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Where In The Course Are We?

* The rest of the course will focus on issues
where the compiler writer needs to choose
among alternatives

— The choices matter; they affect the quality of
compiled code

— There may be no "best answer” or "best practice”



Intermediate Representations

Source Front | IR | Middle | IR | Back Target
Code End End End Code

Front end - produces an intermediate representation (IR)

Middle end - transforms the IR into an equivalent IR that
runs more efficiently

Back end - transforms the IR into native code

IR encodes the compiler's knowledge of the program
Middle end usually consists of many passes
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Intermediate Representations (1]

* Decisions in IR design affect the speed and
efficiency of the compiler

* The importance of different properties varies
between compilers
— Selecting an appropriate IR for a compiler is critical



Some important IR properties

* Ease of generation
— speed of compilation
* Ease of manipulation
— improved passes
* Procedure size
— compilation footprint
* Level of abstraction
— improved passes



TXEes of Intermediate ReEr'esen’ra’rions

Three major categories

e Structural

* Linear
* Hybrid



TXEes of Intermediate ReEr'esen’raTions

Three major categories

* Structural <
— Graphically oriented

— Heavily used in source-to-source
translators

— Tend to be large

Examples: Trees, DAGs

* |inear
* Hybrid
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TXEes of Intermediate ReEr'esen’raTions

Three major categories
* Structurdl

/ Examples: 3 address code,

* Linear Stack machine code

— Pseudo-code for an abstract machine
— Level of abstraction varies

— Simple, compact data structures

— Easier to rearrange

* Hybrid



TXEes of Intermediate ReEr'esen’raTions

Three major categories
* Structurdl

* Linear Examples:
* Hybrid «—  Control Flow Graph

— Combination of graphs and linear code



Level of Abstraction

* Two different representations of an array ref:

loadI 1
subscript sub X,
loadI 10
mult r,,
sub r.,
add r,,
loadI @A
add r,,
load rg

High level AST:
Good for memory
disambiguation

Low level linear code:
Good for address calculation

Aij




Level of Abstraction

* Structural IRs are usually considered high-level
* Linear IRs are usually considered low-level
* Not necessarily true:

Low level AST o
loadArray A,1, ]

High level linear code



Abstract Syntax Tree

An abstract syntax tree is the procedure’'s parse tree with
the nodes for most non-terminal nodes removed
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Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique
node for each value
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* Makes sharing explicit

* Encodes redundancy With two copies of the same
expression, the compiler might be
able to arrange the code to
evaluate it only once.




