
Top-down Parsing
Recursive Descent & LL(1)

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

1

Roadmap (Where are we?)
We set out to study parsing
•  Specifying syntax

— Context-free grammars ✓

•  Top-down parsers
— Algorithm & its problem with left recursion ✓
— Ambiguity ✓
— Left-recursion removal ✓

•  Predictive top-down parsing today
—  The LL(1) Property
— First and Follow sets
— Simple recursive descent parsers
— Table-driven LL(1) parsers

2

Predictive Parsing

Given A → α | β, the parser should be able
to choose between α & β

Predictive Parser is a top-down parser free
of backtracking

3

First Sets

For some rhs α∈G, FIRST(α) is set of tokens (terminals)
that appear as first symbol in some string deriving from α

x ∈ FIRST(α) iff α ⇒* x γ, for some γ

For SheepNoise:
FIRST(Goal) = { baa }
FIRST(SN) = { baa }
FIRST(baa) = { baa }

 Goal → SheepNoise

SheepNoise → SheepNoise baa
 | baa

4

LL(1) Property
If A → α and A → β both appear in the grammar, we

would like

FIRST(α) ∩ FIRST(β) = ∅

This would allow the parser to make a correct choice
with a lookahead of exactly one symbol !

Almost correct! See
the next slide

FIRST(α) FIRST(β)

Does not have LL(1) Property

5

What about ε-productions?

If A → α and A → β and ε ∈ FIRST(α), then we
need to ensure

 FOLLOW(A) ∩ FIRST(β) = ∅
where,
FOLLOW(A) = the set of terminal symbols that can

immediately follow A in a sentential form
Formally,

Follow(A) = {t | (t is a terminal and G⇒*αAt β) or
(t is eof and G⇒*αA)}

6

Follow Sets

7

FIRST+sets

Definition of FIRST+(A→α)
if ε ∈ FIRST(α) then
 FIRST+(A→α) = FIRST(α) ∪ FOLLOW(A)
else
 FIRST+(A→α) = FIRST(α)

Grammar is LL(1) iff A → α and A → β implies

 FIRST+(A→α) ∩ FIRST+(A→β) = ∅

8

What If My Grammar Is Not LL(1) ?

Can we transform a non-LL(1) grammar into an
LL(1) grammar?

•  In general, the answer is no
•  In some cases, however, the answer is yes

•  Perform:
— Eliminate left-recursion Friday
— Perform left factoring today

9

What If My Grammar Is Not LL(1) ?

Given grammar G with productions A → α β1

and A → α β2

if α derives anything other than ε and
FIRST+(A → α β1) ∩ FIRST+(A → α β2) ≠ ∅

 This grammar is not LL(1)

FIRST+(αβ1) FIRST+(αβ2)

10

Left Factoring
If we pull the common prefix, α, into a separate

production, we may make the grammar LL(1).
 A → α A’

 A’ → β1

 | β2

Now, if FIRST+(A’ → β1) ∩ FIRST+(A’ → β2) = ∅,
G may be LL(1)

Create a new Nonterminal

11

Left Factoring
For each nonterminal A
 find the longest prefix α common to 2 or more
 alternatives for A
 if α ≠ ε then

 replace all of the productions
 A → α β1 | α β2 | α β3 | … | α βn | γ
 with
 A → α A’ | γ
 A’ → β1 | β2 | β3 | … | βn

Repeat until no NT has rhs’ with a common prefix

NT with common prefix

12

Left Factoring
For each nonterminal A
 find the longest prefix α common to 2 or more
 alternatives for A
 if α ≠ ε then

 replace all of the productions
 A → α β1 | α β2 | α β3 | … | α βn | γ
 with
 A → α A’ | γ
 A’ → β1 | β2 | β3 | … | βn

Repeat until no NT has rhs’ with a common prefix

Put common prefix α into a
separate production rule

13

Left Factoring
For each nonterminal A
 find the longest prefix α common to 2 or more
 alternatives for A
 if α ≠ ε then

 replace all of the productions
 A → α β1 | α β2 | α β3 | … | α βn | γ
 with
 A → α A’ | γ
 A’ → β1 | β2 | β3 | … | βn

Repeat until no NT has rhs’ with a common prefix

Create new Nonterminal (A’)
with all unique suffixes

14

Left Factoring

Transformation makes some grammars into LL(1) grammars
There are languages for which no LL(1) grammar exists

For each nonterminal A
 find the longest prefix α common to 2 or more
 alternatives for A
 if α ≠ ε then

 replace all of the productions
 A → α β1 | α β2 | α β3 | … | α βn | γ
 with
 A → α A’ | γ
 A’ → β1 | β2 | β3 | … | βn

Repeat until no NT has rhs’ with a common prefix

15

Left Factoring Example
Consider a simple right-recursive expression grammar

0 Goal → Expr
1 Expr → Term + Expr
2 | Term - Expr
3 | Term
4 Term → Factor * Term
5 | Factor / Term
6 | Factor
7 Factor → number
8 | id

To choose between 1, 2, & 3,
an LL(1) parser must look past
the number or id to the
operator.
FIRST+(1) = FIRST+(2) = FIRST+(3)

and
FIRST+(4) = FIRST+(5) = FIRST+(6)

Let’s left factor this grammar.

16

Left Factoring Example
After Left Factoring, we have

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Expr
3 | - Expr
4 | ε
5 Term → Factor Term’
6 Term’ → * Term
7 | / Term
8 | ε
9 Factor → number
10 | id

Clearly,
FIRST+(2), FIRST+(3), & FIRST+(4)

are disjoint, as are
FIRST+(6), FIRST+(7), & FIRST+(8)

The grammar now has the LL(1)
property

17

FIRST Sets

FIRST(α)
For some α ∈ (T ∪ NT)*, define FIRST(α)

as the set of tokens that appear as the
first symbol in some string that derives
from α

That is, x ∈ FIRST(α) iff α ⇒* x γ, for
some γ

18

Computing FIRST Sets

for each x ∈ T, FIRST(x) ← { x }
for each A ∈ NT, FIRST(A) ← Ø
while (FIRST sets are still changing) do
 for each p ∈ P, of the form A→β do
 if β is B1B2…Bk then begin;

 rhs ← FIRST(B1) – { ε }
 for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do

 rhs ← rhs ∪ (FIRST(Bi+1) – { ε })
 end // for loop

 end // if-then
 if i = k and ε ∈ FIRST(Bk)
 then rhs ← rhs ∪ { ε }
 FIRST(A) ← FIRST(A) ∪ rhs

 end // for loop
 end // while loop

Outer loop is monotone
increasing for FIRST
sets
→  | T ∪ NT ∪ ε | is
bounded, so it terminates

Inner loop is bounded
by the length of the
productions in the
grammar

Set empty set for
terminals

19

Computing FIRST Sets

for each x ∈ T, FIRST(x) ← { x }
for each A ∈ NT, FIRST(A) ← Ø
while (FIRST sets are still changing) do
 for each p ∈ P, of the form A→β do
 if β is B1B2…Bk then begin;

 rhs ← FIRST(B1) – { ε }
 for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do

 rhs ← rhs ∪ (FIRST(Bi+1) – { ε })
 end // for loop

 end // if-then
 if i = k and ε ∈ FIRST(Bk)
 then rhs ← rhs ∪ { ε }
 FIRST(A) ← FIRST(A) ∪ rhs

 end // for loop
 end // while loop

Outer loop is monotone
increasing for FIRST
sets
→  | T ∪ NT ∪ ε | is
bounded, so it terminates

Inner loop is bounded
by the length of the
productions in the
grammar

Set empty set for
First of nonterminals

20

Computing FIRST Sets

for each x ∈ T, FIRST(x) ← { x }
for each A ∈ NT, FIRST(A) ← Ø
while (FIRST sets are still changing) do
 for each p ∈ P, of the form A→β do
 if β is B1B2…Bk then begin;

 rhs ← FIRST(B1) – { ε }
 for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do

 rhs ← rhs ∪ (FIRST(Bi+1) – { ε })
 end // for loop

 end // if-then
 if i = k and ε ∈ FIRST(Bk)
 then rhs ← rhs ∪ { ε }
 FIRST(A) ← FIRST(A) ∪ rhs

 end // for loop
 end // while loop

Outer loop is monotone
increasing for FIRST
sets
→  | T ∪ NT ∪ ε | is
bounded, so it terminates

Inner loop is bounded
by the length of the
productions in the
grammar

Fixed point
algorithm; Monotone
because we always
add to First sets

21

Computing FIRST Sets

for each x ∈ T, FIRST(x) ← { x }
for each A ∈ NT, FIRST(A) ← Ø
while (FIRST sets are still changing) do
 for each p ∈ P, of the form A→β do
 if β is B1B2…Bk then begin;

 rhs ← FIRST(B1) – { ε }
 for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do

 rhs ← rhs ∪ (FIRST(Bi+1) – { ε })
 end // for loop

 end // if-then
 if i = k and ε ∈ FIRST(Bk)
 then rhs ← rhs ∪ { ε }
 FIRST(A) ← FIRST(A) ∪ rhs

 end // for loop
 end // while loop

Outer loop is monotone
increasing for FIRST
sets
→  | T ∪ NT ∪ ε | is
bounded, so it terminates

Inner loop is bounded
by the length of the
productions in the
grammar

Iterate through each
production

22

Computing FIRST Sets

for each x ∈ T, FIRST(x) ← { x }
for each A ∈ NT, FIRST(A) ← Ø
while (FIRST sets are still changing) do
 for each p ∈ P, of the form A→β do
 if β is B1B2…Bk then begin;

 rhs ← FIRST(B1) – { ε }
 for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do

 rhs ← rhs ∪ (FIRST(Bi+1) – { ε })
 end // for loop

 end // if-then
 if i = k and ε ∈ FIRST(Bk)
 then rhs ← rhs ∪ { ε }
 FIRST(A) ← FIRST(A) ∪ rhs

 end // for loop
 end // while loop

Outer loop is monotone
increasing for FIRST
sets
→  | T ∪ NT ∪ ε | is
bounded, so it terminates

Inner loop is bounded
by the length of the
productions in the
grammar

RHS is some set of T
and NT.

23

Computing FIRST Sets

for each x ∈ T, FIRST(x) ← { x }
for each A ∈ NT, FIRST(A) ← Ø
while (FIRST sets are still changing) do
 for each p ∈ P, of the form A→β do
 if β is B1B2…Bk then begin;

 rhs ← FIRST(B1) – { ε }
 for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do

 rhs ← rhs ∪ (FIRST(Bi+1) – { ε })
 end // for loop

 end // if-then
 if i = k and ε ∈ FIRST(Bk)
 then rhs ← rhs ∪ { ε }
 FIRST(A) ← FIRST(A) ∪ rhs

 end // for loop
 end // while loop

Outer loop is monotone
increasing for FIRST
sets
→  | T ∪ NT ∪ ε | is
bounded, so it terminates

Inner loop is bounded
by the length of the
productions in the
grammar

Initialize rhs to First
of first symbol minus
epsilon

24

Computing FIRST Sets

for each x ∈ T, FIRST(x) ← { x }
for each A ∈ NT, FIRST(A) ← Ø
while (FIRST sets are still changing) do
 for each p ∈ P, of the form A→β do
 if β is B1B2…Bk then begin;

 rhs ← FIRST(B1) – { ε }
 for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do

 rhs ← rhs ∪ (FIRST(Bi+1) – { ε })
 end // for loop

 end // if-then
 if i = k and ε ∈ FIRST(Bk)
 then rhs ← rhs ∪ { ε }
 FIRST(A) ← FIRST(A) ∪ rhs

 end // for loop
 end // while loop

Outer loop is monotone
increasing for FIRST
sets
→  | T ∪ NT ∪ ε | is
bounded, so it terminates

Inner loop is bounded
by the length of the
productions in the
grammar

Iterate through
symbols in production
until have a symbol
that does not have
epsilon in First set

25

Expression Grammar

Symbol FIRST
num num
id id
+ +
- -
* *
/ /
((
))

eof eof
ε ε

Goal num, id, (
Expr num, id, (
Expr’ +, -, ε
Term num, id, (
Term’ *, /, ε
Factor num, id, (

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Term Expr’
3 | - Term Expr’
4 | ε
5 Term → Factor Term’
6 Term’ → * Factor Term’
7 | / Factor Term’
8 | ε
9 Factor → number
10 | id
11 | (Expr)

