
Intermediate Representations
Part I

•  The rest of the course will focus on issues
where the compiler writer needs to choose
among alternatives
→ The choices matter; they affect the quality of

compiled code
→ There may be no “best answer” or “best practice”

Where In The Course Are We?

Intermediate Representations

•  Front end - produces an intermediate representation (IR)
•  Middle end - transforms the IR into an equivalent IR that

runs more efficiently
•  Back end - transforms the IR into native code

•  IR encodes the compiler’s knowledge of the program
•  Middle end usually consists of many passes

Front
End

Middle
End

Back
End

IR IR Source
Code

Target
Code

JikesRVM Middle End

Back End

JikesRVM

Middle End

JikesRVM

Middle End

JikesRVM

Back End

Intermediate Representations
•  Decisions in IR design affect the speed and

efficiency of the compiler

•  The importance of different properties varies
between compilers
→ Selecting an appropriate IR for a compiler is critical

Some important IR properties
•  Ease of generation

→  speed of compilation
•  Ease of manipulation

→  improved passes
•  Procedure size

→  compilation footprint
•  Level of abstraction

→  improved passes

Types of Intermediate Representations

Three major categories
•  Structural

•  Linear

•  Hybrid

Types of Intermediate Representations

Three major categories
•  Structural

→  Graphically oriented
→  Heavily used in source-to-source

translators
→  Tend to be large

•  Linear

•  Hybrid

Examples: Trees, DAGs

Types of Intermediate Representations

Three major categories
•  Structural

•  Linear
→  Pseudo-code for an abstract machine
→  Level of abstraction varies
→  Simple, compact data structures
→  Easier to rearrange

•  Hybrid

Examples: 3 address code,
 Stack machine code

Types of Intermediate Representations

Three major categories
•  Structural

•  Linear

•  Hybrid

→  Combination of graphs and linear code

Examples:
 Control Flow Graph

Level of Abstraction
•  Two different representations of an array ref:

subscript

A i j

loadI 1 => r1!
sub rj, r1 => r2!
loadI 10 => r3!
mult r2, r3 => r4!
sub ri, r1 => r5!
add r4, r5 => r6!
loadI @A => r7!
add r7, r6 => r8!
load r8 => rAij!High level AST:

Good for memory
disambiguation

Low level linear code:
Good for address calculation

Level of Abstraction
•  Structural IRs are usually considered high-level
•  Linear IRs are usually considered low-level
•  Not necessarily true:

+

*

10

j 1

- i 1

-

+

@A

load

Low level AST
loadArray A,i,j!

High level linear code

Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with
 the nodes for most non-terminal nodes removed

x - 2 * y

-

x

2 y

*

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact. Term

Term

*

Parse Tree

Abstract Syntax Tree

Directed Acyclic Graph
A directed acyclic graph (DAG) is an AST with a unique
 node for each value

•  Makes sharing explicit
•  Encodes redundancy

x

2 y

*

-

←

z /

←

w

z ← x - 2 * y
w ← x / 2

With two copies of the same
expression, the compiler might be
able to arrange the code to
evaluate it only once.

