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Building LR(1) Tables : ACTION and GOTO 

How do we build the parse tables for an LR(1) 
grammar? 

•  Use grammar to build model of Control DFA 
•  ACTION table provides actions to perform 

— Reductions, shifts, or accept 
•  GOTO table tells us state to goto next 

•  If table construction succeeds, the grammar is 
LR(1) 
— “Succeeds” means defines each table entry uniquely 



Building LR(1) Tables: The Big Picture 
•  Model the state of the parser with “LR(1) items” 
•  Use two functions goto( s, X )  and closure( s ) 

— goto() is analogous to move() in the subset 
construction 

— closure() adds information to round out a state  
•  Build up the states and transition functions of 

the DFA 
•  Use this information to fill in the ACTION and 

GOTO tables 

This is a fixed-point algorithm 



LR(1) Items 
We represent valid configuration of LR(1) parser 

with a data structure called an LR(1) item 
An LR(1) item is a pair [P, δ], where 

P is a production A→β with a • at some position 
in the rhs 

δ is a lookahead string   (word or EOF ) 

The • (“placeholder”) in an item indicates the 
position of the top of the stack 



LR(1) Items 
[A→•βγ,a] means that input seen so far is consistent with 

use of A →βγ immediately after the symbol on TOS 

[A →β•γ,a] means that input seen so far is consistent with 
use of A →βγ at this point in the parse, and that the 
parser has already recognized β (that is, β is on TOS) 

[A →βγ•,a] means that parser has seen βγ, and that a 
lookahead symbol of a is consistent with reducing to A. 

“possibility” 

“complete” 

“partially complete” 



LR(1) Items 

Production A→β, β = B1B2B3 and lookahead a, 
gives rise to 4 items 
[A→•B1B2B3,a] 

[A→B1•B2B3,a] 

[A→B1B2•B3,a] 

[A→B1B2B3•,a]  

The set of LR(1) items for a grammar is finite 



Lookahead symbols? 
•  Helps to choose the correct reduction 
•  Lookaheads has no use, unless item has • at right 

end 
— In [A→β•,a], lookahead a implies reduction by A →β 

         { [A→β•,a],[B→γ•δ,b] }, 

lookahead in FIRST(δ) ⇒ 
shift 

lookahead of a ⇒ 
reduce to A;  
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Build Canonical Collection (CC) of sets 
of LR(1) Items, I  

Step 1: Start with initial state, s0 
♦ [S’ →•S,EOF], along with any equivalent items 
♦ Derive equivalent items as closure( s0 ) 

LR(1) Table Construction : Overview 

Grammar has an unique goal symbol 
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Step 2: For each sk, and each symbol X, 
compute goto(sk,X) 

♦ If the set is not already in CC, add it 
♦ Record all the transitions created by goto( ) 

    This eventually reaches a fixed point 

Step 3: Fill in the table from the collection of 
sets of LR(1) items 

LR(1) Table Construction : Overview 

The states of canonical collection are 
precisely the states of the Control DFA 

The construction traces the DFA’s 
transitions 



Computing Closures 
Closure(s)  adds all the items implied by the 

items already in state s 

      [A→β•C δ,a]  

Closure([A→β•C δ,a]) adds  [C →•τ,x]   

where C is on the lhs and each x ∈ FIRST(δa) 

Since βC δ is valid, any way to derive βC δ is valid 

s



Closure algorithm 

Closure( s ) 
  while ( s is still changing ) 
     ∀ items [A → β •C δ,a] ∈ s 
        ∀ productions C → τ  ∈ P 
          ∀ x  ∈ FIRST(δa)    // δ might be ε 
            if  [C → • τ,x] ∉ s 
                then s ← s ∪ { [C → • τ,x] } 

•  Classic fixed-point method 
• Halts because s ⊂ ITEMS 
•  Closure “fills out” a state 
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Closure algorithm 

Closure( s ) 
  while ( s is still changing ) 
     ∀ items [A → β •C δ,a] ∈ s 
        ∀ productions C → τ  ∈ P 
          ∀ x  ∈ FIRST(δa)    // δ might be ε 
            if  [C → • τ,x] ∉ s 
                then s ← s ∪ { [C → • τ,x] } 

•  Classic fixed-point method 
• Halts because s ⊂ ITEMS 
•  Closure “fills out” a state 



Example From SheepNoise 
Initial step builds the item [Goal→•SheepNoise,EOF] 
and takes its closure( ) 

Closure( [Goal→•SheepNoise,EOF] ) 

So, S0  is  
{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF], 	


   [SheepNoise→• baa,EOF], [SheepNoise→ • SheepNoise baa,baa],	


   [SheepNoise→ • baa,baa] }	



# Item Derived from … 
1 [Goal → • SheepNoise,EOF] Original item 
2 [SheepNoise → • SheepNoise baa, EOF] 1, δa is EOF 
3 [SheepNoise → • baa, EOF] 1, δa is EOF 
4 [SheepNoise → • SheepNoise baa, baa] 2, δa is baa baa 
5 [SheepNoise → • baa, baa] 2, δa is baa baa 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 



Computing Gotos 
Goto(s,x) computes state parser would 

reach if it recognized x  while in state s 
  Goto( { [A→β•X δ,a] }, X )  

                   [A→βX •δ,a] 

•  Creates new items & uses closure() to fill 
out the state 

Produces 



Goto Algorithm 

Goto( s, X ) 
    new ←Ø 
     ∀ items [A→β•X δ,a] ∈ s 
        new ← new ∪ { [A→βX •δ,a] } 
     return closure(new) 

• Not a fixed-point method! 
• Uses closure ( ) 
• Goto() moves us forward 



Example from SheepNoise 

S0  is { [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF], 	


        [SheepNoise→ • baa,EOF],  [SheepNoise→ • SheepNoise baa,baa],	


        [SheepNoise→ • baa,baa] }	



Goto( S0 , baa ) 
•  Loop produces 

•  Closure adds nothing since • is at end of rhs in each item 

In the construction, this produces s2  
{ [SheepNoise→baa •, {EOF,baa}] } 

New, but obvious, notation for 
two distinct items 
[SheepNoise→baa •, EOF] & 
[SheepNoise→baa •, baa] 

Item Source 
[SheepNoise → baa •, EOF] Item 3 in s0 
[SheepNoise → baa •, baa] Item 5 in s0 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 



Canonical Collection Algorithm 
s0 ←  closure ( [S’→ S,EOF] ) 
S  ←  { s0  } 
k  ←  1 
while ( S is still changing ) 
   ∀ sj ∈ S and ∀ x ∈ ( T ∪ NT ) 
         t ←  goto(sj,x) 
         if t ∉ S then 

       name t as sk  
       S ← S ∪ { sk } 
       record sj → sk on x 
         k ← k + 1 

         else  
      t is sm ∈ S 

            record sj → sm on x 

•  Fixed-point computation 
•  Loop adds to S 
•  S ⊆ 2ITEMS, so S is finite 



Example from SheepNoise 

Starts with S0 
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	



   [SheepNoise→  • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	


   [SheepNoise→ • baa, baa] } 

Iteration 1 computes 
S1  = Goto(S0 , SheepNoise) =  

 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	


   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],          
                                                  [SheepNoise→ baa •, baa] } 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 



Example from SheepNoise 

Iteration 2 computes 
 S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	



                                          [SheepNoise→ SheepNoise baa •, baa] } 

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	


   [SheepNoise→ SheepNoise • baa, baa] } 

Nothing more to 
compute, since • is at 
the end of every item 
in S3 . 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 



Example from SheepNoise 

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	


   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	


   [SheepNoise→ • baa, baa] } 

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	



   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],    
         [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	


                                      [SheepNoise→ SheepNoise baa •, baa] } 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 



Filling in the ACTION and GOTO Tables 
The algorithm 

∀ set Sx ∈ S  
    ∀ item i ∈ Sx 
       if  i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T 
           then ACTION[x,a] ← “shift k” 
       else if  i is [S’→S •,EOF] 
             then ACTION[x ,EOF] ← “accept” 
       else if  i is [A→β •,a] 
              then ACTION[x,a] ← “reduce A→β” 
    ∀ n ∈ NT 
      if  goto(Sx ,n) = Sk 
          then GOTO[x,n] ← k 

x is the state number 
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•  before T ⇒ shift 
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have Goal ⇒ 
accept 



Filling in the ACTION and GOTO Tables 
The algorithm 

∀ set Sx ∈ S  
    ∀ item i ∈ Sx 
       if  i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T 
           then ACTION[x,a] ← “shift k” 
       else if  i is [S’→S •,EOF] 
             then ACTION[x ,EOF] ← “accept” 
       else if  i is [A→β •,a] 
              then ACTION[x,a] ← “reduce A→β” 
    ∀ n ∈ NT 
      if  goto(Sx ,n) = Sk 
          then GOTO[x,n] ← k •  at end ⇒ 

reduce 



Filling in the ACTION and GOTO Tables 
The algorithm 

∀ set Sx ∈ S  
    ∀ item i ∈ Sx 
       if  i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T 
           then ACTION[x,a] ← “shift k” 
       else if  i is [S’→S •,EOF] 
             then ACTION[x ,EOF] ← “accept” 
       else if  i is [A→β •,a] 
              then ACTION[x,a] ← “reduce A→β” 
    ∀ n ∈ NT 
      if  goto(Sx ,n) = Sk 
          then GOTO[x,n] ← k Fill GOTO 

table 



Example from SheepNoise 

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	


   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	


   [SheepNoise→ • baa, baa] } 

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	



   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],    
          [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	


                                      [SheepNoise→ SheepNoise baa •, baa] } 

• before T ⇒ shift  k 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 

 … 
if  i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T 
           then ACTION[x,a] ← “shift k” 
… 



Example from SheepNoise 

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	


   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	


   [SheepNoise→ • baa, baa] } 

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	



   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],    
          [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	


                                      [SheepNoise→ SheepNoise baa •, baa] } 

• before T ⇒ shift  k 

so, ACTION[s0,baa] is 
“shift S2” (clause 1) 

(items define same entry) 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 



Example from SheepNoise 

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	


   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	


   [SheepNoise→ • baa, baa] } 

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	



   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],    
          [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	


                                      [SheepNoise→ SheepNoise baa •, baa] } 

so, ACTION[S1,baa] 
is “shift S3” (clause 1) 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 

 … 
if  i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T 
           then ACTION[x,a] ← “shift k” 
… 



Example from SheepNoise 

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	


   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	


   [SheepNoise→ • baa, baa] } 

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	



   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],    
          [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	



                                      [SheepNoise→ SheepNoise baa •, baa] } 

so, ACTION[S1,EOF] 
is “accept ” (clause 2) 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 

 … 
else if  i is [S’→S •,EOF] 
             then ACTION[x ,EOF] ← “accept” 
… 



Example from SheepNoise 

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	


   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	


   [SheepNoise→ • baa, baa] } 

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	



   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],    
          [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	


                                      [SheepNoise→ SheepNoise baa •, baa] } 

so, ACTION[S2,EOF] is 
“reduce  2”    (clause 3) 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 

ACTION[S2,baa] is 
“reduce  2 ”    (clause 3) 

 … 
else if  i is [A→β •,a] 
              then ACTION[x,a] ← “reduce A→β” 
… 



Example from SheepNoise 

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	


   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	


   [SheepNoise→ • baa, baa] } 

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	



   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],    
          [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	


                                      [SheepNoise→ SheepNoise baa •, baa] } 

ACTION[S3,EOF] is 
“reduce 1”   (clause 3) 

ACTION[S3,baa] is 
“reduce 1 ”, as well 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 

 … 
else if  i is [A→β •,a] 
              then ACTION[x,a] ← “reduce A→β” 
… 



Example from SheepNoise 

s0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 	


   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],	


   [SheepNoise→ • baa, baa] } 

s1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 	



   [SheepNoise→ SheepNoise • baa, baa] } 

s2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],    
          [SheepNoise→ baa •, baa] } 

s3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 	


                                      [SheepNoise→ SheepNoise baa •, baa] } 

The GOTO Table records Goto transitions on NTs 

Only 1 transition in the 
entire GOTO table 
Remember, we recorded these so 
we don’t need to recompute them. 

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 

Based on T, not NT and 
written into the ACTION 
table 

Puts s1 in GOTO[s0,SheepNoise] 



Here are the tables for the SheepNoise grammar 

The tables  

The grammar 

ACTION & GOTO Tables  

0 Goal → SheepNoise 
1 SheepNoise → SheepNoise baa 
2 | baa 

ACTION TABLE  
State EOF baa 

0 — shift 2 
1 accept shift 3 
2 reduce 2 reduce 2 
3 reduce 1 reduce 1 

GOTO TABLE  
State SheepNoise 

0 1 
1 0 
2 0 
3 0 



What can go wrong? Shift/reduce error 

What if set s contains [A→β•aγ,b] and [B→β•,a] ? 
•  First item generates “shift”, second generates 

“reduce”  
•  Both set ACTION[s,a] — cannot do both actions 
•  This is ambiguity, called a shift/reduce error 
•  Modify the grammar to eliminate it    (if-then-else) 
•  Shifting will often resolve it correctly  



What can go wrong? Reduce/reduce conflict 

What is set s contains [A→γ•, a] and [B→γ•, a] ? 
•  Each generates “reduce”, but with a different 

production 
•  Both set ACTION[s,a] — cannot do both 

reductions 
•  This ambiguity is called reduce/reduce conflict 
•  Modify the grammar to eliminate it               

(PL/I’s overloading of (...)) 

In  either case, the grammar is not LR(1) 



Summary 

•  LR(1) items 
•  Creating ACTION and GOTO table 
•  What can go wrong? 


