Top Down Parsing - Part I

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

* Start at root of parse tree and grow
toward leaves

* Pick a production & try to match the input
* Bad "pick” = may need to backtrack
* Some grammars are backtrack-free

Top-down Parsing

* Starts with root of parse tree
* Root node is labeled with goal symbol
* Expand all non-terminals (NT) at fringe of tree

fringe ' \

Top-down parsing algorithm

Construct the root node of parse tree

Repeat until lower fringe matches input string

1 At node labeled A, select production with A on LHS and, for each
symbol on RHS, construct appropriate child

2 If terminal symbol added to fringe doesnt match input, backtrack
3 Find the next node (NT) to be expanded

The key is picking the right production in step 1
— That choice should be guided by the input string

Remember the expression grammar?

O 0 NO Ol W N~ O

Goal
Expr

Term

Factor

—— == ==

Expr

Expr+ Term
Expr - Term
Term

Term™> Factor
Term / Factor
Factor

(Expr)
number

id

And the input x -2 >y

Example

Let'stry x-2*y:
Y Y

Rule Sentential Form Input
— Goal 1x-2*y

1 is the position in the input buffer | 5

Example

Let'stry x-2*y:

Rule Sentential Form Input @

*

<id x>+ Term

—

%

IX X X IX
|
NN
*

K K K K K

—_— Goal 1\5 - g * Y l \

0 Expr tx-2%y M ‘@
1 Expr+Term 1x-2%*

3 Term+Term '1x-2%

6 Factor+Term

9

<id x>+ Term

X<
N
|
V)

*

This worked well, except that "-" doesn't match "+"
The parser must backtrack to here—

1 is the position in the input buffer | 6

Example

Continuing with x -2 * y : @
Rule Sentential Form Input
— Goal 'x-2*y \
0 Expr tx-2%y b
2 Expr-Term 1x-2*y @ -
3 Term-Term 'x-2*y @
6 Factor-Term tx-2%y
9 <idx>- Term 1x-2*y @
— <idx>OQJerm X 102*y
— <idx> - X *y <id,x>

Now, "-" and "-" match M Now we can expand Term to match "2"

= Now, we need to expand Term - the last NT on the fringe

Example
Trying to match the "2"in x-2*y: a

Rule Sentential Form

N
S
— |
N |+
x.
2

— <jdx> - Term X I \

6 <idx>- Factor x-12*y @ . ‘@
8 <idx>-<num2> x-12*y

— <dx>-<num2> x-21*y @

Where are we?
* "2" matches "2" <id,x>

* We have more input, but no NTs left to expand
* The expansion terminated too soon

= Need to backtrack

Example

Trying again with "2" inx -2 *y: @
Rule Sentential Form Input
— <jdx>- Term xX-12*y @

f\

4 <idx>- Term™ Factor x-12* y @

6 <idx> - Factor™ Factor x -12* y / |

8 <id x> - <num,2> * Factor x-12%y @ @ *
— <idx>-<num,2> * Factor x -2 t* y '
— <dx>-<num,2>* Factor x-2* Ty @ @ idy>
9 <idx>-<num2 *<idy> x-2* 1y «id,x> <num,2>

— <id x> -<num, 2> * </'d,¥> X-2*y! l '

The Point:

The parser must make the right choice when it expands a NT.
Wrong choices lead to wasted effort.

Another possible parse

Other choices for expansion are possible

Rule Sentential Form Input
— Goal 1x-2*y

Expr Ix-2*y Consumes no input!
Expr + Term - 23

o)
1
1 Expr+ Term+Term 2%y
1
1

X X

—

*

K K

%
X

Expr+ Term+Term+ Term

NN
*

==

IX

And so on

q

This expansion doesn't terminate

* Worong choice of expansion leads to non-termination
* Non-termination is a bad property for a parser to have
* Parser must make the right choice

10

Left Recursion

Top-down parsers cannot handle left-recursive
grammars

Formally,

A grammar is left recursive if 3 A € NT such that
3 a derivation A =* Aa, for some string a € (NTU T)

11

Left Recursion

Our classic expression grammar is left recursive

* This can lead to non-termination in a fop-down parser

* TIn top-down parser, any recursion must be right recursion

* We would like to convert the left recursion to right recursion

Non-termination is always a bad property in a compiler

Goal
Expr

— Expr
— Expr+ Term
| Expr- Term
| Term
Term — Term?™ Factor
| Term/ Factor
| Factor
— ((Expr)
| number
| id

Factor

12

O 00 N O Ol D W NN - O

Eliminating Left Recursion
To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
Fee — Fee «

| B
where neither o nor § start with Fee

We can rewrite this fragment as
Fee — B Fie The new grammar defines
: : the same language as the
. > :
fie —a Fie old grammar, using only
| € < right recursion.

where Fie is a new non-terminal

Added a reference
to the empty string
13

Eliminating Left Recursion

The expression grammar contains two cases of left recursion

Expr — Expr+ Term Term — Term?™ Factor
| Expr- Term | Term * Factor
| Term | Factor

Fee — Fee o

| B

Fee — [Fie
Fie — o Fie
| €

Eliminating Left Recursion

The expression grammar contains two cases of left recursion

Expr — Expr+ Term Term — Term?™ Factor
| Expr- Term | Term * Factor
| Term | Factor

Applying the transformation yields

Expr — Term Expr’ Term — Factor Term’

Expr' — + Term Expr’ Term' — * Factor Term’
| - Term Expr’ | / Factor Term’
| ¢ |

These fragments use only right recursion

Eliminating Left Recursion

Substituting them back into the grammar yields

o

Goal - i ' |
oa Expr * This grammar is correct, if

L Expr T Term Expr’ | somewhat non-intuitive.

g Expr T + Z_-::: Zﬁ : ‘A Top-down parser will

4 e ‘rer'mmccil’re using It.]
* A top-down parser may hee

| e — factor Term to bgckfraclf with it

6 Term’ — * Factor Term’

7 | / Factor Term’

8 | ¢

9 Factor — (Expr)

10 | number

11 | id

16

Eliminating Left Recursion

The transformation eliminates immediate left recursion
What about more general, indirect left recursion ?

The general algorithm:
arrange the NTs into some order A;, A,, ..., A,

fori<11% Must start with 1 to ensure that
for s e@'ro i -1 A; — A, B is transformed

replace each production A; — Ay with A, — Sy | oy .- | duy,
where A, — 8;| 6,| ... | 6, are all the current productions for A,

eliminate any immediate left recursion on A,
using the direct transformation

This assumes that the initial grammar has no cycles (4, =* A4;),
and no epsilon productions

And back 17

Eliminating Left Recursion

How does this algorithm work?
1. Impose arbitrary order on the non-terminals
2. Outer loop cycles through NT in order

3. Inner loop ensures that a production expanding A, has no
non-terminal A, in its rhs, for s<i

4. Last step in outer loop converts any direct recursion on A,
to right recursion using the transformation showed earlier

5. New non-terminals are added at the end of the order & have
no left recursion

At the start of the /" outer loop iteration

For all k < i, no production that expands A, contains a hon-terminal
A, initsrhs, for s <k

18

Example

* Order of symbols: 6, E, T

E—-TE'
E'—+TEFE'
E'— ¢

T— E*T
T—id

Go to
Algorithm 19

