Lexical Analysis: Wrap Up

Building Faster Scanners from the DFA

Table-driven recognizers waste effort

* Read (& classify) the next character

* Call transition function to find the next state
* Assign to the state variable

* Branch back to the top

We can do better

* Encode state & actions in the code

* Do transition tests locally

* Generate ugly, spaghetti-like code

* Takes (many) fewer operations per input character

Building Faster Scanners from the DFA

A direct-coded recognizer for r Digit Digit”

goto sy
So: word < & s2: word < word + char;
char < next character;, char < next character;
if (char = r’) if (O'<char< '9)
then goto s, then goto s,
else goto s,; else if (char = eof)
sy word < word + char; then report success,
char < next character, else goto s,,
if (0'< char< 9) s, print error message;
then goto s, return failure,

else goto s,,

* Many fewer operations per character
* Almost no memory operations (i.e., table lookups!)

* No longer generic skeleton code (specific to RE)
— Should not matter since auto-generated.

Building Faster Scanners

Hashing keywords versus encoding them directly

* Some (well-known) compilers recognize keywords as
identifiers and check them in a hash table
* Encoding keywords in the DFA is a better idea
— O(1) cost per transition
— Avoids hash lookup on each identifier

It is hard to beat a well-implemented DFA scanner; While
scanner generators can produce reasonably fast scanners,
many compiler writers still hand-code scanners.

Building Scanners

The point
* All this technology lets us automate scanner construction
* Implementer writes down the reqular expressions

* Scanner generator builds NFA, DFA, minimal DFA, and then
writes out the (table-driven or direct-coded) code

* This reliably produces fast, robust scanners

For most modern language features, this works

* You should think twice before introducing a feature that
defeats a DFA-based scanner

* The ones we've seen (e.g., insignificant blanks, non-reserved
keywords) have not proven particularly useful or long lasting

What we expect of the Scanner

* Report errors for lexicographically malformed inputs
— reject illegal characters, or meaningless character sequences
- E.g., "lo#op" in COOL

* Retfurn an abstract representation of the code
— character sequences (e.g., "if" or "loop") tfurned into tokens.

* Resulting sequence of tokens will be used by the parser

* Makes the design of the parser a lot easier.

How to specify a scanner

* A scanner specification (e.g., for JLex), is list of (typically
short) reqular expressions.

* Each regular expressions has an action associated with it.
* Typically, an action is to return a token.

How to specify a scanner (cont'd)

* Onagiven input string, the scanner will:

— find the longest prefix of the input string, that matches
one of the regular expressions.

— will execute the action associated with the matching
regular expression highest in the list.

* Scanner repeats this procedure for the remaining input.
* If no match can be found at some point, an error is reported.

Example of a Specification

* Consider the following scanner specification.
1. aaa { return T1}
2. a*b { return T2 }
3. b { return S}
* Given the following input string into the scanner
aaabbaaa

Example of a Specification

* Consider the following scanner specification.
1. aaa { return T1}
2. a*b { return T2 }
3. b { return S}
* Given the following input string into the scanner
aaab b aaa
T2 T2 T1

* Note that the scanner will report an error for example on the
string ‘ad’.

What can be so hard?

Poor language designh can complicate scanning

* Reserved words are important
if then then then = else; else else = then (PL/T)

* Insignificant blanks (Fortran & Algol68)
do10i=125 (thisis aloop)
do 10i =125 (this is an assignment to variable "do10i")

Note: This is handled by performing an initial pass to insert "significant”
blanks.

What can be so hard? (cont'd)

* String constants w/ special ("escape”) characters (C, C++, Java, ...)
hewline, tab, quote, comment delimiters, ...

* Finite closures (Fortran 66 & Basic)
— Limited identifier length
— Adds states to count length

Limits of Reqular Languages

Advantages of Regular Expressions
* Simple & powerful notation for specifying patterns
* Automatic construction of fast recognizers

* Many kinds of syntax can be specified with REs

Example — an expression grammar
Term — [a-zA-Z] ([a-zA-Zz] | [0-9])"
Op —-=+|=1%1/
Expr — (Term Op)" Term

Of course, this would generate a DFA ...

If REs are so useful ...
Why not use them for everything?

Limits of Reqular Languages

Not all languages are reqular
RL's CCFL's CCSL's

You cannot construct DFA’'s to recognize these
languages

o L= {pkg~} (parenthesis languages)
e L={wr|lweX’} (finite closures)

Neither of these is a regular language (nor an RE)

38t

ITYoFr

Limits of Reqgular Languages A

But, this is a little subtle. You can construct DFA's for

* Strings with alternating O's and 1's
(el1)(01)(el0)

* Strings with an even number of O's and 1's
(00)*(11)*(00)*
0011, 1100, 1111, 0000, 110000, 001111, ...

