Bottom-Up Parsing

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

38t

ITYor
i

1743
®

Quiz

What are the first and follow sets for the
nonterminals and terminals of the grammar below?

Goal — aABe

0

1 A — Abc
2 |
3

Recap of ToE-down Parsing

* Top-down parsers build syntax tree from
root to leaves

e Left-recursion causes hon-termination in
top-down parsers
— Transformation to eliminate left recursion

— Transformation to eliminate common prefixes in
right recursion

Recap of Top-down Parsing (cont'd)

e FIRST, FIRST*, & FOLLOW sets + LL(1)
condition

—LL(1) uses left-to-right scan of the input,
leftmost derivation of the sentence, and 1 word
ookahead

—LL(1) condition means grammar works for
predictive parsing

* Givenan LL(1) grammar, we can
—Build a table-driven LL(1) parser

* LL(1) parser keeps lower fringe of partially
complete tree on the stack

38t

ITYor
e

Parsing Techniques (1]

Top-down parsers (LL(1), recursive descent)

* Start at root of the parse tree and grow toward leaves
* Pick a production & try to match the input

* Bad "pick” = may need to backtrack

* Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

* Start at the leaves and grow toward root

* As input consumed, encode possibilities in internal state
e Start in a state valid for legal first tokens

* Bottom-up parsers handle a large class of grammars

38t

ITYor
e

Bottom-ub Parsin (definitions))

The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S=v =YV =YV, = .. =Y, =Y, = Sentence

* Eachy, is a sentential form
—If y contains only terminal symbols, y is a sentence in
L(G)
—If y contains 1 or more non-terminals, v is a sentential
form

Bottom-up Parsing (definitions)

S=Y =Y =Y = .. = Y1 = Y, = Sentence

* To gety; from y,_;, expand some NT A ey._; by
using A —p
—Replace the occurrence of A evy,_;with 8 to get v,
—In a leftmost derivation, it would be first NT A ey,

A left-sentential form occurs in a leftmost
derivation

A right-sentential form occurs in a rightmost
derivation

Bottom-up parsers build rightmost derivation in
reverse

38t

ITYor
e

Bottom-up Parsing (definitions) (L]

A bottom-up parser builds derivation by
working from input sentence back toward
the start symbol S

S=v =V =Y, = .. :@ =>@=> sentence

T bottom-up

assuming A—p, match
some rhs B here

l
replace B with its

corresponding /hs, A here

Bottom-up Parsing (definitions) |
In terms of parse tree, it works from leaves to root
* Nodes with no parent in partial tree form upper fringe

* Each replacement of g with A shrinks the upper fringe,
we call this a reduction.

* "Rightmost derivation in reverse"” processes words /eft to
right

* upper fringe

Bottom-up Parsing (definitions) |
In terms of parse tree, it works from leaves to root
* Nodes with no parent in partial tree form upper fringe

* Each replacement of g with A shrinks the upper fringe,
we call this a reduction.

* "Rightmost derivation in reverse"” processes words /eft to
right

reduction

Finding Reductions

Consider the grammar Sentential Next Reduction

0O Goal — aABe Form Prodn Posh _

1 A — Abc abbcde 2 2

2 | b a A bcde 1 4

3 B — d a Ade 3 3
aABe 0 4

And the input string abbcde Goal _ _

"Position” specifies where the right end of

B occurs in the current sentential form.
We call this position k.

Finding Reductions (Handles)

Parser must find substring g at parse tree's frontier that
matches some production A — f3

(= B - A is in Reverse Rightmost Derivation)

We call substring § a handle

38t

ITYor
e

Finding Reductions (Handles) \“on
Formally,
A handle of a right-sentential form vy is a pair <A—f k>
where

A—p € Pand k is the position in y of B's rightmost symbol.

If <A—B k> is a handle, then replacing B at k with A

produces the right sentential form from which v is
derived in the rightmost derivation.

Example

Goal — Expr Bottom up parsers can handle
Expr — Expr + Term either left-recursive or
| Expr - Term right-recursive grammars.
| Term
Term * Factor
Term / Factor
Factor

N
3
——

id

Factor — number
|
| (Expr)

A simple left-recursive
form of the classic
expression grammar

Example

Prod'n Sentential Form Handle
0 Goal — Expr 8 «<idx>-<num,2>* <id,y> 8.1
1 Expr — Expr + Term 6 Factor - <num,2> * <id y> 6.1
2 | Expr - Term 3 Term-<num,2> * <id,y> 3.1
3 | Term 7 Expr-<num,2>* <id,y> 7.3
- *
; Term ;'_er' m) :acfor 6 Expr- Factor™* <id,y> 6,3
| erm / Factor 3 Expr - Term* <id y> 85
6 | Factor
4 Expr- Term™ Factor 45
7 Factor — number
. 2 Expr- Term 2,3
8 | id P ,
9 | (Expr) r >
- Goal - v

: , parse
A simple left-recursive form of

the classic expr'ess/'on grammar Handles for l"l:ghme.S'T derivation of x-2* N

38t

Bottom-up Parsin (Abstract View) WARE

A bottom-up parser repeatedly finds a handle A-p in
current right-sentential form and replaces p with A.

To construct a rightmost derivation
S=Y =V =V = .. =2V 1=V=W

Apply the following conceptual algorithm

for i M]

Find the handle <A.—p., k> in y, ofkcourse, ’*7r .ils
Replace p, with A; to generate vy, unknown unm

the derivation
This takes 2n steps

is built

More on Handles

Bottom-up parsers finds rightmost derivation

* Process input left to right

* Handle always appears at upper fringe of
partially completed parse tree

* We can keep the prefix of the upper fringe of
the partially completed parse tree on a stack

— The stack makes the position information irrelevant
—Handles appear at the top of the stack

If G is unambiguous, then every right-sentential
form has a unigue handl/e.

More on Handles

* Handles appear at the top of the stack

Prod'n Sentential Form Handle

8 <id x> - <num,2> * <id,y> 8,1
6 Factor-<num 2> * <idy> 6,1
3 Term - <num,2> * <id,y> 3,1
7 Expr-<num,2>* <id,y> 73

TOS > knum,2>
7 Factor — number EXPF‘

stack

Rest of input
from scanner

/

* <id,¥>

