
Context-sensitive Analysis
Part III

An Extended Example (continued)
Adding attribution rules All these attributes are synthesized!

An Extended Example (continued)
Adding attribution rules All these attributes are synthesized!

An Extended Example (continued)
Adding attribution rules All these attributes are synthesized!

An Extended Example (continued)
Adding attribution rules All these attributes are synthesized!

Adding load tracking
•  Need sets Before and After for each production
•  Must be initialized, updated, and passed around the tree

A Better Execution Model

Factor → (Expr) Factor.cost ← Expr.cost ;
Expr.Before ← Factor.Before ;
Factor.After ← Expr.After

⏐ Number Factor.cost ← COST(loadi) ;
Factor.After ← Factor.Before

⏐ Identifier If (Identifier.name ∉ Factor.Before)
 then
 Factor.cost ← COST(load);
 Factor.After ← Factor.Before
 ∪ Identifier.name
 else
 Factor.cost ← 0
 Factor.After ← Factor.Before

This looks more complex!

Adding load tracking
•  Need sets Before and After for each production
•  Must be initialized, updated, and passed around the tree

A Better Execution Model

a = a + b + c

Factor.Before Factor.After

Adding load tracking
•  Need sets Before and After for each production
•  Must be initialized, updated, and passed around the tree

A Better Execution Model

Factor → (Expr) Factor.cost ← Expr.cost ;
Expr.Before ← Factor.Before ;
Factor.After ← Expr.After

⏐ Number Factor.cost ← COST(loadi) ;
Factor.After ← Factor.Before

⏐ Identifier If (Identifier.name ∉ Factor.Before)
 then
 Factor.cost ← COST(load);
 Factor.After ← Factor.Before
 ∪ Identifier.name
 else
 Factor.cost ← 0
 Factor.After ← Factor.Before

This looks more complex!

•  Load tracking adds complexity
•  Every production needs rules to copy Before & After

A sample production

A Better Execution Model

Expr0 → Expr1 + Term Expr0.cost ← Expr1.cost +
 COST(add) + Term.cost ;
Expr1.Before ← Expr0.Before ;
Term.Before ← Expr1.After;
Expr0.After ← Term.After

… (a + b) …

Expr0

•  Load tracking adds complexity
•  Every production needs rules to copy Before & After

A sample production

A Better Execution Model

Expr0 → Expr1 + Term Expr0.cost ← Expr1.cost +
 COST(add) + Term.cost ;
Expr1.Before ← Expr0.Before ;
Term.Before ← Expr1.After;
Expr0.After ← Term.After

… (a + b) …

Expr1.Before

•  Load tracking adds complexity
•  Every production needs rules to copy Before & After

A sample production

A Better Execution Model

Expr0 → Expr1 + Term Expr0.cost ← Expr1.cost +
 COST(add) + Term.cost ;
Expr1.Before ← Expr0.Before ;
Term.Before ← Expr1.After;
Expr0.After ← Term.After

… (a + b) …

Expr1.Before Expr0.Before

•  Load tracking adds complexity
•  Every production needs rules to copy Before & After

A sample production

A Better Execution Model

Expr0 → Expr1 + Term Expr0.cost ← Expr1.cost +
 COST(add) + Term.cost ;
Expr1.Before ← Expr0.Before ;
Term.Before ← Expr1.After;
Expr0.After ← Term.After

… (a + b) …

Term

•  Load tracking adds complexity
•  Every production needs rules to copy Before & After

A sample production

A Better Execution Model

Expr0 → Expr1 + Term Expr0.cost ← Expr1.cost +
 COST(add) + Term.cost ;
Expr1.Before ← Expr0.Before ;
Term.Before ← Expr1.After;
Expr0.After ← Term.After

… (a + b) …

Term.Before Expr1.After

•  Load tracking adds complexity
•  Every production needs rules to copy Before & After

A sample production

A Better Execution Model

Expr0 → Expr1 + Term Expr0.cost ← Expr1.cost +
 COST(add) + Term.cost ;
Expr1.Before ← Expr0.Before ;
Term.Before ← Expr1.After;
Expr0.After ← Term.After

… (a + b) …

Term.After

•  Load tracking adds complexity
•  Every production needs rules to copy Before & After

A sample production

A Better Execution Model

Expr0 → Expr1 + Term Expr0.cost ← Expr1.cost +
 COST(add) + Term.cost ;
Expr1.Before ← Expr0.Before ;
Term.Before ← Expr1.After;
Expr0.After ← Term.After

… (a + b) …

Term.After Expr0.After

What about accounting for finite register sets?
•  Before & After must be of limited size
•  Adds complexity to Factor→Identifier

→ Needs to track size of Before/After sets

An Even Better Model

The Moral of the Story

•  Non-local computation needs lots of supporting rules
•  Complex local computation was relatively easy

The Problems
•  Copy rules increase complexity

→ difficult to debug, maintain
•  Copy rules increase space requirements

→  Need copies of attributes

Context-sensitive Analysis
Part III

Ad-hoc syntax-directed translation,
Symbol Tables, andTypes

Addressing the Problem

If you gave the problem of estimating cycle counts
to a competent junior or senior CS major, …

•  Introduce a central repository for information
•  Table of identifiers

→  Field in table for loaded/not loaded state
•  Avoids all the copy rules, allocation & storage

headaches

Addressing the Problem (cont’d)

•  All inter-assignment attribute flow is
through table
→ Clean, efficient implementation
→ Good techniques for implementing the table
→ When it is done, information is in the table !
→ Cures most of the problems

Unfortunately, this design violates the functional
paradigm of an AG.

The Realist’s Alternative

Ad-hoc syntax-directed translation
•  Build on bottom-up, shift-reduce parser
•  Associate a snippet of code with each production
•  At each reduction, the corresponding snippet runs
•  Allow arbitrary code provides complete flexibility

The Realist’s Alternative (cont’d)

To make this work
•  Need names for attributes of each symbol on lhs &

rhs
→  Typically, one attribute passed through parser +

arbitrary code
→  Yacc introduced $$, $1, $2, … $n, left to right

•  Need an evaluation scheme
→ Bottom-up evaluation works much of the time
→  Fits nicely into LR(1) parsing algorithm

Reworking the Example (with load tracking)

1 Block0 → Block1 Assign
2 | Assign
3 Assign0 → Ident = Expr ; cost ← cost + COST(store)
4 Expr0 → Expr1 + Term cost ← cost + COST(add)
5 | Expr1 - Term cost ← cost + COST(sub)
6 | Term
7 Term0 → Term1 * Factor cost ← cost + COST(mult)
8 | Term1 / Factor cost ← cost + COST(div)
9 | Factor
10 Factor → (Expr)
11 | Number cost ← cost + COST(loadI)
12 | Ident i ← hash(Ident);

if (Table[i].loaded = false)
 then {
 cost ← cost + COST(load)
 Table[i].loaded ← true
 }

One missing detail:
initializing cost

Reworking the Example (with load tracking)

1 Block0 → Block1 Assign
2 | Assign
3 Assign0 → Ident = Expr ; cost ← cost + COST(store)
4 Expr0 → Expr1 + Term cost ← cost + COST(add)
5 | Expr1 - Term cost ← cost + COST(sub)
6 | Term
7 Term0 → Term1 * Factor cost ← cost + COST(mult)
8 | Term1 / Factor cost ← cost + COST(div)
9 | Factor
10 Factor → (Expr)
11 | Number cost ← cost + COST(loadI)
12 | Ident i ← hash(Ident);

if (Table[i].loaded = false)
 then {
 cost ← cost + COST(load)
 Table[i].loaded ← true
 }

Reworking the Example (with load tracking)

10 Factor → (Expr)

11 | Number cost ← cost + COST(loadI)

12 | Ident i ← hash(Ident);
if (Table[i].loaded = false)
 then {
 cost ← cost + COST(load)
 Table[i].loaded ← true
 }

Reworking the Example (with load tracking)

10 Factor → (Expr)

11 | Number cost ← cost + COST(loadI)

12 | Ident i ← hash(Ident);
if (Table[i].loaded = false)
 then {
 cost ← cost + COST(load)
 Table[i].loaded ← true
 }

Much cleaner than the AG approach.
One missing detail: initializing cost

Reworking the Example (with load tracking)

0 Start Init Block
.5 Init ε cost ← 0
1 Block0 → Block1 Assign
2 | Assign
3 Assign0 → Ident =

Expr ;
cost ← cost + COST(store)

and so on as shown on previous slide…

As mentioned previously,
Yacc introduced $$, $1, $2, … $n, left to right
We can rewrite grammar using Yacc notation

Reworking the Example (with load tracking)

1 Block0 → Block1 Assign $$ ← $1 + $2
2 | Assign $$ ← $1
3 Assign0 → Ident = Expr ; $$ ← COST(store) + $3
4 Expr0 → Expr1 + Term $$ ← $1 + COST(add) + $3
5 | Expr1 - Term $$ ← $1 + COST(sub) + $3
6 | Term $$ ← $1
7 Term0 → Term1 * Factor $$ ← $1 + COST(mult) + $3
8 | Term1 / Factor $$ ← $1 + COST(div) + $3
9 | Factor $$ ← $1
10 Factor → (Expr) $$ ← $2
11 | Number $$ ← COST(loadI)
12 | Ident i ← hash(Ident);

if (Table[i].loaded = false)
 then {
 $$ ← + COST(load)
 Table[i].loaded ← true
 }
 else $$ ← 0

This version passes
the values through
attributes. It
avoids the need to
initialize “cost”

Example: Assigning Types in Expression Nodes

•  Assume typing functions or tables
 F+, F−, F×, and F÷

F× Int 16 Int 32 Float Double

Int 16 Int 16 Int 32 Float Double

Int 32 Int 32 Int 32 Float Double

Float Float Float Float Double

Double Double Double Double Double

Example — Assigning Types in
 Expression Nodes
•  Assume typing functions or tables
 F+, F−, F×, and F÷

1 Goal → Expr $$ = $1;
2 Expr → Expr +Term $$ = F+ ($1,$3);
3 | Expr - Term $$ = F− ($1,$3);
4 | Term $$ = $1;
5 Term → Term * Factor $$ = F×($1,$3);
6 | Term / Factor $$ = F÷ ($1,$3);
7 | Factor $$ = $1;
8 Factor → (Expr) $$ = $2;
9 | number $$ = type of num;
10 | ident $$ = type of ident;

F× Int 16 Int 32 Float Double

Int 16 Int 16 Int 32 Float Double

Int 32 Int 32 Int 32 Float Double

Float Float Float Float Double

Double Double Double Double Double

Reality

Most parsers are based on this ad-hoc style of
context-sensitive analysis

Advantages
•  Addresses the shortcomings of the AG paradigm
•  Efficient, flexible

Disadvantages
•  Must write the code with little assistance
•  Programmer deals directly with the details

Most parser generators support a yacc-like notation

Building a Symbol Table

•  Enter declaration information as processed
•  At end of declaration syntax, do some post

processing
•  Use table to check errors as parsing progresses

assumes table
is global

Symbol Table: Typical Uses

•  Simple error checking/type checking
→ Define before use → lookup on reference
→ Dimension, type, ... → check as encountered
→ Type conformability of expression → bottom-up

walk
→ Procedure interfaces are harder

  Build a representation for parameter list &
types

  Create list of sites to check

Is This Really “Ad-hoc” ?
Relationship between practice and attribute

grammars

Similarities
•  Both rules & actions associated with productions
•  Application order determined by tools, not

author
•  (Somewhat) abstract names for symbols

Is This Really “Ad-hoc” ?
Relationship between practice and attribute

grammars

Differences
•  Actions applied as a unit; not true for AG rules
•  Anything goes in ad-hoc actions; AG rules are

functional

