
Introduction to Parsing

The Front End

Parser

•  Checks the stream of words and their parts of speech
(produced by the scanner) for grammatical correctness

•  Builds an IR representation of the code
Think of this as the mathematics of diagramming sentences

Source
code Scanner

IR
Parser

Errors

tokens

The Study of Parsing

The process of discovering a derivation for some sentence
•  Need a mathematical model of syntax — a grammar G
•  Need an algorithm for testing membership in L(G)

Roadmap
1  Context-free grammars and derivations
2  Top-down parsing

→  Hand-coded recursive descent parsers

3  Bottom-up parsing
→  Generated LR(1) parsers

Specifying Syntax with a Grammar

Context-free syntax is specified with a context-free
grammar (CFG)

 SheepNoise → SheepNoise baa
 | baa

This CFG defines the set of noises sheep normally make

Context-Free Grammar

It is written in a variant of Backus–Naur form, BNF notation

Formally, a grammar is a four tuple, G = (S,NT,T,P)
•  S is the start (or goal) symbol
•  N T is a set of non-terminal symbols (syntactic variables)
•  T is a set of terminal symbols (words)
•  P is a set of productions or rewrite rules
 Production rules follow format NT → (NT ∪ T)+

Specifying Syntax with a Grammar

 SheepNoise → SheepNoise baa
 | baa

What are the:

 S:

 NT:

 T:

 P:

Specifying Syntax with a Grammar

 SheepNoise → SheepNoise baa
 | baa

What are the:

 S: SheepNoise

NT: SheepNoise

 T: baa

 P: SheepNoise → SheepNoise baa

 SheepNoise → baa

Deriving Syntax
We can use the SheepNoise grammar to create sentences

→  use the productions as rewriting rules

And so on ...

A More Useful Grammar
To explore the uses of CFGs, we need a more complex grammar

What are the NT and T?

Derivation Example

•  This sequence of rewrites is called a derivation
•  Process of discovering a derivation is called parsing

We denote this derivation: Expr ⇒* id – num * id

Derivations

•  At each step, we choose a non-terminal to replace
•  Different choices can lead to different derivations

Two derivations are of interest
•  Leftmost derivation — replace leftmost NT at each step
•  Rightmost derivation — replace rightmost NT at each step

The example on the preceding slide was a leftmost derivation

The Two Derivations for x – 2 * y

In both cases, Expr ⇒* id – num * id
•  The two derivations produce different parse trees
•  The parse trees imply different evaluation orders!

Leftmost derivation Rightmost derivation

Derivations and Parse Trees
Leftmost derivation

This evaluates as x – (2 * y)

Let’s do the parse tree
on the board

Derivations and Parse Trees
Leftmost derivation

G

x

E

E Op

–

2

E

E

E

y

Op

*
This evaluates as x – (2 * y)

Derivations and Parse Trees
Rightmost derivation

This evaluates as (x – 2) * y

Let’s do the parse tree
on the board

Derivations and Parse Trees
Rightmost derivation

x 2

G

E

Op E E

E Op E y

–

*

This evaluates as (x – 2) * y

Derivations and Precedence

These two derivations point out a problem with the grammar:
It has no notion of precedence, or implied order of evaluation

To add precedence
•  Create a non-terminal for each level of precedence
•  Isolate the corresponding part of the grammar
•  Force the parser to recognize high precedence

subexpressions first

For algebraic expressions
•  Multiplication and division, first (level one)
•  Subtraction and addition, next (level two)

