Some concern about worst-case behavior

— Collisions in the hash function can lead to linear search

— Some authors advocate "perfect” hash for keyword lookup
* Automata theory lets us avoid worst-case behavior

My favorite
hash table
EE))IIision occurT when organization Stack-like
returns a slot in o n _ growth
the sparse index that h(*foe”)
is already full.
h("fee") .
\"* fum | float | scalar | ..
NextSlot fee | integer | scalar | ...
“ fie | char* | array | ..

Comp 412, Fall 2010 29 Sparse index Dense table

Hash-less Symbol Tables

One alternative is Paige & Cai's multiset discrimination
* Order the name space offline
* Assign indices to each name

* Replace the names in the input with their encoded indices
Digression on page 241 of EaC

Using DFA techniques, we can build a guaranteed linear-time
replacement for the hash function A

* DFA that results from a list of words is acyclic
— RE looks like r;| ro| ry| .. | 1
— Could process input twice, once to build DFA, once to use it

e We can do even better

Comp 412, Fall 2010 30

Hash-less Symbol Tables

Classic approach to building a symbol table uses hashing

e Some concern about worst-case behavior
— Collisions in the hash function can lead to linear search
— Some authors advocate "perfect” hash for keyword lookup

* Automata theory lets us avoid worst-case behavior

Replace the hash
function, A, and

the sparse index d(*fie") :::\;l:;‘hke
with an efficient d("fee”)
direct map, d, ...

d("fum”)

d("foe”) > <

fum | float | scalar | ...

NextSlot fee | integer | scalar | ...

fie | char* |array | ..

Comp 412, Fall 2010 31 Sparse index Dense table

Hash-less Symbol Tables

Incremental construction of an acyclic DFA

* Toadd aword, run it through the DFA
— At some point, it will face a transition to the error state
— ATt that point, start building states & transitions to recognize it
* Requires a memory access per character in the key
— If DFA grows too large, memory access costs become excessive
— For small key sets (e.g., hames in a procedure), not a problem
* Optimizations
— Last state on each path can be explicit
= Substantial reduction in memory costs
= Instantiate when path is lengthened
— Trade off granularity against size of state representation
— Encode capitalization separately
= Bit strings tied to final state?

Comp 412, Fall 2010 32

