Context-sensitive Analysis
Part ITT

An Extended Example

(continued)

Adding attribution rules All these attributes are synthesized!

Block, — Block; Assign

| Assign
Assign — Ident = Expr .

Expro — Expr; + Term
| Expr; - Term

| Term
Term, — Term; * Factor

Term; / Factor

Factor

(Expr)
Number
Identifier

Factor —

Blockg.cost <— Block;.cost +
Assign.cost
Blocky.cost <— Assign.cost
Assign.cost <— COST(store) +
Expr.cost
Expro.cost <— Expr;.cost +
cOsT(add) + Term.cost
Expro.cost < Expr;.cost +
cOsT(add) + Term.cost
Expro.cost <— Term.cost
Termg.cost <— Term;.cost +
cosT(mult) + Factor.cost
Termg.cost <— Term;.cost +
cosT(div) +Factor.cost
Termg.cost <— Factor.cost
Factor.cost <— Expr.cost
Factor.cost < cOsT(loadI)

Factor.cost < cOsT(load)

An Extended Example

(continued)

Adding attribution rules All these attributes are synthesized!

Block, — Block; Assign

| Assign
Assign — Ident = Expr .

Expro — Expr; + Term
| Expr; - Term

| Term
Term, — Term; * Factor

Term; / Factor

Factor

(Expr)
Number
Identifier

Factor —

Blockg.cost <— Block;.cost +
Assign.cost

Blocky.cost <— Assign.cost

Assign.cost <— COST(store) +
Expr.cost

Expro.cost <— Expr;.cost +
cOsT(add) + Term.cost

XPro.COST <— EXPri.COST +
cOsT(add) + Term.cost
Expro.cost <— Term.cost
Termg.cost <— Term;.cost +
cosT(mult) + Factor.cost
Termg.cost <— Term;.cost +
cosT(div) +Factor.cost
Termg.cost <— Factor.cost
Factor.cost <— Expr.cost
Factor.cost < cOsT(loadI)

Factor.cost < cOsT(load)

An Extended Example

(continued)

Adding attribution rules All these attributes are synthesized!

Block, — Block; Assign

| Assign
Assign — Ident = Expr .

Expro, — Expr; + Term

| Expr; - Term

| Term
Term, — Term; * Factor

Term; / Factor

Factor

(Expr)
Number
Identifier

Factor —

Blockg.cost <— Block;.cost +
Assign.cost

Blocky.cost <— Assign.cost

Assign.cost <— COST(store) +
Expr.cost

Expro.cost <— Expr;.cost +
cOsT(add) + Term.cost

Expro.cost < Expr;.cost +
cOsT(add) + Term.cost

Expro.cost <— Term.cost

Termg.cost <— Term;.cost +
cosT(mult) + Factor.cost
ermg.CosT <— 1erm;.cost +

cosT(div) +Factor.cost
Termg.cost <— Factor.cost

Factor.cost <— Expr.cost
Factor.cost < cOsT(loadI)

Factor.cost < cOsT(load)

An Extended Example

(continued)

Adding attribution rules All these attributes are synthesized!

Block, — Block; Assign

| Assign
Assign — Ident = Expr .

Expro — Expr; + Term
| Expr; - Term

| Term
Term, — Term; * Factor

Term; / Factor

Factor

(Expr)
Number
Identifier

Factor —

Blockg.cost <— Block;.cost +
Assign.cost
Blocky.cost <— Assign.cost
Assign.cost <— COST(store) +
Expr.cost
Expro.cost <— Expr;.cost +
cOsT(add) + Term.cost
Expro.cost < Expr;.cost +
cOsT(add) + Term.cost
Expro.cost <— Term.cost
Termg.cost <— Term;.cost +
cosT(mult) + Factor.cost
Termg.cost <— Term;.cost +
cosT(div) +Factor.cost
Termg.cost <— Factor.cost
Factor.cost <— Expr.cost
Factor.cost < cOST(loadI)

Factor.cost < cosT(load

A Better Execution Model

Adding load tracking

* Need sets Before and After for each production
* Must be initialized, updated, and passed around the tree

Factor — (Expr)

| Number

| Identifier

Factor.cost < Expr.cost;
Expr.Before < Factor.Before ;
Factor.After < Expr.After
Factor.cost < COST(loadi) ;
Factor.After < Factor.Before

If (Identifier.name & Factor.Before)

then

Factor.cost < COST(load);
Factor.After — Factor.Before
U ldentifier.name

else

Factor.cost < 0O
Factor.After <— Factor.Before

i

This looks more complex!

A Better Execution Model

Adding load tracking
* Need sets Before and After for each production
* Must be initialized, updated, and passed around the tree

Factor — Identifier ||If (lIdentifier.name & Factor.Before)

then
Factor.cost <— COST(load);

Factor.After <— Factor.Before
U ldentifier.name

else

Factor.Before Factor. After

a=a+' b %+

A Better Execution Model

Adding load tracking

* Need sets Before and After for each production
* Must be initialized, updated, and passed around the tree

Factor — (Expr)

| Number

| Identifier

Factor.cost < Expr.cost;
Expr.Before < Factor.Before ;
Factor.After < Expr.After
Factor.cost < COST(loadi) ;
Factor.After < Factor.Before

If (Identifier.name & Factor.Before)

then

Factor.cost < COST(load);
Factor.After — Factor.Before
U lIdentifier.name

else

Factor.cost < 0
Factor.After <— Factor.Before

i

This looks more complex!

A Better Execution Model

* Load tracking adds complexity
* Every production needs rules to copy Before & After

A sample production

Expro, — Expr, + Term | Expr,.cost < Expr,.cost +
COST(add) + Term.cost ;
Expr,.Before <— Expr,.Before ;
Term.Before < Expr,.After;
Expro.After < Term.After

Exprg

™~

A Better Execution Model

* Load tracking adds complexity
* Every production needs rules to copy Before & After

A sample production

Expro, — Expr, + Term | Expr,.cost < Expr,.cost +
COST(add) + Term.cost ;
Expr,.Before <— Expr,.Before ;
Term.Before < Expr,.After;
Expro.After < Term.After

Expr,.Before

.@+ b) ..

A Better Execution Model

* Load tracking adds complexity
* Every production needs rules to copy Before & After

A sample production

Expro, — Expr, + Term | Expr,.cost < Expr,.cost +
COST(add) + Term.cost ;

Expr,.Before <— Expr,.Before ;
Term.Before < Expr,.After;

Expr,.After < Term.After

Expry.Before —> Expr;.Before

1)

A Better Execution Model

* Load tracking adds complexity
* Every production needs rules to copy Before & After

A sample production

Expro, — Expr, + Term | Expr,.cost < Expr,.cost +
COST(add) + Term.cost ;
Expr,.Before <— Expr,.Before ;
Term.Before < Expr,.After;
Expro.After < Term.After

Term
/
(a + @

A Better Execution Model

* Load tracking adds complexity
* Every production needs rules to copy Before & After

A sample production

Expro, — Expr, + Term | Expr,.cost < Expr,.cost +
COST(add) + Term.cost ;
Expr,.Before <— Expr,.Before ;

erm.Before < Expr,.After;
Expr,.After < Term.After

Expr,.After > Term.Before

5.6

A Better Execution Model

* Load tracking adds complexity
* Every production needs rules to copy Before & After

A sample production

Expro, — Expr, + Term | Expr,.cost < Expr,.cost +
COST(add) + Term.cost ;
Expr,.Before <— Expr,.Before ;
Term.Before < Expr,.After;
Expro.After < Term.After

Term.After

(a +

A Better Execution Model

* Load tracking adds complexity
* Every production needs rules to copy Before & After

A sample production

Expro, — Expr, + Term | Expr,.cost < Expr,.cost +
COST(add) + Term.cost ;
Expr,.Before <— Expr,.Before ;
Term.Before < Expr,.After;
Expro.After < Term.After

/

Term. After —y Expro. After

e

An Even Better Model

What about accounting for finite register sets?
* Before & After must be of limited size

* Adds complexity to Factor—Identifier
— Needs to track size of Before/After sets

The Moral of the Story

* Non-local computation needs lots of supporting rules
* Complex local computation was relatively easy

The Problems

* Copy rules increase complexity
— difficult to debug, maintain

* Copy rules increase space requirements
— Need copies of attributes

Context-sensitive Analysis
Part ITT

Ad-hoc syntax-directed translation,
Symbol Tables, andTypes

38t

ITYor
e

Addressing the Problem e

If you gave the problem of estimating cycle counts
to a competent junior or senior CS major, ...

* Introduce a central repository for information

e Table of identifiers
— Field in table for loaded/not loaded state

* Avoids all the copy rules, allocation & storage
headaches

Addressing the Problem (cont'd)

* All inter-assignment attribute flow is
through table
—Clean, efficient implementation
—Good techniques for implementing the table
—When it is done, information is in the table !
— Cures most of the problems

Unfortunately, this design violates the functional
paradigm of an AG.

The Realist's Alternative

Ad-hoc syntax-directed translation

* Build on bottom-up, shift-reduce parser

* Associate a snippet of code with each production
* At each reduction, the corresponding snippet runs
* Allow arbitrary code provides complete flexibility

The Realist's Alternative (cont'd)

To make this work

* Need names for attributes of each symbol on /hs &
rhs

— Typically, one attribute passed through parser +
arbitrary code

— Yacc introduced $$, $1, $2, .. $n, left to right
* Need an evaluation scheme

— Bottom-up evaluation works much of the time
— Fits nicely into LR(1) parsing algorithm

Reworking the Example (with load tracking)

1 Block, — Block, Assign
2 | Assign
3 Assign, — Ident= Expr; cost < cost+ COST(store)
4 Expr, — Expr;+ Term cost < cost + COST(add)
5 | Expr,- Term cost < cost + COST(sub)
6 | Term
7 Term, — Term;* Factor cost < cost+ COST(mult)
8 | Term,/ Factor cost < cost + COST(div)
9 | Factor
10 Factor — (Expr)
11 | Number cost < cost + COST(loadI)
12 | Ident i < hash(Ident);

if (Table[i].loaded = false)

then {

cost < cost + COST(load)
Table[i].loaded < true

One missing detail:

Reworking the Example (with load tracking)

1 Block, — Block, Assign
2 | Assign
3 Assign, — Ident= Expr; cost < cost+ COST(store)
4 Expr, — Expr;+ Term cost < cost + COST(add)
5 | Expr,- Term cost < cost + COST(sub)
6 | Term
7 Term, — Term;* Factor cost < cost+ COST(mult)
8 | Term,/ Factor cost < cost + COST(div)
9 | Factor
10 Factor — (Expr)
11 | Number cost < cost + COST(loadI)
12 | Ident i < hash(Ident);

if (Table[i].loaded = false)

then {

cost < cost + COST(load)
Table[i].loaded < true

Reworking the Example (with load tracking)

10 Factor — (Expr)

11 | Number cost < cost + cosT(loadI)
12 | Ident i — hash(Ident);
if (Table[i].loaded = false)
then {

cost < cost + cOSsT(load)
Table[i].loaded < true

}

Rewor'king the Example (with load tracking)

10 Factor — (Expr)

11 | Number cost < cost + cosT(loadI)
12 | Ident i — hash(Ident);
if (Table[i].loaded = false)
then {

cost < cost + cOsT(load)
Table[i].loaded < true

}

Much cleaner than the AG approach.
One missing detail: initializing cost

Reworking the Example (with load tracking)

O Start Init Block

D Init £ cost < O

1 Block, — Block; Assign

2 | Assign

3 Assign, — Ident-= cost < cost + COST(store)
Expr;

and so on as shown on previous slide...

As mentioned previously,
Yacc introduced $$, $1, $2, .. $n, left to right

We can rewrite grammar using Yacc notation

Reworking the Example (with load tracking)

1 Block, — Block,Assign $$ — $1+ %2
2 | Assign $$ < $1
3 Assign, — Ident= Expr; $$ < coOsT(store) + $3 This version passes
4 E . E . T $$ < $1+ cOST(add) + $3 the values through
Xpro Xpry+ lerm (add) attributes. Tt
5 | Expr,- Term $$ < $1+cOsT(sub) + $3 | avoids the need fo
6 | Term $$ < $1 initialize "cost”
7 Term, — Term,* Factor $%$ < $1+cosT(mult)+ $3
8 | Term,/ Factor $$ < $1+ cosT(div) + $3
9 | Factor $$ < $1
10 Factor — (Expr) $$ < $2
11 | Number $$ < cosT(loadI)
12 | Ident i < hash(Ident);
if (Table[i].loaded = false)
then {

$$ < + cosT(load)
Table[i].loaded < true

}
else $$ < O

* Assume typing functions or tables
F. F., F. and F.

Example: Assigning Types in Expression Nodes

F. Int 16 Int 32 Float Double
Int 16 | Int16 Int 32 Float Double
Int 32 | Int32 Int 32 Float Double

Float Float Float Float Double
Double | Double Double Double Double

Example — Assigning Types in

—

e

Expression Nodes Int 16

* Assume typing functions or tables
F. F., F. and F.

O 00 N O Ol D W N -

10

Goal
Expr

Term

Factor

—— == ==

Expr

Expr + Term
Expr - Term
Term

Term™ Factor
Term / Factor
Factor

(Expr)
number

ident

F, Int 16 Int 32 Float Double
Int16 Int32 Float Double

Int 32 | Int32 1Int32 Float Double
Float Float Float Float Double
Double | Double Double Double Double
$$ = $1L.
$$ = F.($1.$3).
$$ = F.($1,$3):
$$ = $1.
$$ = F($1.$3).
$$= F.($1,%3):
$$ = $1L.
$$ = $2:

$$ = type of num;

$$ = type of ident;

Reality

Most parsers are based on this ad-hoc style of
context-sensitive analysis

Advantages
* Addresses the shortcomings of the AG paradigm
e Efficient, flexible

Disadvantages
* Must write the code with little assistance
* Programmer deals directly with the details

Most parser generators support a yacc-like notation

Building a Symbol Table

* Enter declaration information as processed

* At end of declaration syntax, do some post
processing

* Use table to check errors as parsing progresses

assumes table
is global

Symbol Table: Typical Uses

* Simple error checking/type checking
— Define before use — lookup on reference
— Dimension, type, ... — check as encountered

— Type conformability of expression — bottom-up
walk

—Procedure interfaces are harder

= Build a representation for parameter list &
Types

= Create list of sites to check

Is This Really "Ad-hoc" ?

Relationship between practice and attribute
grammars

Similarities
* Both rules & actions associated with productions

* Application order determined by tools, not
author

* (Somewhat) abstract names for symbols

Is This Really "Ad-hoc" ?

Relationship between practice and attribute
grammars

Differences
* Actions applied as a unit; not true for AG rules

* Anything goes in ad-hoc actions; AG rules are
functional

