
Bottom-Up Parsing

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

More on Handles
Bottom-up parsers finds rightmost derivation
•  Process input left to right
•  Handle always appears at upper fringe of

partially completed parse tree

More on Handles
•  We can keep the prefix of the upper fringe of

the partially completed parse tree on a stack
— The stack makes the position information irrelevant
— Handles appear at the top of the stack

If G is unambiguous, then every right-sentential
form has a unique handle.

More on Handles

•  Handles appear at the top of the stack

Prod’n Sentential Form Handle

8 <id,x> - <num,2> * <id,y> 8,1
6 Factor - <num,2> * <id,y> 6,1
3 Term - <num,2> * <id,y> 3,1
7 Expr - <num,2> * <id,y> 7,3

Expr

-
<num,2>

* <id,y>

Rest of input
from scanner

stack

TOS

7 Factor → number

Shift-reduce Parsing
To implement a bottom-up parser, we adopt the shift-reduce

paradigm
A shift-reduce parser is a stack automaton with four actions
•  Shift — next word is shifted onto the stack
•  Reduce — right end of handle is at top of stack

 Locate left end of handle within the stack
 Pop handle off stack & push appropriate lhs

•  Accept — stop parsing & report success
•  Error — call an error reporting/recovery routine

Accept & Error are simple
Shift is just a push and a call to the scanner
Reduce takes |rhs| pops & 1 push

But how does parser know when to shift and when to reduce?
It shifts until it has a handle at the top of the stack.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
 if the top of the stack is a handle A→β
 then // reduce β to A
 pop |β| symbols off the stack
 push A onto the stack
 else if (token ≠ EOF)
 then // shift
 push token
 token ← next_token()
 else // need to shift, but out of input

 report an error

What happens on an error?

•  It fails to find a handle

•  Thus, it keeps shifting

•  Eventually, it consumes
 all input

This parser reads all input
before reporting an error,
not a desirable property.

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr) Expr is not a handle at this point because it does not
occur at this point in the derivation.
While that statement sounds like oracular mysticism, we
will see that the decision can be automated efficiently.

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id 6,3 reduce 6
$ Expr - Term * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id 6,3 reduce 6
$ Expr - Term * id none shift
$ Expr - Term * id none shift
$ Expr - Term * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y

5 shifts +
9 reduces +
1 accept

Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id 6,3 reduce 6
$ Expr - Term * id none shift
$ Expr - Term * id none shift
$ Expr - Term * id 8,5 reduce 8
$ Expr - Term * Factor 4,5 reduce 4
$ Expr - Term 2,3 reduce 2
$ Expr 0,1 reduce 0
$ Goal none accept

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact. Term

Term

*

Stack Input Action
$ id - num * id shift
$ id - num * id reduce 8
$ Factor - num * id reduce 6
$ Term - num * id reduce 3
$ Expr - num * id shift
$ Expr - num * id shift
$ Expr - num * id reduce 7
$ Expr - Factor * id reduce 6
$ Expr - Term * id shift
$ Expr - Term * id shift
$ Expr - Term * id reduce 8
$ Expr - Term * Factor reduce 4
$ Expr - Term reduce 2
$ Expr reduce 0
$ Goal accept

Back to x - 2 * y

Corresponding Parse Tree

An Important Lesson about Handles
A handle must be a substring of a sentential form γ such that :

— Must match rhs β of some rule A → β; and
— Must be some rightmost derivation from goal symbol that

produces sentential form γ with A → β as last production applied

•  Simply looking for right hand sides that match strings is not
good enough

An Important Lesson about Handles
•  Critical Question: How can we know when we have found a

handle without generating lots of different derivations?
—  Answer: We use left context, encoded in the sentential form,

left context encoded in a “parser state”, and a lookahead at the
next word in the input. (Formally, 1 word beyond the handle.)

—  Parser states are derived by reachability analysis on grammar
— We build all of this knowledge into a handle-recognizing DFA

The additional left context is precisely the reason
that LR(1) grammars express a superset of the
languages that can be expressed as LL(1) grammars

LR(1) Parsers

•  LR(1) parsers are table-driven, shift-reduce
parsers that use a limited right context (1
token) for handle recognition

•  The class of grammars that these parsers
recognize is called the set of LR(1)
grammars

LR(1) means left-to-right scan of the input, rightmost
derivation (in reverse), and 1 word of lookahead.

LR(1) Parsers

Informal definition:
A grammar is LR(1) if, given a rightmost

derivation
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

We can
1. isolate the handle of each right-sentential form
γi, and

2. determine the production by which to reduce,
by scanning γi from left-to-right, going at

most 1 symbol beyond the right end of the
handle of γi

Finding Reductions (Handles)

Formally,
A handle of a right-sentential form γ is a pair <A→β,k>

where
A→β ∈ P and k is the position in γ of β’s rightmost symbol.
If <A→β,k> is a handle, then replacing β at k with A

produces the right sentential form from which γ is
derived in the rightmost derivation.

Finding Reductions (Handles)

Because γ is a right-sentential form, the substring
to the right of a handle contains only terminal
symbols

⇒ the parser doesn’t need to scan (much) past the
handle

