Intermediate Representations
Part T

38t

ITYor
e

1743
®

Where In The Course Are We?

* The rest of the course will focus on issues
where the compiler writer needs to choose
among alternatives

— The choices matter; they affect the quality of
compiled code

— There may be no "best answer” or "best practice”

Intermediate Representations

Source Front | IR | Middle | IR | Back Target
Code End End End Code

Front end - produces an intermediate representation (IR)

Middle end - transforms the IR into an equivalent IR that
runs more efficiently

Back end - transforms the IR into native code

IR encodes the compiler's knowledge of the program
Middle end usually consists of many passes

Class Files (Bytecode)

------------------- Middle End
: . ¥
JikesRVM L[\
1
| Bytecode to HIR !
! 1
| S—
: 1
! 1 » | Tail Recursion Elimination
i - ! Escape Analysis
| SRS RZEy i Load Elimination
! : Loop Unrolling
1
», Y -
. 1
| HIR to LIR |
1
: |
| * X
g) i Copy Propagation
' - \ Constant Propagation
: Sl L | Constant Subexpression Elimination
: ! Basic Block Reordering
1
|

Final Assembly

i ‘S Back End

¥ | |

1]

: LIR to MIR :

1 1

1 1

) * |

1 1

1 . h 1

: : Live Analysis
' MIR Optimizer 1 Instruction Scheduling
' : Register Allocation
X * '

1 - ~ 1

1]

1 |

1 1

]]

1 1

1 1

] 1

1 1

Jikes RVM

Machine code

JikesRVM

Class Files (Bytecode)

-------------------- Middle End

4 N

Bytecode to HIR

*

- A Tail Recursion Elimination
- Escape Analysis
HIR Optimizer Load Elimination
Loop Unrolling
HIR to LIR
Copy Propagation

Constant Propagation

Constant Subexpression Elimination
Basic Block Reordering

LIR Optimizer

] ————————— - ——— - ————————————

JikesRVM

Class Files (Bytecode)

------------------- Middle End

Bytecode to HIR

Tail Recursion Elimination

1
| :
. 1
. |
! |
' 1
. !
) !
. 1
' 1
X 1
N ' Escape Analysis

i Ll i Load Exmination
! : Loop Unrolling

1
i 4 N :
: HIR to LIR :

1
l :
: ** |
¥ |) E Copy Propagation
' . | Constant Propagation
: R | Constant Subexpression Elimination
: ! Basic Block Reordering
. |

JikesRVM

LIR to MIR

Final Assembly

|
1
1
1
1
1
1
1
1
1
1
1
1
: MIR Optimizer
1
1
1
1
|
1
1
1
1
1
1
1

Jikes RVM

Machine code

Live Analysis
Instruction Scheduling
Register Allocation

38t

ITYor
i

Intermediate Representations (1]

* Decisions in IR design affect the speed and
efficiency of the compiler

* The importance of different properties varies
between compilers
— Selecting an appropriate IR for a compiler is critical

Some important IR properties

* Ease of generation
— speed of compilation
* Ease of manipulation
— improved passes
* Procedure size
— compilation footprint
* Level of abstraction
— improved passes

TXEes of Intermediate ReEr'esen’ra’rions

Three major categories

e Structural

* Linear
* Hybrid

TXEes of Intermediate ReEr'esen’raTions

Three major categories

* Structural <
— Graphically oriented

— Heavily used in source-to-source
translators

— Tend to be large

Examples: Trees, DAGs

* |inear
* Hybrid

38t

TXEes of Intermediate ReEr'esen’raTions

Three major categories
* Structurdl

/ Examples: 3 address code,

* Linear Stack machine code

— Pseudo-code for an abstract machine
— Level of abstraction varies

— Simple, compact data structures

— Easier to rearrange

* Hybrid

TXEes of Intermediate ReEr'esen’raTions

Three major categories
* Structurdl

* Linear Examples:
* Hybrid «— Control Flow Graph

— Combination of graphs and linear code

Level of Abstraction

* Two different representations of an array ref:

loadI 1
subscript sub X,
loadI 10
mult r,,
sub r.,
add r,,
loadI @A
add r,,
load rg

High level AST:
Good for memory
disambiguation

Low level linear code:
Good for address calculation

Aij

Level of Abstraction

* Structural IRs are usually considered high-level
* Linear IRs are usually considered low-level
* Not necessarily true:

Low level AST o
loadArray A,1,]

High level linear code

Abstract Syntax Tree

An abstract syntax tree is the procedure’'s parse tree with
the nodes for most non-terminal nodes removed

X-2%y
@

<.d v Abstract Syntax Tree
«d, x> <num,2>

Parse Tree

Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique
node for each value

O (Q
— xX-2%*
e 0 anXIZy

* Makes sharing explicit

* Encodes redundancy With two copies of the same
expression, the compiler might be
able to arrange the code to
evaluate it only once.

