
LR(1) Parsers
Part II

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Building LR(1) Tables : ACTION and GOTO

How do we build the parse tables for an LR(1)
grammar?

•  Use grammar to build model of Control DFA
•  ACTION table provides actions to perform

— Reductions, shifts, or accept
•  GOTO table tells us state to goto next

•  If table construction succeeds, the grammar is
LR(1)
— “Succeeds” means defines each table entry uniquely

Building LR(1) Tables: The Big Picture
•  Model the state of the parser with “LR(1) items”
•  Use two functions goto(s, X) and closure(s)

— goto() is analogous to move() in the subset
construction

— closure() adds information to round out a state
•  Build up the states and transition functions of

the DFA
•  Use this information to fill in the ACTION and

GOTO tables

This is a fixed-point algorithm

LR(1) Items
We represent valid configuration of LR(1) parser

with a data structure called an LR(1) item
An LR(1) item is a pair [P, δ], where

P is a production A→β with a • at some position
in the rhs

δ is a lookahead string (word or EOF)

The • (“placeholder”) in an item indicates the
position of the top of the stack

LR(1) Items
[A→•βγ,a] means that input seen so far is consistent with

use of A →βγ immediately after the symbol on TOS

[A →β•γ,a] means that input seen so far is consistent with
use of A →βγ at this point in the parse, and that the
parser has already recognized β (that is, β is on TOS)

[A →βγ•,a] means that parser has seen βγ, and that a
lookahead symbol of a is consistent with reducing to A.

“possibility”

“complete”

“partially complete”

LR(1) Items

Production A→β, β = B1B2B3 and lookahead a,
gives rise to 4 items
[A→•B1B2B3,a]

[A→B1•B2B3,a]

[A→B1B2•B3,a]

[A→B1B2B3•,a]

The set of LR(1) items for a grammar is finite

Lookahead symbols?
•  Helps to choose the correct reduction
•  Lookaheads has no use, unless item has • at right

end
— In [A→β•,a], lookahead a implies reduction by A →β

 { [A→β•,a],[B→γ•δ,b] },

lookahead in FIRST(δ) ⇒
shift

lookahead of a ⇒
reduce to A;

7

Build Canonical Collection (CC) of sets
of LR(1) Items, I

Step 1: Start with initial state, s0
♦ [S’ →•S,EOF], along with any equivalent items
♦ Derive equivalent items as closure(s0)

LR(1) Table Construction : Overview

Grammar has an unique goal symbol

8

Step 2: For each sk, and each symbol X,
compute goto(sk,X)

♦ If the set is not already in CC, add it
♦ Record all the transitions created by goto()

 This eventually reaches a fixed point

Step 3: Fill in the table from the collection of
sets of LR(1) items

LR(1) Table Construction : Overview

The states of canonical collection are
precisely the states of the Control DFA

The construction traces the DFA’s
transitions

Computing Closures
Closure(s) adds all the items implied by the

items already in state s

 [A→β•C δ,a]

Closure([A→β•C δ,a]) adds [C →•τ,x]

where C is on the lhs and each x ∈ FIRST(δa)

Since βC δ is valid, any way to derive βC δ is valid

s

Closure algorithm

Closure(s)
 while (s is still changing)
 ∀ items [A → β •C δ,a] ∈ s
 ∀ productions C → τ ∈ P
 ∀ x ∈ FIRST(δa) // δ might be ε
 if [C → • τ,x] ∉ s
 then s ← s ∪ { [C → • τ,x] }

•  Classic fixed-point method
• Halts because s ⊂ ITEMS
•  Closure “fills out” a state

Closure algorithm

Closure(s)
 while (s is still changing)
 ∀ items [A → β •C δ,a] ∈ s
 ∀ productions C → τ ∈ P
 ∀ x ∈ FIRST(δa) // δ might be ε
 if [C → • τ,x] ∉ s
 then s ← s ∪ { [C → • τ,x] }

•  Classic fixed-point method
• Halts because s ⊂ ITEMS
•  Closure “fills out” a state

Closure algorithm

Closure(s)
 while (s is still changing)
 ∀ items [A → β •C δ,a] ∈ s
 ∀ productions C → τ ∈ P
 ∀ x ∈ FIRST(δa) // δ might be ε
 if [C → • τ,x] ∉ s
 then s ← s ∪ { [C → • τ,x] }

•  Classic fixed-point method
• Halts because s ⊂ ITEMS
•  Closure “fills out” a state

Closure algorithm

Closure(s)
 while (s is still changing)
 ∀ items [A → β •C δ,a] ∈ s
 ∀ productions C → τ ∈ P
 ∀ x ∈ FIRST(δa) // δ might be ε
 if [C → • τ,x] ∉ s
 then s ← s ∪ { [C → • τ,x] }

•  Classic fixed-point method
• Halts because s ⊂ ITEMS
•  Closure “fills out” a state

Closure algorithm

Closure(s)
 while (s is still changing)
 ∀ items [A → β •C δ,a] ∈ s
 ∀ productions C → τ ∈ P
 ∀ x ∈ FIRST(δa) // δ might be ε
 if [C → • τ,x] ∉ s
 then s ← s ∪ { [C → • τ,x] }

•  Classic fixed-point method
• Halts because s ⊂ ITEMS
•  Closure “fills out” a state

Example From SheepNoise
Initial step builds the item [Goal→•SheepNoise,EOF]
and takes its closure()

Closure([Goal→•SheepNoise,EOF])

So, S0 is
{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF], 	

 [SheepNoise→• baa,EOF], [SheepNoise→ • SheepNoise baa,baa],	

 [SheepNoise→ • baa,baa] }	

Item Derived from …
1 [Goal → • SheepNoise,EOF] Original item
2 [SheepNoise → • SheepNoise baa, EOF] 1, δa is EOF
3 [SheepNoise → • baa, EOF] 1, δa is EOF
4 [SheepNoise → • SheepNoise baa, baa] 2, δa is baa baa
5 [SheepNoise → • baa, baa] 2, δa is baa baa

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

Computing Gotos
Goto(s,x) computes state parser would

reach if it recognized x while in state s
 Goto({ [A→β•X δ,a] }, X)

 [A→βX •δ,a]

•  Creates new items & uses closure() to fill
out the state

Produces

Goto Algorithm

Goto(s, X)
 new ←Ø
 ∀ items [A→β•X δ,a] ∈ s
 new ← new ∪ { [A→βX •δ,a] }
 return closure(new)

• Not a fixed-point method!
• Uses closure ()
• Goto() moves us forward

Example from SheepNoise

S0 is { [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF], 	

 [SheepNoise→ • baa,EOF], [SheepNoise→ • SheepNoise baa,baa],	

 [SheepNoise→ • baa,baa] }	

Goto(S0 , baa)
•  Loop produces

•  Closure adds nothing since • is at end of rhs in each item

In the construction, this produces s2
{ [SheepNoise→baa •, {EOF,baa}] }

New, but obvious, notation for
two distinct items
[SheepNoise→baa •, EOF] &
[SheepNoise→baa •, baa]

Item Source
[SheepNoise → baa •, EOF] Item 3 in s0
[SheepNoise → baa •, baa] Item 5 in s0

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

Canonical Collection Algorithm
s0 ← closure ([S’→ S,EOF])
S ← { s0 }
k ← 1
while (S is still changing)
 ∀ sj ∈ S and ∀ x ∈ (T ∪ NT)
 t ← goto(sj,x)
 if t ∉ S then

 name t as sk
 S ← S ∪ { sk }
 record sj → sk on x
 k ← k + 1

 else
 t is sm ∈ S

 record sj → sm on x

•  Fixed-point computation
•  Loop adds to S
•  S ⊆ 2ITEMS, so S is finite

Example from SheepNoise

Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	

 [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	

 [SheepNoise→ • baa, baa] }

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) =

 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	

 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

Example from SheepNoise

Iteration 2 computes
 S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	

 [SheepNoise→ SheepNoise baa •, baa] }

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	

 [SheepNoise→ SheepNoise • baa, baa] }

Nothing more to
compute, since • is at
the end of every item
in S3 .

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	

 [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	

 [SheepNoise→ • baa, baa] }

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	

 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	

 [SheepNoise→ SheepNoise baa •, baa] }

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

Filling in the ACTION and GOTO Tables
The algorithm

∀ set Sx ∈ S
 ∀ item i ∈ Sx
 if i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x ,EOF] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 ∀ n ∈ NT
 if goto(Sx ,n) = Sk
 then GOTO[x,n] ← k

x is the state number

Filling in the ACTION and GOTO Tables
The algorithm

∀ set Sx ∈ S
 ∀ item i ∈ Sx
 if i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x ,EOF] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 ∀ n ∈ NT
 if goto(Sx ,n) = Sk
 then GOTO[x,n] ← k

• before T ⇒ shift

Filling in the ACTION and GOTO Tables
The algorithm

∀ set Sx ∈ S
 ∀ item i ∈ Sx
 if i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x ,EOF] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 ∀ n ∈ NT
 if goto(Sx ,n) = Sk
 then GOTO[x,n] ← k

have Goal ⇒
accept

Filling in the ACTION and GOTO Tables
The algorithm

∀ set Sx ∈ S
 ∀ item i ∈ Sx
 if i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x ,EOF] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 ∀ n ∈ NT
 if goto(Sx ,n) = Sk
 then GOTO[x,n] ← k • at end ⇒

reduce

Filling in the ACTION and GOTO Tables
The algorithm

∀ set Sx ∈ S
 ∀ item i ∈ Sx
 if i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x ,EOF] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 ∀ n ∈ NT
 if goto(Sx ,n) = Sk
 then GOTO[x,n] ← k Fill GOTO

table

Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	

 [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	

 [SheepNoise→ • baa, baa] }

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	

 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	

 [SheepNoise→ SheepNoise baa •, baa] }

• before T ⇒ shift k

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

 …
if i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T
 then ACTION[x,a] ← “shift k”
…

Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	

 [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	

 [SheepNoise→ • baa, baa] }

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	

 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	

 [SheepNoise→ SheepNoise baa •, baa] }

• before T ⇒ shift k

so, ACTION[s0,baa] is
“shift S2” (clause 1)

(items define same entry)

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	

 [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	

 [SheepNoise→ • baa, baa] }

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	

 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	

 [SheepNoise→ SheepNoise baa •, baa] }

so, ACTION[S1,baa]
is “shift S3” (clause 1)

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

 …
if i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T
 then ACTION[x,a] ← “shift k”
…

Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	

 [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	

 [SheepNoise→ • baa, baa] }

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	

 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	

 [SheepNoise→ SheepNoise baa •, baa] }

so, ACTION[S1,EOF]
is “accept ” (clause 2)

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

 …
else if i is [S’→S •,EOF]
 then ACTION[x ,EOF] ← “accept”
…

Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	

 [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	

 [SheepNoise→ • baa, baa] }

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	

 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	

 [SheepNoise→ SheepNoise baa •, baa] }

so, ACTION[S2,EOF] is
“reduce 2” (clause 3)

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

ACTION[S2,baa] is
“reduce 2 ” (clause 3)

 …
else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
…

Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	

 [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	

 [SheepNoise→ • baa, baa] }

S1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	

 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	

 [SheepNoise→ SheepNoise baa •, baa] }

ACTION[S3,EOF] is
“reduce 1” (clause 3)

ACTION[S3,baa] is
“reduce 1 ”, as well

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

 …
else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
…

Example from SheepNoise

s0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	

 [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	

 [SheepNoise→ • baa, baa] }

s1 = Goto(S0 , SheepNoise) =
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	

 [SheepNoise→ SheepNoise • baa, baa] }

s2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

s3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	

 [SheepNoise→ SheepNoise baa •, baa] }

The GOTO Table records Goto transitions on NTs

Only 1 transition in the
entire GOTO table
Remember, we recorded these so
we don’t need to recompute them.

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

Based on T, not NT and
written into the ACTION
table

Puts s1 in GOTO[s0,SheepNoise]

Here are the tables for the SheepNoise grammar

The tables

The grammar

ACTION & GOTO Tables

0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa

ACTION TABLE
State EOF baa

0 — shift 2
1 accept shift 3
2 reduce 2 reduce 2
3 reduce 1 reduce 1

GOTO TABLE
State SheepNoise

0 1
1 0
2 0
3 0

What can go wrong? Shift/reduce error

What if set s contains [A→β•aγ,b] and [B→β•,a] ?
•  First item generates “shift”, second generates

“reduce”
•  Both set ACTION[s,a] — cannot do both actions
•  This is ambiguity, called a shift/reduce error
•  Modify the grammar to eliminate it (if-then-else)
•  Shifting will often resolve it correctly

What can go wrong? Reduce/reduce conflict

What is set s contains [A→γ•, a] and [B→γ•, a] ?
•  Each generates “reduce”, but with a different

production
•  Both set ACTION[s,a] — cannot do both

reductions
•  This ambiguity is called reduce/reduce conflict
•  Modify the grammar to eliminate it

(PL/I’s overloading of (...))

In either case, the grammar is not LR(1)

Summary

•  LR(1) items
•  Creating ACTION and GOTO table
•  What can go wrong?

