
Top Down Parsing - Part I 

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. 



1 

Parsing Techniques 

Top-down parsers     (LL(1), recursive descent) 
•  Start at root of parse tree and grow 

toward leaves 
•  Pick a production & try to match the input 
•  Bad “pick” ⇒ may need to backtrack 
•  Some grammars are backtrack-free 



2 

•  Starts with root of parse tree 
•  Root node is labeled with goal symbol 
•  Expand all non-terminals (NT) at fringe of tree 

               fringe 

Top-down Parsing  

Goal 

Expr 

Term + Expr 



3 

Construct the root node of parse tree  
Repeat until lower fringe matches input string 

1  At node labeled A, select production with A on LHS and, for each 
symbol on RHS, construct appropriate child 

2  If terminal symbol added to fringe doesn’t match input, backtrack 
3  Find the next node (NT) to be expanded 

The key is picking the right production in step 1 
— That choice should be guided by the input string 

Top-down parsing algorithm 



4 

Remember the expression grammar? 

And the input x – 2 * y  

0 Goal → Expr 
1 Expr → Expr + Term 
2 | Expr - Term 
3 | Term 
4 Term → Term * Factor 
5 | Term / Factor 
6 | Factor 
7 Factor → ( Expr ) 
8 | number 
9 | id 



    Let’s try x – 2 * y : 

5 

Rule Sentential Form Input 
— Goal ↑x - 2 * y 

Example 

Goal 

↑ is the position in the input buffer 



Let’s try x – 2 * y : 

6 

Rule Sentential Form Input 
— Goal ↑x - 2 * y 
0 Expr ↑x - 2 * y 
1 Expr +Term ↑x - 2 * y 
3 Term +Term ↑x - 2 * y 
6 Factor +Term ↑x - 2 * y 
9 <id,x> +Term ↑x - 2 * y 
→ <id,x> +Term x ↑- 2 * y 

Example 

Goal 

Expr 

Term + Expr 

Term 

Fact. 

<id,x> 

This worked well, except that “–” doesn’t match “+” 
The parser must backtrack to here 

↑ is the position in the input buffer 



7 

Example 
Continuing with x – 2 * y : 

Goal 

Expr 

Term – Expr 

Term 

Fact. 

<id,x> 

⇒   Now, we need to expand Term - the last NT on the fringe 

Rule Sentential Form Input 
— Goal ↑x - 2 * y 
0 Expr ↑x - 2 * y 
2 Expr -Term ↑x - 2 * y 
3 Term -Term ↑x - 2 * y 
6 Factor -Term ↑x - 2 * y 
9 <id,x> - Term ↑x - 2 * y 
→ <id,x> -Term x ↑- 2 * y 
→ <id,x> -Term x - ↑2 * y 

Now, “-” and “-” match Now we can expand Term to match “2” 



8 

Where are we? 
•  “2” matches “2” 
•  We have more input, but no NTs left to expand 
•  The expansion terminated too soon 
⇒  Need to backtrack 

Example 
Trying to match the “2” in  x – 2 * y : 

Goal 

Expr 

Term - Expr 

Term 

Fact. 

<id,x> 

Fact. 

<num,2> 

Rule Sentential Form Input 
→ <id,x> - Term x - ↑2 * y 
6 <id,x> - Factor x - ↑2 * y 
8 <id,x> - <num,2> x - ↑2 * y 
→ <id,x> - <num,2> x - 2 ↑* y 



9 

Example 
Trying again with “2” in x – 2 * y : 

Goal 

Expr 

Term – Expr 

Term 

Fact. 

<id,x> 

Fact. 

<id,y> 

Term 

Fact. 

<num,2> 

* 

This time, we matched & consumed all the input 
⇒ Success! 

Rule Sentential Form Input 
→ <id,x> - Term x - ↑2 * y 
4 <id,x> - Term * Factor x - ↑2 * y 
6 <id,x> - Factor * Factor x - ↑2 * y 
8 <id,x> - <num,2> * Factor x - ↑2 * y 
→ <id,x> - <num,2> * Factor x - 2 ↑* y 
→ <id,x> - <num,2> * Factor x - 2 * ↑y 
9 <id,x> - <num,2> * <id,y> x - 2 * ↑y 
→ <id,x> - <num,2> * <id,y> x - 2 * y↑ 

The Point: 

The parser must make the right choice when it expands a NT.  
Wrong choices lead to wasted effort. 



10 

Other choices for expansion are possible 

This expansion doesn’t terminate                             

•  Wrong choice of expansion leads to non-termination 
•  Non-termination is a bad property for a parser to have 
•  Parser must make the right choice 

Another possible parse 

Rule Sentential Form Input 
— Goal ↑x - 2 * y 
0 Expr ↑x - 2 * y 
1 Expr +Term ↑x - 2 * y 
1 Expr + Term +Term ↑x - 2 * y 
1 Expr + Term +Term + Term ↑x - 2 * y 
1 And so on ….    ↑x - 2 * y 

Consumes no input! 



11 

Left Recursion 

Top-down parsers cannot handle left-recursive 
grammars 

Formally, 
A grammar is left recursive if ∃ A ∈ NT such that   
∃ a derivation A ⇒+ Aα, for some string α ∈ (NT ∪ T )+ 



12 

Left Recursion 
Our classic expression grammar is left recursive 
•  This can lead to non-termination in a top-down parser 
•  In top-down parser, any recursion must be right recursion 
•  We would like to convert the left recursion to right recursion 

Non-termination is always a bad property in a compiler 

0 Goal → Expr 
1 Expr → Expr + Term 
2 | Expr - Term 
3 | Term 
4 Term → Term * Factor 
5 | Term / Factor 
6 | Factor 
7 Factor → ( Expr ) 
8 | number 
9 | id 



13 

Eliminating Left Recursion 
To remove left recursion, we can transform the grammar 

Consider a grammar fragment of the form 
Fee → Fee  α     
         |   β 

where neither α nor β start with Fee 

We can rewrite this fragment as  
Fee → β Fie 
Fie  → α Fie 

         |  ε 
where Fie is a new non-terminal 

The new grammar defines 
the same language as the 
old grammar, using only 
right recursion. 

Added a reference 
to the empty string 



14 

Eliminating Left Recursion 

Expr → Expr + Term 

| Expr - Term 

| Term 

Term → Term * Factor 

| Term * Factor 

| Factor 

Expr → Term Expr’ 

Expr’ → + Term Expr’ 

| - Term Expr’ 
| ε 

Term → Factor Term’ 

Term’ → * Factor Term’ 

| / Factor Term’ 
| ε 

The expression grammar contains two cases of left recursion 

Fee → Fee  α     
         |   β 

Fee → β Fie 
Fie  → α Fie 
         |  ε 



15 

Eliminating Left Recursion 

Expr → Expr + Term 

| Expr - Term 

| Term 

Term → Term * Factor 

| Term * Factor 

| Factor 

Expr → Term Expr’ 

Expr’ → + Term Expr’ 

| - Term Expr’ 
| ε 

Term → Factor Term’ 

Term’ → * Factor Term’ 

| / Factor Term’ 
| ε 

The expression grammar contains two cases of left recursion 

Applying the transformation yields 

These fragments use only right recursion  



16 

Eliminating Left Recursion 
Substituting them back into the grammar yields 

• This grammar is correct,  if 
somewhat non-intuitive. 

• A top-down parser will 
terminate using it. 

• A top-down parser may need 
to backtrack with it. 

0 Goal → Expr 
1 Expr → Term Expr’ 
2 Expr’ → + Term Expr’ 
3 | - Term Expr’ 
4 | ε 
5 Term → Factor Term’ 
6 Term’ → * Factor Term’ 
7 | / Factor Term’ 
8 | ε 
9 Factor → ( Expr ) 
10 | number 
11 | id 



17 

Eliminating Left Recursion 
The transformation eliminates immediate left recursion 
What about more general, indirect left recursion ? 

The general algorithm: 
arrange the NTs into some order A1, A2, …, An 
for i ← 1 to n 

 for s ← 1 to i – 1  
replace each production Ai → Asγ with Ai → δ1γ ⏐δ2γ⏐…⏐δkγ,   

 where As → δ1⏐δ2⏐…⏐δk are all the current productions for As 
 eliminate any immediate left recursion on Ai  
  using the direct transformation 

This assumes that the initial grammar has no cycles (Ai ⇒+ Ai ),   
 and no epsilon productions   

And back 

Must start with 1 to ensure that 
A1 → A1 β is transformed 



18 

Eliminating Left Recursion 
How does this algorithm work? 
1.  Impose arbitrary order on the non-terminals 
2.  Outer loop cycles through NT in order 
3.  Inner loop ensures that a production expanding Ai has no 

non-terminal As in its rhs, for s < i 
4.  Last step in outer loop converts any direct recursion on Ai  

to right recursion using the transformation showed earlier 
5.  New non-terminals are added at the end of the order & have 

no left recursion 

 At the start of the ith  outer loop iteration 
For all k < i, no production that expands Ak contains a non-terminal  
As in its rhs, for s < k 



•  Order of symbols: G, E, T 

19 

Example 

1. Ai  = G 

G → E 

E →  E + T  

E →  T  

T →  E  * T 

T →  id  

2. Ai  = E 

G → E 

E →  T E'  

E' → + T E'  

E' → ε 

T →   E  * T 

T →  id  

3. Ai  = T, As = E 

G → E 

E →  T E'  

E' → + T E'  

E' → ε 

T →   T E'  * T 

T →  id  

Go to 
Algorithm 

4. Ai  = T 

G → E 

E →  T E'  

E' → + T E'  

E' → ε 

T →   id T' 

T' → E ' * T T' 

T' → ε	



