
Introduction to Parsing 



The Front End 

Parser 

•  Checks the stream of words and their parts of speech 
(produced by the scanner) for grammatical correctness 

•  Builds an IR representation of the code 
Think of this as the mathematics of diagramming sentences  
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The Study of Parsing 

The process of discovering a derivation  for some sentence 
•  Need a mathematical model of syntax — a grammar G 
•  Need an algorithm for testing membership in L(G)  

Roadmap 
1  Context-free grammars and derivations 
2  Top-down parsing 

→  Hand-coded recursive descent parsers 

3  Bottom-up parsing 
→  Generated LR(1) parsers 



Specifying Syntax with a Grammar 

Context-free syntax is specified with a context-free 
grammar (CFG) 

  SheepNoise → SheepNoise  baa 
                                |   baa 

This CFG defines the set of noises sheep normally make  



Context-Free Grammar 

It is written in a variant of Backus–Naur form, BNF notation 

Formally, a grammar is a four tuple, G = (S,NT,T,P) 
•  S  is the start (or goal) symbol 
•  N T is a set of non-terminal symbols      (syntactic variables) 
•  T  is a set of terminal symbols               (words) 
•  P  is a set of productions or rewrite rules     
      Production rules follow format   NT → (NT ∪ T)+  



Specifying Syntax with a Grammar 

  SheepNoise → SheepNoise  baa 
                                |   baa 

What are the: 

  S: 

   NT: 

  T: 

  P: 



Specifying Syntax with a Grammar 

  SheepNoise → SheepNoise  baa 
                                |   baa 

What are the: 

   S: SheepNoise 

NT: SheepNoise 

   T:  baa 

   P:  SheepNoise → SheepNoise baa 

        SheepNoise → baa 



Deriving Syntax 
We can use the SheepNoise  grammar to create sentences 

→  use the productions as rewriting rules 

And so on ... 



A More Useful Grammar 
To explore the uses of CFGs, we need a more complex grammar 

What are the NT and T? 



Derivation Example 

•  This sequence of rewrites is called a derivation 
•  Process of discovering a derivation is called parsing 

We denote this derivation:  Expr ⇒*  id – num * id 



Derivations 

•  At each step, we choose a non-terminal to replace 
•  Different choices can lead to different derivations 

Two derivations are of interest 
•  Leftmost derivation  — replace leftmost NT at each step 
•  Rightmost derivation — replace rightmost NT at each step 

The example on the preceding slide was a leftmost derivation 



The Two Derivations for  x – 2 * y  

In both cases, Expr ⇒*  id – num * id 
•  The two derivations produce different parse trees 
•  The parse trees imply different evaluation orders!  

Leftmost derivation Rightmost derivation 



Derivations and Parse Trees 
Leftmost derivation 

This evaluates as   x  – ( 2 * y ) 

Let’s do the parse tree 
on the board 



Derivations and Parse Trees 
Leftmost derivation 
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This evaluates as   x  – ( 2 * y ) 



Derivations and Parse Trees 
Rightmost derivation 

This evaluates as   ( x – 2 ) * y 

Let’s do the parse tree 
on the board 



Derivations and Parse Trees 
Rightmost derivation 
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This evaluates as   ( x – 2 ) * y 



Derivations and Precedence 

These two derivations point out a problem with the grammar: 
It has no notion of  precedence, or implied order of evaluation 

To add precedence 
•  Create a non-terminal for each level of precedence 
•  Isolate the corresponding part of the grammar 
•  Force the parser to recognize high precedence 

subexpressions first 

For algebraic expressions  
•  Multiplication and division, first                              (level one) 
•  Subtraction and addition, next                                (level two)  


