
Lexical Analysis: 
DFA Minimization 



Automating Scanner Construction 
PREVIOUSLY 
RE→NFA  (Thompson’s construction)  
•  Build an NFA for each term 

•  Combine them with ε-moves 
NFA →DFA (subset construction)  
•  Build the simulation 
TODAY 
DFA →Minimal DFA 

•  Hopcroft’s algorithm                          



DFA Minimization 

Details of the algorithm 
•  Group states into maximal size sets, optimistically 
•  Iteratively subdivide those sets, as needed  
•  States that remain grouped together are equivalent 



DFA Minimization 

Remember DFA =(Q,Σ,δ,q0,F)  

Initial partition, P0 , has two sets: {DF} and {D-DF} 

Splitting a set s (“partitioning a set by a”) 
•  Assume qi, & qj ∈ s   and   δ(qi,a) = qx  and  δ(qj,a) = qy  
•  If qx and qy are not in the same set, then s must be 

split 
→  qi has transition on a, qj does not ⇒ a splits s  

•  One state in the final DFA cannot have two transitions 
on a (otherwise we have an NFA!) 



DFA Minimization (the algorithm) 

P ← { DF, {D-DF}} 
while ( P is still changing) 
    T ← Ø 
    for each set p ∈ P 

 T ← T ∪ Split(p) 
     P ← T 

Split(S) 
 for each α ∈ Σ	


    if α splits S into s1 and s2 

             then return {s1,s2} 
  return S 

This is a another 
fixed-point algorithm! 



Key Idea: Splitting S around α  
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The algorithm partitions S around α 	
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S  has transitions 
on α to R, Q, & T 



Key Idea: Splitting S around α  
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Could we split S2 further? 

Yes, will do this in another iteration! 

S2 is everything 
in S - S1 



DFA Minimization 
What about  a ( b | c )* ? 

First, the subset construction: 
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Apply DFA Minimization algorithm 
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final 
states 

P ← { DF, {D-DF}} 
while ( P is still changing) 
    T ← Ø 
    for each set p ∈ P 

 T ← T ∪ Split(p) 
     P ← T 

Split(S) 
 for each α ∈ Σ	


    if α splits S into s1 and s2 

             then return {s1,s2} 
  return S 



DFA Minimization 
Then, apply the minimization algorithm 

To produce the minimal DFA 
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In a previous lecture, we observed that a 
human would design a simpler automaton 
than Thompson’s construction & the 
subset construction did. 

Minimizing that DFA produces the one 
that a human would design!  

final states 



Abbreviated Register Specification 
Start with a regular expression 

r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 

minimal 
DFA RE NFA DFA 

The Cycle of  Constructions 



Abbreviated Register Specification 
Thompson’s construction produces 
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The Cycle of  Constructions 

To make it fit, we’ve eliminated the ε-
transition between “r” and “0...9”. 



Abbreviated Register Specification 
The subset construction builds 

This is a DFA, but it has a lot of states … 
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Abbreviated Register Specification 
The DFA minimization algorithm builds 

This looks like what a skilled compiler writer would do! 
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The Cycle of  Constructions 


