
Context-sensitive Analysis
Part IV

Ad-hoc syntax-directed translation,
Symbol Tables, andTypes

Quiz

Name two differences between attribute
grammars and ad-hoc syntax directed
translation techniques?

Example: Processing C Declarations

Example: Processing C Declarations

Example: Processing C Declarations

Example: Processing C Declarations

Example: Processing C Declarations

Example: Processing C Declarations

Example: Processing C Declarations

Example: Processing C Declarations

Example: Processing C Declarations

Example: Processing C Declarations

Example: Processing C Declarations

Building a Symbol Table
•  Enter declaration information as processed
•  At end of declaration syntax, do some post

processing
•  Use table to check errors as parsing progresses

assumes table
is global

Symbol Table: Typical Uses
•  Define before use → lookup on reference
•  Dimension, type, ... → check as encountered
•  Type checking of expression → bottom-up walk

Symbol Table: Typical Uses
•  Procedure interfaces are harder

→ Build a representation for parameter list &
types

→ Create list of sites to check

Is This Really “Ad-hoc” ?
Relationship between practice and attribute

grammars

Similarities
•  Both rules & actions associated with productions
•  Application order determined by tools, not

author

Is This Really “Ad-hoc” ?
Relationship between practice and attribute

grammars

Differences
•  Actions applied as a unit; not true for AG rules
•  Anything goes in ad-hoc actions; AG rules are

functional

Making Ad-hoc SDT Work
How do we fit this into an LR(1) parser?

stack.push(INVALID);
stack.push(s0); // initial state
token = scanner.next_token();
loop forever {
 s = stack.top();
 if (ACTION[s,token] == “reduce A→β”) then {

 stack.popnum(2*|β|); // pop 2*|β| symbols
 s = stack.top();
 stack.push(A); // push A
 stack.push(GOTO[s,A]); // push next state

 }
 else if (ACTION[s,token] == “shift si”) then {

 stack.push(token); stack.push(si);
 token ← scanner.next_token();
 }

 else if (ACTION[s,token] == “accept”
 & token == EOF)
 then break;
 else throw a syntax error;

}
report success;

From an earlier lecture

To add yacc-like
actions
• Stack has 3 items
per symbol rather
than 2 (3rd is $$)

stack.push(INVALID);
stack.push(NULL);
stack.push(s0); // initial state
token = scanner.next_token();
loop forever {
 s = stack.top();
 if (ACTION[s,token] == “reduce A→β”) then {

 /* insert case statement here */
 stack.popnum(3*|β|); // pop 3*|β| symbols

 s = stack.top();
 stack.push($$); // push result

 stack.push(A); // push A
 stack.push(GOTO[s,A]); // push next state

 }
 else if (ACTION[s,token] == “shift si”) then {

 stack.push(attr); stack.push(token);
 stack.push(si);
 token ← scanner.next_token();
 }

 else if (ACTION[s,token] == “accept”
 & token == EOF)
 then break;
 else throw a syntax error;

}
report success;

stack.push(INVALID);
stack.push(NULL);
stack.push(s0); // initial state
token = scanner.next_token();
loop forever {
 s = stack.top();
 if (ACTION[s,token] == “reduce A→β”) then {

 /* insert case statement here */
 stack.popnum(3*|β|); // pop 3*|β| symbols

 s = stack.top();
 stack.push($$); // push result

 stack.push(A); // push A
 stack.push(GOTO[s,A]); // push next state

 }
 else if (ACTION[s,token] == “shift si”) then {

 stack.push(attr); stack.push(token);
 stack.push(si);
 token ← scanner.next_token();
 }

 else if (ACTION[s,token] == “accept”
 & token == EOF)
 then break;
 else throw a syntax error;

}
report success;

• Add case statement
to the reduction
processing section
→ Case switches on

production number

stack.push(INVALID);
stack.push(NULL);
stack.push(s0); // initial state
token = scanner.next_token();
loop forever {
 s = stack.top();
 if (ACTION[s,token] == “reduce A→β”) then {

 /* insert case statement here */
 stack.popnum(3*|β|); // pop 3*|β| symbols

 s = stack.top();
 stack.push($$); // push result

 stack.push(A); // push A
 stack.push(GOTO[s,A]); // push next state

 }
 else if (ACTION[s,token] == “shift si”) then {

 stack.push(attr); stack.push(token);
 stack.push(si);
 token ← scanner.next_token();
 }

 else if (ACTION[s,token] == “accept”
 & token == EOF)
 then break;
 else throw a syntax error;

}
report success;

→ Each case clause
holds the code
snippet for that
production

→ Substitute
appropriate names
for $$, $1, $2, …

Making Ad-hoc SDT Work
How do we fit this into an LR(1) parser?
•  Need a naming scheme to access them

→ $n translates into stack location (top - 3n)
•  Need to sequence rule applications

→ On every reduce action, perform the action rule
→ Add a giant case statement to the parser

top
 6 (top – 3(1))

0
1
2
3
4
5 $1 = 3

(top – 3(2))
$2 = 0

Making Ad-hoc SDT Work
What about a rule that must work in mid-production?
•  Can transform the grammar

→  Split it into two parts at the point where rule must go
→  Apply the rule on reduction to the appropriate part

•  Can also handle reductions on shift actions
→  Add a production to create a reduction

  Was: fee → fum
  Make it: fee → fie → fum
 and tie the action to this new reduction

Together, these let us apply rule at any point in the parse

Alternative Strategy
What if you need to perform actions that do not fit well into
the Ad-hoc Syntax-Directed Translation framework?
• Build the abstract syntax tree using SDT
• Perform the actions during one or more treewalks

→  In an OOL, think of this problem as a classic application of the
visitor pattern

→  Perform arbitrary computation in treewalk order
→  Make multiple passes if necessary

Again, a competent junior or senior CS major would derive this
solution after a couple of minutes of thought.

