
Introduction to Parsing
Part II

Quiz

Produce a table showing the rightmost derivation for the
equation below. Include in the first column the rule
used and the second column the sentential form.

 a * b - c

Leftmost derivation and Rightmost derivation

G

x

E

E Op

–

2

E

E

E

y

Op

* x 2

G

E

Op E E

E Op E y

–

*

Rightmost derivation Leftmost derivation
This evaluates as (x – 2) * y This evaluates as x – (2 * y)

Derivations and Precedence

These two derivations point out a problem with the grammar:

We same parse tree regardless of rightmost or leftmost
derivation

No notion of precedence in grammar

Key: Create a non-terminal (NT) for each level of precedence

Derivations and Precedence

To add precedence
•  Create a non-terminal for each level of precedence
•  Isolate the corresponding part of the grammar
•  Force the parser to recognize high precedence subexpressions

first

 a + b – c * d

For algebraic expressions
•  Multiplication and division, first (level one)
•  Subtraction and addition, next (level two)

Should recognize
c*d first!

Derivations and Precedence
Adding the standard algebraic precedence produces:

This grammar is slightly larger

•  Takes more rewriting to reach
 some of the terminal symbols

•  Encodes expected precedence

•  Produces same parse tree
 under leftmost & rightmost
 derivations

Let’s see how it parses x - 2 * y

level
one

level
two

Note that you can
only get to Term

through Expr!

Rightmost derivation of x-2*y.

level
one

level
two

Derivations and Precedence

The rightmost derivation

This produces x – (2 * y), along with an appropriate parse tree.
Both the leftmost and rightmost derivations give the same expression,
because the grammar directly encodes the desired precedence.

G

E

– E

T

F

<id,x>

T

T

F

F *

<num,2>

<id,y>

Its parse tree

Ambiguous Grammars
Our original expression grammar had other problems
•  Let’s look at original leftmost derivation

Make note of the
second rule we use!

Ambiguous Grammars
Our original expression grammar had other problems
•  The grammar is ambiguous

different choice
than the first time

Two Leftmost Derivations for x – 2 * y

The Difference:
  Different productions chosen on the second step

  Both derivations succeed in producing x - 2 * y

Original choice New choice

Ambiguous Grammars
Definitions
•  If a grammar has more than one leftmost derivation for a

single sentential form, the grammar is ambiguous
•  If a grammar has more than one rightmost derivation for a

single sentential form, the grammar is ambiguous
•  The leftmost and rightmost derivations for a sentential

form may differ, even in an unambiguous grammar

If-then-else problem

Classic example
Stmt → if Expr then Stmt
 | if Expr then Stmt else Stmt
 | … other stmts …

This ambiguity is entirely grammatical in nature

Ambiguity
This if statement has two derivations

if Expr1 then if Expr2 then Stmt1 else Stmt2

production 2

then production 1

production 1,

then production 2

Stmt → if Expr then Stmt (1)
 | if Expr then Stmt else Stmt (2)
 | … other stmts …

Removing the ambiguity
•  Must rewrite the grammar to avoid the problem
•  Match each else to innermost unmatched if (common sense rule)

 With this grammar, the example has only one derivation

Ambiguity

Intuition: binds each else to the innermost if

Ambiguity
 if Expr1 then if Expr2 then Assignment1 else Assignment2

This binds the else controlling Assignment2 to the inner if

Deeper Ambiguity
Ambiguity usually refers to confusion in the CFG

Overloading can create deeper ambiguity

 a = f(17)

In many Algol-like languages, f could be either a function or a
subscripted variable

Disambiguating this one requires context
•  Need values of declarations
•  Really an issue of type, not context-free syntax
•  Must handle these with a different mechanism

Ambiguity - the Final Word

Ambiguity arises from two distinct sources
•  Confusion in the context-free syntax (if-then-else)

•  Confusion that requires context to resolve (overloading)

Resolving ambiguity
•  To remove context-free ambiguity, rewrite the grammar
•  To handle context-sensitive ambiguity takes cooperation

→  Knowledge of declarations, types, …
→  Accept a superset of L(G) & check it by other means†

†See Chapter 4

