
Context-sensitive Analysis
Part II

Attribute Grammars
Add rules to compute the decimal value of a signed binary number

Back to the Examples

Sign

–

For “–1” Symbol Attributes

Number val

Sign neg

List pos, val

Bit pos, valSign.neg

Back to the Examples

Bit

1

Sign

–

Sign.neg

Bit.pos
Bit.val

For “–1” Symbol Attributes

Number val

Sign neg

List pos, val

Bit pos, val

Back to the Examples

List

Bit

1

Sign

–

Sign.neg

Bit.pos
Bit.val

List.pos
List.val

For “–1” Symbol Attributes

Number val

Sign neg

List pos, val

Bit pos, val

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg

Bit.pos
Bit.val

List.pos
List.val

Number.val For “–1” Symbol Attributes

Number val

Sign neg

List pos, val

Bit pos, val

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos
Bit.val

List.pos
List.val

Number.val For “–1”

Sign.neg

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos
Bit.val

List.pos
List.val

Number.val For “–1”

Sign.neg

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos
Bit.val

List.pos ← 0
List.val

Number.val For “–1”

Sign.neg

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg

Bit.pos
Bit.val

List.pos ← 0
List.val

Number.val For “–1”

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg← true

Bit.pos
Bit.val

List.pos ← 0
List.val

Number.val For “–1”

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos
Bit.val

List.pos ← 0
List.val

Number.val For “–1”

Sign.neg← true

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos ← 0
Bit.val

List.pos ← 0
List.val

Number.val For “–1”

Sign.neg← true

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos ← 0
Bit.val

List.pos ← 0
List.val

Number.val For “–1”

Sign.neg← true

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos ← 0
Bit.val ← 2Bit.pos ≡ 1

List.pos ← 0
List.val

Number.val For “–1”

Sign.neg← true

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg ←
true

Bit.pos ← 0
Bit.val ← 2Bit.pos ≡ 1

List.pos ← 0
List.val ← Bit.val ≡ 1

Number.val ← – List.val ≡ –1 For “–1”

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg ← true

Bit.pos ← 0
Bit.val ← 2Bit.pos ≡ 1

List.pos ← 0
List.val ← Bit.val ≡ 1

Number.val ← – List.val ≡ –1 For “–1”
One possible
evaluation order:

1  List.pos

2  Sign.neg

3  Bit.pos

4  Bit.val

5  List.val

6  Number.val

Other orders are
possible Evaluation order must be

consistent with the attribute
dependence graph

Attributes + parse tree
•  Attributes associated with nodes in parse tree
•  Rules are value assignments associated with

productions
•  Rules & parse tree define an attribute

dependence graph
→ Graph must be non-circular

This produces a high-level, functional specification

Two kinds of Attributes

•  Synthesized attribute
→ Upward flow of values
→ Depends on values from the node itself,

children, or constants
•  Inherited attribute

→ Downward flow of values
→ Depends on values from siblings, parent

and constants

Using Attribute Grammars

Attribute grammars can specify context-
sensitive actions

•  Take values from syntax
•  Perform computations with values
•  Insert tests, logic, …

Evaluation Methods
Dynamic, dependence-based methods
•  Build the parse tree
•  Build the dependence graph
•  Topological sort the dependence graph
•  Define attributes in topological order

Rule-based methods (treewalk)
•  Analyze rules at compiler-generation time
•  Determine a fixed (static) ordering
•  Evaluate nodes in that order

Oblivious methods (passes, dataflow)
•  Ignore rules & parse tree
•  Pick a convenient order (at design time) & use it

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1 For “–101”

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos: 0
val:

val:

neg:

For “–101”

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Inherited Attributes

Note: downward flow
(pointing arrows) of
information

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Synthesized attributes

Note: upward flow
(pointing arrows) of
information and the
flow from node’s (self)
attributes

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

If we show the
computation ...

then peel away the parse
tree ...

Back to the Example

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

All that is left is the
attribute
dependence graph.

This succinctly
represents the flow
of values in the
problem instance.

The dependence graph must be acyclic
(no cycles!)

An Extended Example
Grammar for a basic block

Block0 → Block1 Assign
⏐ Assign

Assign → Ident = Expr ;
Expr0 → Expr1 + Term

⏐ Expr1 – Term
⏐ Term

Term0 → Term1 * Factor
⏐ Term1 / Factor
⏐ Factor

Factor → (Expr)
⏐ Number
⏐ Identifier

An Extended Example
Grammar for a basic block

Block0 → Block1 Assign
⏐ Assign

Assign → Ident = Expr ;
Expr0 → Expr1 + Term

⏐ Expr1 – Term
⏐ Term

Term0 → Term1 * Factor
⏐ Term1 / Factor
⏐ Factor

Factor → (Expr)
⏐ Number
⏐ Identifier

An Extended Example
Grammar for a basic block

Block0 → Block1 Assign
⏐ Assign

Assign → Ident = Expr ;
Expr0 → Expr1 + Term

⏐ Expr1 – Term
⏐ Term

Term0 → Term1 * Factor
⏐ Term1 / Factor
⏐ Factor

Factor → (Expr)
⏐ Number
⏐ Identifier

An Extended Example
Grammar for a basic block

Block0 → Block1 Assign
⏐ Assign

Assign → Ident = Expr ;
Expr0 → Expr1 + Term

⏐ Expr1 – Term
⏐ Term

Term0 → Term1 * Factor
⏐ Term1 / Factor
⏐ Factor

Factor → (Expr)
⏐ Number
⏐ Identifier

a = -5
b = a * 17
c = b / 2
d = a + b - c

Example basic block

How many clock
cycles will this
block take to
execute?

An Extended Example
Grammar for a basic block

Block0 → Block1 Assign
⏐ Assign

Assign → Ident = Expr ;
Expr0 → Expr1 + Term

⏐ Expr1 – Term
⏐ Term

Term0 → Term1 * Factor
⏐ Term1 / Factor
⏐ Factor

Factor → (Expr)
⏐ Number
⏐ Identifier

Estimate cycle count for the
block of instructions

•  Each operation has a COST

•  Add them, bottom up

•  Assume a load per value

•  Assume no reuse

 Simple Attribute Grammar

An Extended Example (continued)
Adding attribution rules All these attributes are synthesized!

An Extended Example (continued)
Adding attribution rules All these attributes are synthesized!

An Extended Example (continued)
Adding attribution rules All these attributes are synthesized!

An Extended Example (continued)
Adding attribution rules All these attributes are synthesized!

An Extended Example (continued)
Adding attribution rules All these attributes are synthesized!

An Extended Example

Properties of the example grammar
•  All attributes are synthesized ⇒ S-attributed

grammar
•  Rules can be evaluated bottom-up in a single pass

→  Good fit to bottom-up, shift/reduce parser
•  Easily understood solution
•  Seems to fit the problem well

What about an improvement?
•  Values are loaded only once per block (not at each

use)
•  Need to track which values have been already loaded

Adding load tracking
•  Need sets Before and After for each production
•  Must be initialized, updated, and passed around the tree

A Better Execution Model

Factor → (Expr) Factor.cost ← Expr.cost ;
Expr.Before ← Factor.Before ;
Factor.After ← Expr.After

⏐ Number Factor.cost ← COST(loadi) ;
Factor.After ← Factor.Before

⏐ Identifier If (Identifier.name ∉ Factor.Before)
 then
 Factor.cost ← COST(load);
 Factor.After ← Factor.Before
 ∪ Identifier.name
 else
 Factor.cost ← 0
 Factor.After ← Factor.Before

This looks more complex!

Adding load tracking
•  Need sets Before and After for each production
•  Must be initialized, updated, and passed around the tree

A Better Execution Model

Factor → (Expr) Factor.cost ← Expr.cost ;
Expr.Before ← Factor.Before ;
Factor.After ← Expr.After

⏐ Number Factor.cost ← COST(loadi) ;
Factor.After ← Factor.Before

⏐ Identifier If (Identifier.name ∉ Factor.Before)
 then
 Factor.cost ← COST(load);
 Factor.After ← Factor.Before
 ∪ Identifier.name
 else
 Factor.cost ← 0
 Factor.After ← Factor.Before

This looks more complex!

•  Load tracking adds complexity
•  Every production needs rules to copy Before & After

A sample production

Lots of work, lots of space, lots of rules to write

A Better Execution Model

Expr0 → Expr1 + Term Expr0.cost ← Expr1.cost +
 COST(add) + Term.cost ;
Expr1.Before ← Expr0.Before ;
Term.Before ← Expr1.After;
Expr0.After ← Term.After

What about accounting for finite register sets?
•  Before & After must be of limited size
•  Adds complexity to Factor→Identifier
•  Requires more complex initialization

Jump from tracking loads to tracking registers is small
•  Copy rules are already in place
•  Some local code to perform the allocation

Next class
⇒  Curing these problems with ad-hoc syntax-directed translation

An Even Better Model

•  Focus on Phase II and III
•  Focus on Chapters 2 and 3
•  Lexer

→ Given an RE can you construct an NFA/DFA?
→ Given a DFA/NFA can you construct an RE?

•  Parsing
→ Focus on LR(1) Parsing
→ Construct Canonical Collections, Control DFA,

ACTION, and GOTO tables

Midterm Study Guide

