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Roadmap  (Where are we?) 
We set out to study parsing 
•  Specifying syntax                                                        

— Context-free grammars  ✓ 

•  Top-down parsers                                                      
— Algorithm & its problem with left recursion ✓ 
— Ambiguity ✓ 
— Left-recursion removal ✓ 

•  Predictive top-down parsing today 
—  The LL(1)  Property 
— First and Follow sets 
— Simple recursive descent parsers 
— Table-driven LL(1) parsers 
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Predictive Parsing 

Given A → α | β, the parser should be able 
to choose between α & β 

Predictive Parser is a top-down parser free 
of backtracking 
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First Sets 

For some rhs α∈G, FIRST(α) is set of tokens (terminals) 
that appear as first symbol in some string deriving from α  

x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ  

For SheepNoise: 
FIRST(Goal) = { baa } 
FIRST(SN )  = { baa } 
FIRST(baa)   = { baa } 

            Goal → SheepNoise  

SheepNoise → SheepNoise  baa 
                                |   baa 
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LL(1)  Property   
If A → α and A → β both appear in the grammar, we 

would like  

FIRST(α) ∩ FIRST(β) = ∅ 

This would allow the parser to make a correct choice 
with a lookahead of exactly one symbol ! 

Almost correct!  See 
the next slide 

FIRST(α)  FIRST(β)  

Does not have LL(1)  Property  
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What about ε-productions? 

If A → α and A → β and ε ∈ FIRST(α), then we 
need to ensure 

           FOLLOW(A) ∩ FIRST(β) = ∅ 
where, 
FOLLOW(A) = the set of terminal symbols that can 

immediately follow A in a sentential form 
Formally,  

Follow(A) = {t | (t is a terminal and G⇒*αAt β) or 
(t is eof and G⇒*αA)} 
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Follow Sets 
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FIRST+sets 

Definition of FIRST+(A→α)  
if ε ∈ FIRST(α) then 
   FIRST+(A→α) = FIRST(α) ∪ FOLLOW(A) 
else   
   FIRST+(A→α) = FIRST(α) 

Grammar is LL(1) iff A → α and A → β implies 
   

         FIRST+(A→α) ∩ FIRST+(A→β) = ∅ 
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What If My Grammar Is Not LL(1) ? 

Can we transform a non-LL(1) grammar into an 
LL(1) grammar? 

•  In general, the answer is no 
•  In some cases, however, the answer is yes 

•  Perform: 
— Eliminate left-recursion  Friday 
— Perform left factoring    today 
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What If My Grammar Is Not LL(1) ? 

Given grammar G with productions A → α β1  

and A → α β2 

if α derives anything other than ε and 
FIRST+(A → α β1) ∩ FIRST+(A → α β2) ≠ ∅ 

               This grammar is not LL(1)  

FIRST+(αβ1)  FIRST+(αβ2)  
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Left Factoring 
If we pull the common prefix, α, into a separate 

production, we may make the grammar LL(1). 
                      A → α A’ 

                       A’   → β1 

                              |  β2 

Now, if FIRST+(A’ → β1) ∩ FIRST+(A’ → β2) = ∅,  
G may be LL(1) 

Create a new Nonterminal 
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Left Factoring 
For each nonterminal A 
     find the longest prefix α common to 2 or more    
     alternatives for A 
     if α ≠ ε then 

 replace all of the productions 
 A → α β1 | α β2 | α β3 | … | α βn | γ  
 with 
 A → α A’ | γ 
 A’ → β1 | β2 | β3 | … | βn  

Repeat until no NT has rhs’ with a common prefix 

NT with common prefix 
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Left Factoring 
For each nonterminal A 
     find the longest prefix α common to 2 or more    
     alternatives for A 
     if α ≠ ε then 

 replace all of the productions 
 A → α β1 | α β2 | α β3 | … | α βn | γ  
 with 
 A → α A’ | γ 
 A’ → β1 | β2 | β3 | … | βn  

Repeat until no NT has rhs’ with a common prefix 

Put common prefix α into a 
separate production rule 
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Left Factoring 
For each nonterminal A 
     find the longest prefix α common to 2 or more    
     alternatives for A 
     if α ≠ ε then 

 replace all of the productions 
 A → α β1 | α β2 | α β3 | … | α βn | γ  
 with 
 A → α A’ | γ 
 A’ → β1 | β2 | β3 | … | βn  

Repeat until no NT has rhs’ with a common prefix 

Create new Nonterminal (A’ ) 
with all unique suffixes 
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Left Factoring 

Transformation makes some grammars into LL(1) grammars  
There are languages for which no LL(1) grammar exists 

For each nonterminal A 
     find the longest prefix α common to 2 or more    
     alternatives for A 
     if α ≠ ε then 

 replace all of the productions 
 A → α β1 | α β2 | α β3 | … | α βn | γ  
 with 
 A → α A’ | γ 
 A’ → β1 | β2 | β3 | … | βn  

Repeat until no NT has rhs’ with a common prefix 
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Left Factoring Example 
Consider a simple right-recursive expression grammar 

0 Goal → Expr 
1 Expr → Term + Expr 
2 | Term - Expr 
3 | Term 
4 Term → Factor * Term 
5 | Factor / Term 
6 | Factor 
7 Factor → number 
8 | id 

To choose between 1, 2, & 3, 
an LL(1) parser must look past 
the number or id to  the 
operator. 
FIRST+(1) = FIRST+(2) = FIRST+(3) 

and 
FIRST+(4) = FIRST+(5) = FIRST+(6) 

Let’s left factor this grammar. 
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Left Factoring Example 
After Left Factoring, we have 

0 Goal → Expr 
1 Expr → Term Expr’ 
2 Expr’ → + Expr 
3 | - Expr 
4 | ε 
5 Term → Factor Term’ 
6 Term’ → * Term 
7 | /  Term 
8 | ε 
9 Factor → number 
10 | id 

Clearly, 
FIRST+(2), FIRST+(3), & FIRST+(4) 

are disjoint, as are 
FIRST+(6), FIRST+(7), & FIRST+(8) 

The grammar now has the LL(1) 
property 



17 

FIRST Sets 

FIRST(α) 
For some α ∈ (T ∪ NT )*, define FIRST(α) 

as the set of tokens that appear as the 
first symbol in some string that derives 
from α  

That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for 
some γ  
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Computing FIRST Sets 

for each x  ∈ T, FIRST(x) ←  { x } 
for each A ∈ NT, FIRST(A) ← Ø 
while (FIRST sets are still changing) do 
    for each p ∈ P, of the form A→β do 
        if β is B1B2…Bk then begin;  

     rhs ← FIRST(B1) –  { ε } 
     for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do 

                 rhs ← rhs ∪ ( FIRST(Bi+1) – { ε } ) 
      end  // for loop 

         end          // if-then  
   if  i = k and ε ∈ FIRST(Bk )  
       then rhs ← rhs ∪ { ε } 
    FIRST(A) ← FIRST(A) ∪ rhs 

          end  // for loop 
     end       // while loop 

Outer loop is monotone  
increasing for FIRST  
sets 
→  | T ∪ NT ∪ ε | is  
bounded, so it terminates 

Inner loop is bounded  
by the length of the  
productions in the  
grammar 

Set empty set for 
terminals 
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Computing FIRST Sets 

for each x  ∈ T, FIRST(x) ←  { x } 
for each A ∈ NT, FIRST(A) ← Ø 
while (FIRST sets are still changing) do 
    for each p ∈ P, of the form A→β do 
        if β is B1B2…Bk then begin;  

     rhs ← FIRST(B1) –  { ε } 
     for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do 

                 rhs ← rhs ∪ ( FIRST(Bi+1) – { ε } ) 
      end  // for loop 

         end          // if-then  
   if  i = k and ε ∈ FIRST(Bk )  
       then rhs ← rhs ∪ { ε } 
    FIRST(A) ← FIRST(A) ∪ rhs 

          end  // for loop 
     end       // while loop 

Outer loop is monotone  
increasing for FIRST  
sets 
→  | T ∪ NT ∪ ε | is  
bounded, so it terminates 

Inner loop is bounded  
by the length of the  
productions in the  
grammar 

Set empty set for 
First of nonterminals 
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Computing FIRST Sets 

for each x  ∈ T, FIRST(x) ←  { x } 
for each A ∈ NT, FIRST(A) ← Ø 
while (FIRST sets are still changing) do 
    for each p ∈ P, of the form A→β do 
        if β is B1B2…Bk then begin;  

     rhs ← FIRST(B1) –  { ε } 
     for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do 

                 rhs ← rhs ∪ ( FIRST(Bi+1) – { ε } ) 
      end  // for loop 

         end          // if-then  
   if  i = k and ε ∈ FIRST(Bk )  
       then rhs ← rhs ∪ { ε } 
    FIRST(A) ← FIRST(A) ∪ rhs 

          end  // for loop 
     end       // while loop 

Outer loop is monotone  
increasing for FIRST  
sets 
→  | T ∪ NT ∪ ε | is  
bounded, so it terminates 

Inner loop is bounded  
by the length of the  
productions in the  
grammar 

Fixed point 
algorithm;  Monotone 
because we always 
add to First sets 
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Computing FIRST Sets 

for each x  ∈ T, FIRST(x) ←  { x } 
for each A ∈ NT, FIRST(A) ← Ø 
while (FIRST sets are still changing) do 
    for each p ∈ P, of the form A→β do 
        if β is B1B2…Bk then begin;  

     rhs ← FIRST(B1) –  { ε } 
     for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do 

                 rhs ← rhs ∪ ( FIRST(Bi+1) – { ε } ) 
      end  // for loop 

         end          // if-then  
   if  i = k and ε ∈ FIRST(Bk )  
       then rhs ← rhs ∪ { ε } 
    FIRST(A) ← FIRST(A) ∪ rhs 

          end  // for loop 
     end       // while loop 

Outer loop is monotone  
increasing for FIRST  
sets 
→  | T ∪ NT ∪ ε | is  
bounded, so it terminates 

Inner loop is bounded  
by the length of the  
productions in the  
grammar 

Iterate through each 
production 
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Computing FIRST Sets 

for each x  ∈ T, FIRST(x) ←  { x } 
for each A ∈ NT, FIRST(A) ← Ø 
while (FIRST sets are still changing) do 
    for each p ∈ P, of the form A→β do 
        if β is B1B2…Bk then begin;  

     rhs ← FIRST(B1) –  { ε } 
     for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do 

                 rhs ← rhs ∪ ( FIRST(Bi+1) – { ε } ) 
      end  // for loop 

         end          // if-then  
   if  i = k and ε ∈ FIRST(Bk )  
       then rhs ← rhs ∪ { ε } 
    FIRST(A) ← FIRST(A) ∪ rhs 

          end  // for loop 
     end       // while loop 

Outer loop is monotone  
increasing for FIRST  
sets 
→  | T ∪ NT ∪ ε | is  
bounded, so it terminates 

Inner loop is bounded  
by the length of the  
productions in the  
grammar 

RHS is some set of T 
and NT. 
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Computing FIRST Sets 

for each x  ∈ T, FIRST(x) ←  { x } 
for each A ∈ NT, FIRST(A) ← Ø 
while (FIRST sets are still changing) do 
    for each p ∈ P, of the form A→β do 
        if β is B1B2…Bk then begin;  

     rhs ← FIRST(B1) –  { ε } 
     for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do 

                 rhs ← rhs ∪ ( FIRST(Bi+1) – { ε } ) 
      end  // for loop 

         end          // if-then  
   if  i = k and ε ∈ FIRST(Bk )  
       then rhs ← rhs ∪ { ε } 
    FIRST(A) ← FIRST(A) ∪ rhs 

          end  // for loop 
     end       // while loop 

Outer loop is monotone  
increasing for FIRST  
sets 
→  | T ∪ NT ∪ ε | is  
bounded, so it terminates 

Inner loop is bounded  
by the length of the  
productions in the  
grammar 

Initialize rhs to First 
of first symbol minus 
epsilon 



24 

Computing FIRST Sets 

for each x  ∈ T, FIRST(x) ←  { x } 
for each A ∈ NT, FIRST(A) ← Ø 
while (FIRST sets are still changing) do 
    for each p ∈ P, of the form A→β do 
        if β is B1B2…Bk then begin;  

     rhs ← FIRST(B1) –  { ε } 
     for i ← 1 to k–1 by 1 while ε ∈ FIRST(Bi) do 

                 rhs ← rhs ∪ ( FIRST(Bi+1) – { ε } ) 
      end  // for loop 

         end          // if-then  
   if  i = k and ε ∈ FIRST(Bk )  
       then rhs ← rhs ∪ { ε } 
    FIRST(A) ← FIRST(A) ∪ rhs 

          end  // for loop 
     end       // while loop 

Outer loop is monotone  
increasing for FIRST  
sets 
→  | T ∪ NT ∪ ε | is  
bounded, so it terminates 

Inner loop is bounded  
by the length of the  
productions in the  
grammar 

Iterate through 
symbols in production 
until have a symbol 
that does not have 
epsilon in First set  
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Expression Grammar 

Symbol FIRST 
num num 
id id 
+ + 
- - 
* * 
/ / 
( ( 
) ) 

eof eof 
ε ε 

Goal num, id, ( 
Expr num, id, ( 
Expr’ +, -, ε 
Term num, id, ( 
Term’ *, /, ε 
Factor num, id, ( 

0 Goal → Expr 
1 Expr → Term Expr’ 
2 Expr’ → + Term Expr’ 
3 | - Term Expr’ 
4 | ε 
5 Term → Factor Term’ 
6 Term’ → * Factor Term’ 
7 | / Factor Term’ 
8 | ε 
9 Factor → number 
10 | id 
11 | ( Expr ) 


