
Context-sensitive Analysis

Beyond Syntax
There is a level of correctness that is deeper than

grammar
fie(a,b,c,d)
 int a, b, c, d;

{ … }

fee() {
 int f[3],g[0], h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”, p,q);
 p = 10;

}

What is wrong with this
program?

Beyond Syntax
There is a level of correctness that is deeper

than grammar
fie(a,b,c,d)
 int a, b, c, d;

{ … }

fee() {
 int f[3],g[0], h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”, p,q);
 p = 10;

}

What is wrong with this program?

•  declared g[0], used g[17]

Beyond Syntax
There is a level of correctness that is deeper

than grammar
fie(a,b,c,d)
 int a, b, c, d;

{ … }

fee() {
 int f[3],g[0], h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”, p,q);
 p = 10;

}

What is wrong with this program?

•  declared g[0], used g[17]

• wrong number of args to fie()

Beyond Syntax
There is a level of correctness that is deeper

than grammar
fie(a,b,c,d)
 int a, b, c, d;

{ … }

fee() {
 int f[3],g[0], h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”, p,q);
 p = 10;

}

What is wrong with this program?

•  declared g[0], used g[17]

• wrong number of args to fie()

•  “ab” is not an int

Beyond Syntax
There is a level of correctness that is deeper

than grammar
fie(a,b,c,d)
 int a, b, c, d;

{ … }

fee() {
 int f[3],g[0], h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”, p,q);
 p = 10;

}

What is wrong with this program?

•  declared g[0], used g[17]

• wrong number of args to fie()

•  “ab” is not an int

•  wrong dimension on use of f

Beyond Syntax
There is a level of correctness that is deeper

than grammar
fie(a,b,c,d)
 int a, b, c, d;

{ … }

fee() {
 int f[3],g[0], h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”, p,q);
 p = 10;

}

What is wrong with this program?

•  declared g[0], used g[17]

• wrong number of args to fie()

•  “ab” is not an int

•  wrong dimension on use of f

•  undeclared variable q

Beyond Syntax
There is a level of correctness that is deeper

than grammar
fie(a,b,c,d)
 int a, b, c, d;

{ … }

fee() {
 int f[3],g[0], h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”, p,q);
 p = 10;

}

What is wrong with this program?

•  declared g[0], used g[17]

• wrong number of args to fie()

•  “ab” is not an int

•  wrong dimension on use of f

•  undeclared variable q

•  10 is not a character string

Beyond Syntax
There is a level of correctness that is deeper

than grammar
fie(a,b,c,d)
 int a, b, c, d;

{ … }

fee() {
 int f[3],g[0], h, i, j, k;

 char *p;
 fie(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”, p,q);
 p = 10;

}

What is wrong with this program?

•  declared g[0], used g[17]

• wrong number of args to fie()

•  “ab” is not an int

•  wrong dimension on use of f

•  undeclared variable q

•  10 is not a character string

All of these are
“deeper than syntax”

Beyond Syntax

To generate code, the compiler needs to answer
many questions

•  Is “x” a scalar, an array, or a function? Is “x”
declared?

•  Are there names that are not declared?
Declared but not used?

•  Which declaration of “x” does each use
reference?

•  Is the expression “x * y + z” type-consistent?

These are beyond a
context-free grammar

Beyond Syntax

To generate code, the compiler needs to answer
many questions

•  In “a[i,j,k]”, does a have three dimensions?
•  Where can “z” be stored? (register, local, heap,

etc.)
•  How many arguments does “fie()” take?
•  Does “*p” reference the result of a “malloc()” ?
•  Do “p” & “q” refer to same memory location?
•  Is “x” defined before it is used?

These are beyond a
context-free grammar

Beyond Syntax
These questions are part of context-sensitive analysis
•  Questions & answers involve non-local information
•  Answers may involve computation

How can we answer these questions?
•  Use formal methods

→  Attribute grammars?
  Also known as attributed CFG or syntax-directed

definitions

•  Use ad-hoc techniques
→  Symbol tables
→  Ad-hoc code

In scanning & parsing, formalism won; different story
here.

Beyond Syntax
Telling the story
•  The attribute grammar formalism is important

→  Succinctly makes many points clear
→  Sets the stage for actual, ad-hoc practice

•  The problems with attribute grammars motivate
practice
→  Non-local computation
→  Need for centralized information

•  Some folks still argue for attribute grammars
→  In practice, ad-hoc techniques used

We will cover attribute grammars, then move on to ad-
hoc ideas

What is an Attribute Grammar?

•  Context-free grammar augmented with
rules
•  Each symbol in the derivation has a set of

values or attributes
→ X.a denotes the value of a at a particular

parse-tree node labeled X
•  Rules specify how to compute a value for

each attribute

What is an Attribute Grammar?
Example grammar

This grammar describes
signed binary numbers: +101,
-11, +10101, but not 101
We would like to augment it
with rules that compute the
decimal value of each valid
input string

Example: parse -101 and
compute -5

Examples

We will use these two throughout the lecture

Number → Sign List

 → – List

 → – Bit

 → – 1

Number

List

Bit

1

Sign

–

For “–1”

Number → Sign List

 → Sign List Bit

 → Sign List 1

 → Sign List Bit 1

 → Sign List 1 1

 → Sign Bit 0 1

 → Sign 1 0 1

 → – 101

Number

List Sign

– Bit

1

List

Bit

0

List

Bit

1

For “–101”

Grammar and its Attributes

Symbol Attributes

Number val

Sign neg

List pos, val

Bit pos, val

Attribute Grammars
Add rules to compute the decimal value of a signed binary number

Attribute Grammars
Add rules to compute the decimal value of a signed binary number

Attribute Grammars
Add rules to compute the decimal value of a signed binary number

LHS to
the RHS

Attribute Grammars
Add rules to compute the decimal value of a signed binary number

RHS to
the LHS

Attribute Grammars
Add rules to compute the decimal value of a signed binary number

Subscripts
needed

Attribute Grammars
Add rules to compute the decimal value of a signed binary number

Subscripts
needed

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg ← true

Bit.pos ← 0
Bit.val ← 2Bit.pos ≡ 1

List.pos ← 0
List.val ← Bit.val ≡ 1

Number.val ← – List.val ≡ –1 For “–1”

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg ← true

Bit.pos ← 0
Bit.val ← 2Bit.pos ≡ 1

List.pos ← 0
List.val ← Bit.val ≡ 1

Number.val ← – List.val ≡ –1 For “–1”
One possible
evaluation order:

1  List.pos

2  Sign.neg

3  Bit.pos

4  Bit.val

5  List.val

6  Number.val

Other orders are
possible Evaluation order must be

consistent with the attribute
dependence graph

Attributes + parse tree
•  Attributes associated with nodes in parse tree
•  Rules are value assignments associated with

productions
•  Rules & parse tree define an attribute

dependence graph
→ Graph must be non-circular

This produces a high-level, functional
specification

Two kinds of Attributes

•  Synthesized attribute
→ Upward flow of values
→ Depends on values from children

•  Inherited attribute
→ Downward flow of values
→ Depends on values from siblings & parent

Using Attribute Grammars

Attribute grammars can specify context-
sensitive actions

•  Take values from syntax
•  Perform computations with values
•  Insert tests, logic, …

Evaluation Methods
Dynamic, dependence-based methods
•  Build the parse tree
•  Build the dependence graph
•  Topological sort the dependence graph
•  Define attributes in topological order

Rule-based methods (treewalk)
•  Analyze rules at compiler-generation time
•  Determine a fixed (static) ordering
•  Evaluate nodes in that order

Oblivious methods (passes, dataflow)
•  Ignore rules & parse tree
•  Pick a convenient order (at design time) & use it

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1 For “–101”

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos: 0
val:

val:

neg:

For “–101”

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Inherited Attributes

Note: the downward
(pointing arrows)
flow of information

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Synthesized
attributes

Note: the upward
(pointing arrows)
flow of information
and the flow from
sibling attributes

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Synthesized
attributes

Note: the upward
(pointing arrows)
flow of information
and the flow from
sibling attributes

Back to the Example

Number

Sign List

Bit List

Bit List

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

If we show the
computation ...

then peel away the parse
tree ...

Back to the Example

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

All that is left is the attribute
dependence graph.

This succinctly represents the
flow of values in the problem
instance.

The dynamic methods sort this
graph to find independent
values, then work along graph
edges.

The rule-based methods try to
discover “good” orders by
analyzing the rules.

The oblivious methods ignore
the structure of this graph.

The dependence graph must be acyclic
(no cycles!)

An Extended Example
Grammar for a basic block (§ 4.3.3)

Block0 → Block1 Assign
⏐ Assign

Assign → Ident = Expr ;
Expr0 → Expr1 + Term

⏐ Expr1 – Term
⏐ Term

Term0 → Term1 * Factor
⏐ Term1 / Factor
⏐ Factor

Factor → (Expr)
⏐ Number
⏐ Identifier

Let’s estimate cycle counts

•  Each operation has a COST

•  Add them, bottom up

•  Assume a load per value

•  Assume no reuse

Simple problem for an AG

