Top-down Parsing
Recursive Descent & LL(1)

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Roadmap (Where are we?)

We set out to study parsing
* Specifying syntax
— Context-free grammars v

* Top-down parsers
— Algorithm & its problem with left recursion v/
— Ambiqguity v
— Left-recursion removal v

* Predictive top-down parsing today

— The LL(1) Property

— First and Follow sets

— Simple recursive descent parsers
— Table-driven LL(1) parsers

38t

ITYor
e

Predictive Parsin L]

Given A — o. | B, the parser should be able
to choose between o. &

Predictive Parser is a top-down parser free
of backtracking

First Sets

For some rhs o6, FIRST(a) is set of tokens (terminals)
that appear as first symbol in some string deriving from o

X € FirsT(Qt) iff o.=" xvy, for some y

Goal — SheepNoise For SheepNoise:
SheepNoise - SheepNoise baa Eigﬁiﬁ? ::{{Z_;,}}

| baa FIRST(bad) = { baa}

LL(1) Propert

If A— o and A — B both appear in the grammar, we
would like

FIrsT(t) N FIRST(B) = &

This would allow the parser to make a correct choice
with a lookahead of exactly one symbol |

Does not have LL(1) Property

Almost correct! See
the next slide

What about S-Eroduc’rions?

If A— aand A — B and € € FIrsT(a), then we
need to ensure

FOLLOW(A) N FIRST(B) = &

where,

FoLLow(A) = the set of terminal symbols that can
immediately follow A in a sentential form

Formally,

Follow(A) = {+ | (t is a terminal and 6="a.At) or
(Tt is eof and 6="aA)}

5

Follow Sets

S S S
!\ !\ [\
/N / 0\ [\

\ /X Y\ / \
AR A A B / \
A\ AN (A)

'\ A B /\ |
/o /o l\ I
(a)b ¢ epsilon / \ /
I f oo \ EOF is in FOLLOW(A)
I (c)d e £

a is in FOLLOW(A) I

¢ is in FOLLOW(A)

FIRST sets

Definition of FIRsT(A—0a.)
if € € FIrsT(a) then
FIRsT*'(A—a) = FIRsT(a) U FoLLow(A)

else
FIRsT*(A—0a) = FIRsT(t)

Grammar is LL(1) iff A— o and A — p implies

FIRST(A—a) N FIRsT (A—p) = &

7

38t

ITYor
i

1743
®

What If My Grammar Is Not LL(1) ?

Can we transform a non-LL(1) grammar into an
LL(1) grammar?

* In general, the answer is no
* Tn some cases, however, the answer is yes

* Perform:
—Eliminate left-recursion Friday
—Perform left factoring today

What If My Grammar Is Not LL(1) ?

Given grammar & with productions A — a f;
and A — a f,

if o derives anything other than ¢ and
FIRST*(A — ap;) N FIRST (A — ap,) 2z &

This grammar is not LL(1)

Left Factorin

If we pull the common prefix, o, into a separate
production, we may make the grammar LL(1).

A—a A

S

A —

Create a new Nonterminal

31

52

NOW, |f FIRST+(A' — 61) M FIRST+(A' — [32) = @,
& may be LL(1)

10

Left Factoring

For each nonterminal A
find the longest prefix a. common to 2 or more
alternatives for A

if o 2 € then
replace all of the productions
with
A—aA |y
A'*ﬁ1||32|[33| |[3n

Repeat until no NT has rhs’ with a\common prefix

NT with common prefix

11

Left Factoring

For each nonterminal A
find the longest prefix a. common to 2 or more
alternatives for A

if a 2 ¢ then
replace all of the productions
A%OCB1|0€[32|0([33| ---|aBn|V
with

1 == P11 P2

Repeat until no NT has rhsf with a common prefix

Put common prefix a into a
separate production rule

12

Left Factoring

For each nonterminal A
find the longest prefix a. common to 2 or more
alternatives for A

if a 2 ¢ then
replace all of the productions

A%ocBlloc[Szlocﬁo,l ...|oc[3n|v
with

Repeat until no NT has rhs’ with a common prefix

Create new Nonterminal (A')
with all unique suffixes

13

Left Factoring

For each nonterminal A
find the longest prefix a. common to 2 or more
alternatives for A
if o 2 € then
replace all of the productions
AQOCB1|0€[32|0([-))3| ---|0([3n|V
with
A—aA |y
A'*f’1||32|[33| |l3n

Repeat until no NT has rhs’ with a common prefix

Transformation makes some grammars into LL(1) grammars
There are languages for which no LL(1) grammar exists

Left Factoring Example

Consider a simple right-recursive expression grammar

o N O Ol h W NV~ O

Goal
Expr

Term

Factor

—>
—
—
—

Expr

Term + Expr
Term - Expr
Term

Factor* Term
Factor / Term
Factor
number

id

To choose between 1, 2, & 3,
an LL(1) parser must look past
the number or id to see the
operator.

FIRsT*(1) = FIRST*(2) = FIRST*(3)
and
FIRsT*(4) = FIRsT*(B) = FIRST*(6)

Let's left factor this grammar.

15

Left Factoring Example

After Left Factoring, we have

0 | Goal — Expr
Clearly,

1 |Expr — Term Expr’

2 | Expr =+ Expr FIRST*(2), FIRST*(3), & FIRST*(4)

3 | - Expr are disjoint, as are

4 . FIRST*(6), FIRST*(7), & FIRST*(8)

5 | Term — Factor Term’ -y et 1

6 | Torm' = * Term e grammar now has the LL(1)
property

7 | / Term

8 | ¢

9 | Factor — number

10 | id

16

FIRST Sets

FirsT(al)

For some a € (TU NT)*, define FIrsT()
as the set of tokens that appear as the
first symbol in some string that derives

from o

That is, x € FirsT(Q) iff o =" xy, for
some y

17

Computing FIRST Sets

foreachx € T, FIRST(x) < {x}
for each A € NT, FIRST(A) < & \
while (FIRST sets are still changing) do
for each p € P, of the form A—p do
if B is B,B,...B, then begin,
rhs < FIRST(B,) - {¢}
for i < 1 to k-1 by 1 while ¢ € FIRST(B;) do
rhs < rhs U (FIRST(B.;)-{ ¢ })
end // for loop
end // if-then

if i=kande €& FIRST(B,)
then rhs < rhs U { &}
FIRST(A) < FIRST(A) U rhs
end // for loop

Outer loop is monotone
increasing for FIRST

bounded, so it ferminates

Inner loop is bounde
by the length of the
productions in the

grammar

Set empty set for
terminals

end // while loop

18

Computing FIRST Sets

foreachx € T, FIRST(x) <— {x}
for each A € NT, FIRST(A) < Z’\
while (FIRST sets are still changing) do
for each p € P, of the form A—p do
if B is B,B,...B, then begin,
rhs < FIRST(B,) - {¢}
for i < 1 to k-1 by 1 while ¢ € FIRST(B;) do
rhs < rhs U (FIRST(B.;)-{ ¢ })

end // for loop
end // if-then

if i=kande €& FIRST(B,)
then rhs < rhs U { &}
FIRST(A) < FIRST(A) U rhs
end // for loop

Outer loop is monotone

increasing for FIRST
sefts

UNTU €] is
bounded, se.it terminates

Inner loop is bounded
by the length of the
productions in the
grammar

Set empty set for
First of nonterminals

end // while loop

19

Computing FIRST Sets

foreachx € T, FIRST(x) <— {x}
for each A € NT, FIRST(A) < @

while (FIRST sets are still changing) do
for each p € P, of the form Aig do T
if B is B,B,...B, then begin,
rhs <— FIRST(B,) - {&}
for i < 1 to k-1 by 1 while ¢ € FIRST(B;) do
rhs < rhs U (FIRST(B,,))-{ ¢ })
end // for loop
end // if-then
if i=kande €& FIRST(B,)
then rhs < rhs U { &}
FIRST(A) — FIRST(A) U rhs

end // for loop

Outer loop is monotone

increasing for FIRST
sefts

| TUNT U ¢]is
boun so it terminates

Inner loop is b
by the length of th
productions in the
grammar

end // while loop

Fixed point
algorithm; Monotone
because we always
add to First sets

20

Computing FIRST Sets

foreachx € T, FIRST(x) <— {x}
for each A € NT, FIRST(A) < @

while (FIRST sets are still changing) do

for each p € P, of the form A—f do\
if B is B,B,...B, then begin,

rhs <— FIRST(B,) - {&}
for i < 1 to k-1 by 1 while ¢ € FIRST(B;) do
rhs < rhs U (FIRST(B,,))-{ ¢ })
end // for loop
end // if-then

if i=kande €& FIRST(B,)
then rhs < rhs U { &}
FIRST(A) < FIRST(A) U rhs
end // for loop

Outer loop is monotone
increasing for FIRST
sefts

— | TUNT U ¢ is
ounded, so it terminates

Inner loop-
by the length o
productions in the
grammar

Iterate through each
production

end // while loop

21

Computing FIRST Sets

foreachx € T, FIRST(x) <— {x}
for each A € NT, FIRST(A) < @

while (FIRST sets are still changing) do
for each p € P, of the form A—p do

if B is B,B,...B, then begin,
rhs < FIRST(B,) - {¢) \
for i < 1 to k-1 by 1 while ¢ € FIRST(B;) do
rhs <— rhs U (FIRST(B,,)-{€})

end // for loop
end // if-then

if i=kande €& FIRST(B,)
then rhs < rhs U { &}
FIRST(A) < FIRST(A) U rhs
end // for loop

Outer loop is monotone
increasing for FIRST

sets
— | TUNT U ¢]|is

bounded, so it terminates

by the
productions in
grammar

loop is bounded
h of the

end // while loop

RHS is some set of T |

and NT,

22

Computing FIRST Sets

foreachx € T, FIRST(x) <— {x}
for each A € NT, FIRST(A) < @

while (FIRST sets are still changing) do
for each p € P, of the form A—p do
if B is B,B,...B, then begin,

rhs < FIRST(B,) - {¢} 4—\
for i < 1 to k-1 by 1 while ¢ € FIRST(B;) do
rhs <— rhs U (FIRST(B,,)-{€})

end // for loop
end // if-then

if i=kande €& FIRST(B,)
then rhs < rhs U { &}
FIRST(A) < FIRST(A) U rhs
end // for loop

Outer loop is monotone
increasing for FIRST

sets

— | TUNT U ¢]|is
bounded, so it terminates

Inner loop is bounded
length of the

productions-in the
grammar

end // while loop

Initialize rhs to First
of first symbol minus
epsilon

o

Computing FIRST Sets

foreach x € T, FIRST(x) < {x}

Outer | IS monoton
for each A € NT, FIRST(A) — O er loop Is monoTtone

increasing for FIRST

while (FIRST sets are still changing) do sets
for each p € P, of the form A—p do — | TUNTU¢]|is
if B is B,B...B, then begin; bounded, so it terminates

rhs <— FIRST(B,) - {¢&}

for i < 1 to k-1 by 1 while ¢ € FIRST(B;) do Inner loop is bounded
rhs <= rhs U (FIRST(B,;)-{ € }) ength of the

end // for loop productions<in the

end // if-then grammar

if i=kande €& FIRST(B,)
then rhs <— rhs U {¢}
FIRST(A) — FIRST(A) U rhs
end // for loop
end // while loop

Iterate through
symbols in production
until have a symbol
that does not have
epsilon in First set

Expression Grammar

O Goal — Expr Symbol FIRST

1 Expr — Term Expr’ hum num

2 Expr' — + Term Expr’ id id

3 | - Term Expr’ * *

4 x -

5 Term — Factor Term’ y y

6 Term" — * Factor Term’ ((

7 | / Factor Term’))

8 e eof eof

9 Factor — number £ ¢

10 | id Goal num,id

11 | (Expr) Expr num,id
Expr’ +,-, €
Term num,id
Term’ * /. €

Factor num, id 25

