
Intermediate Representations
Part II

A directed acyclic graph (DAG) is an AST with a unique
 node for each value

Directed Acyclic Graph

x

2 y

*

-

←

z /

←

w

w ← x / 2

2 x

z ← x - 2

Directed Acyclic Graph
A directed acyclic graph (DAG) is an AST with a unique
 node for each value

x

2 y

*

-

←

z /

←

w

w ← x / 2 z ← x - 2

Stack Machine Code
Originally used for stack-based computers,

now Java
•  Example:

 x - 2 * y becomes push x!
push 2!
push y!
multiply!
subtract!

Stack Machine Code
•  Operations take operands from a stack
•  Compact form
•  A form of one-address code
•  Introduced names are implicit, not explicit
•  Simple to generate and execute code

Stack Machine Code Advantages

 x - 2 * y

Result is stored in
a temporary!
Explicit name for
result.

push 2!
push y!
multiply!
push x!
subtract!

Multiply pops
two items off of stack
and pushes result!
Implicit name for
result

Three Address Code
Different representations of three address code
•  In general, three address code has statements

of the form:
 x ← y op z

With 1 operator (op) and
(at most) 3 names (x, y, & z)

Three Address Code

Example:
 z ← x - 2 * y becomes t ← 2 * y!

z ← x - t!

Explicit name for result.

Three Address Code Advantages
•  Resembles many real (RISC) machines
•  Introduces a new set of names
•  Compact form

Three Address Code: Quadruples

Naïve representation of three address code
•  Table of k * 4 small integers

load! 1! y!

loadi! 2! 2!

mult! 3! 2! 1!

load! 4! x!

sub! 5! 4! 3!

load r1, y!
loadI r2, 2!
mult r3, r2, r1!
load r4, x!
sub r5, r4, r3!

RISC assembly code Quadruples

Destination

Two operands

Three Address Code: Array of Pointers
•  Index causes level of indirection
•  Easy (and cheap) to reorder
•  Easy to add (delete) instructions

Three Address Code: Array of Pointers
•  Index causes level of indirection
•  Easy (and cheap) to reorder
•  Easy to add (delete) instructions

Three Address Code: Array of Pointers
•  No additional array of indirection
•  Easy (and cheap) to reorder than simple table
•  Easy to add (delete) instructions

Control-flow Graph
Models the transfer of control in the procedure
•  Nodes in the graph are basic blocks

→  Can be represented with quads or any other linear
representation

•  Edges in the graph represent control flow

Example
if (x = y)

a ← 2
b ← 5

a ← 3
b ← 4

c ← a * b

Basic blocks —
Maximal length
sequences of
straight-line code

Control-Flow Graphs
•  Node: an instruction or sequence of

instructions (a basic block)
→ Two instructions i, j in same basic block

iff execution of i guarantees execution of j
•  Directed edge: potential flow of control
•  Distinguished start node Entry

→ First instruction in program

Identifying Basic Blocks
•  Input: sequence of instructions instr(i)
•  Identify leaders:

first instruction of basic block
•  Iterate: add subsequent instructions to

basic block until we reach another leader

Basic Block Partition Algorithm

leaders = instr(1) // first instruction

for i = 1 to |n| // iterate thru all instrs

 if instr(i) is a branch

 leaders = leaders ∪ targets of instr(i)
 leaders = leaders ∪ instr(i+1) // instr after
branch

worklist = leaders

While worklist not empty

 x = first instruction in worklist

 worklist = worklist – {x}

 block(x) = {x}

 for (i = x + 1; i <= |n| && i not in leaders; i++)

 block(x) = block(x) ∪ {i}

Static Single Assignment Form

 Original

x ← …!
y ← …!
while (x < k)!
 x ← x + 1!
 y ← y + x!

SSA-form

! !x0 ← …!
! !y0 ← …!
! !if (x0 >= k) goto next!
loop: x1 ← φ(x0,x2) !
! ! ! y1 ← φ(y0,y2)!
 !x2 ← x1 + 1 !
 !y2 ← y1 + x2!
! ! if(x2 < k) goto loop!
next: … !

Static Single Assignment Form

 Original

x ← …!
y ← …!
while (x < k)!
 x ← x + 1!
 y ← y + x!

SSA-form

! !x0 ← …!
! !y0 ← …!
! !if (x0 >= k) goto next!
loop: x1 ← φ(x0,x2) !
! ! ! y1 ← φ(y0,y2)!
 !x2 ← x1 + 1 !
 !y2 ← y1 + x2!
! ! if(x2 < k) goto loop!
next: … !

SSA-form

! !x0 ← …!
! !y0 ← …!
! !if (x0 >= k) goto next!
loop: x1 ← φ(x0,x2) !
! ! ! y1 ← φ(y0,y2)!
 !x2 ← x1 + 1 !
 !y2 ← y1 + x2!
! ! if(x2 < k) goto loop!
next: … !

Static Single Assignment Form

 Original

x ← …!
y ← …!
while (x < k)!
 x ← x + 1!
 y ← y + x!

SSA-form

! !x0 ← …!
! !y0 ← …!
! !if (x0 >= k) goto next!
loop: x1 ← φ(x0,x2) !
! ! ! y1 ← φ(y0,y2)!
 !x2 ← x1 + 1 !
 !y2 ← y1 + x2!
! ! if(x2 < k) goto loop!
next: … !

Static Single Assignment Form

 Original

x ← …!
y ← …!
while (x < k)!
 x ← x + 1!
 y ← y + x!

SSA-form

! !x0 ← …!
! !y0 ← …!
! !if (x0 >= k) goto next!
loop: x1 ← φ(x0,x2) !
! ! ! y1 ← φ(y0,y2)!
 !x2 ← x1 + 1 !
 !y2 ← y1 + x2!
! ! if(x2 < k) goto loop!
next: … !

Static Single Assignment Form

 Original

x ← …!
y ← …!
while (x < k)!
 x ← x + 1!
 y ← y + x!

This is new! Inserted!
at points where diff. !
control flow merge.

SSA-form

! !x0 ← …!
! !y0 ← …!
! !if (x0 >= k) goto next!
loop: x1 ← φ(x0,x2) !
! ! ! y1 ← φ(y0,y2)!
 !x2 ← x1 + 1 !
 !y2 ← y1 + x2!
! ! if(x2 < k) goto loop!
next: … !

Static Single Assignment Form

 Original

x ← …!
y ← …!
while (x < k)!
 x ← x + 1!
 y ← y + x!

Keeps single assign.!
property.

Static Single Assignment Form Advantages
Strengths of SSA-form
•  Sharper analysis because values never

redefined
•  Simplifies and improves optimizations
•  (Sometimes) faster algorithms

Using Multiple Representations

•  Repeatedly lower the level of the intermediate
representation
→  Each intermediate representation is suited towards certain

optimizations
•  Example: the Open64 compiler

→  WHIRL intermediate format
  Consists of 5 different IRs that are progressively more

detailed and less abstract

Front
End

Middle
End

Back
End

IR 1 IR 3 Source
Code

Target
Code

Middle
End

IR 2

Memory Models
Two major models
•  Register-to-register model

→  Keep all values that can legally be stored in a register in registers
→  Ignore machine limitations on number of registers
→  Compiler back-end must insert loads and stores

•  Memory-to-memory model
→  Keep all values in memory
→  Only promote values to registers directly before they are used
→  Compiler back-end can remove loads and stores

•  Compilers for RISC machines usually use register-to-register
→  Reflects programming model
→  Easier to determine when registers are used

The Rest of the Story…

Representing the code is only part of an IR

There are other necessary components
•  Symbol table
•  Constant table

→  Representation, type
→  Storage class, offset

•  Storage map
→  Overall storage layout
→  Overlap information
→  Virtual register assignments

Comp 412, Fall 2010 28	

Symbol Tables
Classic approach to building a symbol table uses hashing
•  Personal preference: a two-table scheme

→  Sparse index to reduce chance of collisions
→  Dense table to hold actual data

  Easy to expand, to traverse, to read & write from/to files
•  Use chains in index to handle

 collisions

h(“foe”)

Collision occurs when
h() returns a slot in
the sparse index that
is already full.

h(“fee”)

fie | char * | array | …
fee | integer | scalar | …
fum | float | scalar | …

NextSlot

Stack-like
growth

Sparse index Dense table

See §B.3 in EaC for
a longer explanation

Comp 412, Fall 2010 29	

Hash-less Symbol Tables
Classic approach to building a symbol table uses hashing
•  Some concern about worst-case behavior

→  Collisions in the hash function can lead to linear search
→  Some authors advocate “perfect” hash for keyword lookup

•  Automata theory lets us avoid worst-case behavior

h(“foe”)

Collision occurs when
h() returns a slot in
the sparse index that
is already full.

h(“fee”)

My favorite
hash table
organization

fie | char * | array | …
fee | integer | scalar | …
fum | float | scalar | …

NextSlot

Stack-like
growth

Sparse index Dense table

Comp 412, Fall 2010 30	

Hash-less Symbol Tables

One alternative is Paige & Cai’s multiset discrimination
•  Order the name space offline
•  Assign indices to each name
•  Replace the names in the input with their encoded indices

Using DFA techniques, we can build a guaranteed linear-time
replacement for the hash function h

•  DFA that results from a list of words is acyclic
→  RE looks like r1 | r2 | r3 | … | rk
→  Could process input twice, once to build DFA, once to use it

•  We can do even better

Digression on page 241 of EaC

Comp 412, Fall 2010 31	

Hash-less Symbol Tables
Classic approach to building a symbol table uses hashing
•  Some concern about worst-case behavior

→  Collisions in the hash function can lead to linear search
→  Some authors advocate “perfect” hash for keyword lookup

•  Automata theory lets us avoid worst-case behavior

Replace the hash
function, h, and
the sparse index
with an efficient
direct map, d, …

d(“foe”)

d(“fum”)

fie | char * | array | …
fee | integer | scalar | …
fum | float | scalar | …

NextSlot

Stack-like
growth

Sparse index Dense table

d(“fee”)

d(“fie”)

Comp 412, Fall 2010 32	

Hash-less Symbol Tables
Incremental construction of an acyclic DFA
•  To add a word, run it through the DFA

→  At some point, it will face a transition to the error state
→  At that point, start building states & transitions to recognize it

•  Requires a memory access per character in the key
→  If DFA grows too large, memory access costs become excessive
→  For small key sets (e.g., names in a procedure), not a problem

•  Optimizations
→  Last state on each path can be explicit

  Substantial reduction in memory costs
  Instantiate when path is lengthened

→  Trade off granularity against size of state representation
→  Encode capitalization separately

  Bit strings tied to final state?

