

Lexical Analysis: DFA Minimization

Automating Scanner Construction

PREVIOUSLY

RE→NFA (Thompson's construction)

- Build an NFA for each term
- Combine them with ϵ -moves

NFA \rightarrow DFA (subset construction)

Build the simulation

TODAY

 $DFA \rightarrow Minimal DFA$

Hopcroft's algorithm

Details of the algorithm

- Group states into maximal size sets, optimistically
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent

Remember DFA =($Q, \Sigma, \delta, q_0, F$)

Initial partition, P_0 , has two sets: $\{D_F\}$ and $\{D-D_F\}$

Splitting a set s ("partitioning a set by \underline{a} ")

- Assume q_i , & $q_j \in s$ and $\delta(q_i,\underline{a}) = q_x$ and $\delta(q_j,\underline{a}) = q_y$
- If q_x and q_y are not in the same set, then s must be split

 \rightarrow q_i has transition on a, q_j does not \Rightarrow <u>a</u> splits s

 One state in the final DFA cannot have two transitions on <u>a</u> (otherwise we have an NFA!)

DFA Minimization (the algorithm)

$$P \leftarrow \{ D_{F'}, \{D-D_{F}\}\}$$
while (P is still changing)

$$T \leftarrow \emptyset$$
for each set $p \in P$

$$T \leftarrow T \cup Split(p)$$

$$P \leftarrow T$$
Split(S)
for each $\alpha \in \Sigma$
if α splits S into s_{1} and s_{2}
then return $\{s_{1}, s_{2}\}$
return S

This is a another

fixed-point algorithm!

The algorithm partitions S around α

R

Original set S

 S_2 is everything

in $S - S_1$

 S_1

Could we split S₂ further? Yes, will do this in another iteration!

DFA Minimization

First, the subset construction:

		ε-closure(Delta(s,*))		
	NFA states	<u>a</u>	<u>b</u>	<u>c</u>
S ₀	q ₀	<mark>q</mark> 1, q2, q3, q4, q6, q9	none	none
S ₁	$q_1, q_2, q_3, q_4, q_6, q_9$	none	q 5, q 8, q 9, q 3, q 4, q 6	q7, q8, q9, q3, q4, q6
S ₂	$q_{5}, q_{8}, q_{9}, q_{3}, q_{4}, q_{6}$	none	S ₂	S ₃
S 3	<i>q</i> ₇ , <i>q</i> ₈ , <i>q</i> ₉ , <i>q</i> ₃ , <i>q</i> ₄ , <i>q</i> ₆	none	S ₂	S ₃
Final states				

DFA Minimization

Then, apply the minimization algorithm

To produce the minimal DFA

In a previous lecture, we observed that a human would design a simpler automaton than Thompson's construction & the subset construction did.

Minimizing that DFA produces the one that a human would design!

b

Start with a regular expression r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 The Cycle of Constructions RE→NFA →DFA → DFA

3 б 9 r The Cycle of Constructions To make it fit, we've eliminated the ϵ transition between "r" and "0...9". minimal **NFA** →DFA DFA

Thompson's construction produces

The subset construction builds

This is a DFA, but it has a lot of states ...

The Cycle of Constructions

minimal →NFA DFA RF DFA

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

The Cycle of Constructions

minìmaì → DFA→ ►RE →NFA →DFA -

