
Bottom-Up Parsing

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Quiz

What are the first and follow sets for the
nonterminals and terminals of the grammar below?

0 Goal → a A B e
1 A → A b c
2 | b
3 B → d

Recap of Top-down Parsing
•  Top-down parsers build syntax tree from

root to leaves
•  Left-recursion causes non-termination in

top-down parsers
— Transformation to eliminate left recursion
— Transformation to eliminate common prefixes in

right recursion

Recap of Top-down Parsing (cont’d)
•  FIRST, FIRST+, & FOLLOW sets + LL(1)

condition
— LL(1) uses left-to-right scan of the input,

leftmost derivation of the sentence, and 1 word
lookahead

— LL(1) condition means grammar works for
predictive parsing

•  Given an LL(1) grammar, we can
— Build a table-driven LL(1) parser

•  LL(1) parser keeps lower fringe of partially
complete tree on the stack

Parsing Techniques
Top-down parsers (LL(1), recursive descent)
•  Start at root of the parse tree and grow toward leaves
•  Pick a production & try to match the input
•  Bad “pick” ⇒ may need to backtrack
•  Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)
•  Start at the leaves and grow toward root
•  As input consumed, encode possibilities in internal state
•  Start in a state valid for legal first tokens
•  Bottom-up parsers handle a large class of grammars

Bottom-up Parsin (definitions)
The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

•  Each γi is a sentential form
— If γ contains only terminal symbols, γ is a sentence in

L(G)
— If γ contains 1 or more non-terminals, γ is a sentential

form

Bottom-up Parsing (definitions)

 S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence
•  To get γi from γi–1, expand some NT A ∈ γi–1 by

using A →β
— Replace the occurrence of A ∈ γi–1 with β to get γi
— In a leftmost derivation, it would be first NT A ∈ γi–1

A left-sentential form occurs in a leftmost
derivation

A right-sentential form occurs in a rightmost
derivation

Bottom-up parsers build rightmost derivation in
reverse

Bottom-up Parsing (definitions)

A bottom-up parser builds derivation by
working from input sentence back toward
the start symbol S

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence
bottom-up

assuming A→β, match
some rhs β here

replace β with its
corresponding lhs, A here

Bottom-up Parsing (definitions)
In terms of parse tree, it works from leaves to root
•  Nodes with no parent in partial tree form upper fringe
•  Each replacement of β with A shrinks the upper fringe,
 we call this a reduction.
•  “Rightmost derivation in reverse” processes words left to

right

<id,y>

<num,2>

Fact.

Fact. Term * upper fringe

Bottom-up Parsing (definitions)
In terms of parse tree, it works from leaves to root
•  Nodes with no parent in partial tree form upper fringe
•  Each replacement of β with A shrinks the upper fringe,
 we call this a reduction.
•  “Rightmost derivation in reverse” processes words left to

right

<id,y>

<num,2>

Fact.

Fact. Term

Term

*

reduction

Finding Reductions
Consider the grammar

And the input string abbcde

0 Goal → a A B e
1 A → A b c
2 | b
3 B → d

Sentential Next Reduction
Form Prod’n Pos’n

abbcde 2 2
a A bcde 1 4
a A de 3 3
a A B e 0 4

Goal — —

“Position” specifies where the right end of
β occurs in the current sentential form.

We call this position k.

Finding Reductions (Handles)
Parser must find substring β at parse tree’s frontier that

matches some production A → β

 (⇒ β → A is in Reverse Rightmost Derivation)

 We call substring β a handle

Finding Reductions (Handles)
Formally,

A handle of a right-sentential form γ is a pair <A→β,k>
where

A→β ∈ P and k is the position in γ of β’s rightmost symbol.
If <A→β,k> is a handle, then replacing β at k with A

produces the right sentential form from which γ is
derived in the rightmost derivation.

Example

A simple left-recursive
form of the classic
expression grammar

 0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → number
8 | id
9 | (Expr)

Bottom up parsers can handle
either left-recursive or
right-recursive grammars.

Example

A simple left-recursive form of
the classic expression grammar Handles for rightmost derivation of x – 2 * y

 0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → number
8 | id
9 | (Expr)

Prod’n Sentential Form Handle

8 <id,x> - <num,2> * <id,y> 8,1
6 Factor - <num,2> * <id,y> 6,1
3 Term - <num,2> * <id,y> 3,1
7 Expr - <num,2> * <id,y> 7,3
6 Expr - Factor * <id,y> 6,3
8 Expr - Term * <id,y> 8,5
4 Expr - Term * Factor 4,5
2 Expr - Term 2,3
0 Expr 0,1
- Goal -

parse

Bottom-up Parsing (Abstract View)
A bottom-up parser repeatedly finds a handle A → β in

current right-sentential form and replaces β with A.

To construct a rightmost derivation
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ w

Apply the following conceptual algorithm
for i ← n to 1 by –1
 Find the handle <Ai →βi , ki > in γi
 Replace βi with Ai to generate γi–1

This takes 2n steps

of course, n is
unknown until
the derivation
is built

More on Handles
Bottom-up parsers finds rightmost derivation
•  Process input left to right
•  Handle always appears at upper fringe of

partially completed parse tree

•  We can keep the prefix of the upper fringe of
the partially completed parse tree on a stack
— The stack makes the position information irrelevant
— Handles appear at the top of the stack

If G is unambiguous, then every right-sentential
form has a unique handle.

More on Handles

•  Handles appear at the top of the stack

Prod’n Sentential Form Handle

8 <id,x> - <num,2> * <id,y> 8,1
6 Factor - <num,2> * <id,y> 6,1
3 Term - <num,2> * <id,y> 3,1
7 Expr - <num,2> * <id,y> 7,3

Expr

-
<num,2>

* <id,y>

Rest of input
from scanner

stack

TOS

7 Factor → number

