
Lexical Analysis:
DFA Minimization

Automating Scanner Construction
PREVIOUSLY
RE→NFA (Thompson’s construction)
•  Build an NFA for each term

•  Combine them with ε-moves
NFA →DFA (subset construction)
•  Build the simulation
TODAY
DFA →Minimal DFA

•  Hopcroft’s algorithm

DFA Minimization

Details of the algorithm
•  Group states into maximal size sets, optimistically
•  Iteratively subdivide those sets, as needed
•  States that remain grouped together are equivalent

DFA Minimization

Remember DFA =(Q,Σ,δ,q0,F)

Initial partition, P0 , has two sets: {DF} and {D-DF}

Splitting a set s (“partitioning a set by a”)
•  Assume qi, & qj ∈ s and δ(qi,a) = qx and δ(qj,a) = qy
•  If qx and qy are not in the same set, then s must be

split
→  qi has transition on a, qj does not ⇒ a splits s

•  One state in the final DFA cannot have two transitions
on a (otherwise we have an NFA!)

DFA Minimization (the algorithm)

P ← { DF, {D-DF}}
while (P is still changing)
 T ← Ø
 for each set p ∈ P

 T ← T ∪ Split(p)
 P ← T

Split(S)
 for each α ∈ Σ	

 if α splits S into s1 and s2

 then return {s1,s2}
 return S

This is a another
fixed-point algorithm!

Key Idea: Splitting S around α

S

T

R

α	

The algorithm partitions S around α 	

Original set S

α	

Q

α	

S has transitions
on α to R, Q, & T

Key Idea: Splitting S around α

T

R

α	

Original set S

α	

Q

α	

S1

S2

Could we split S2 further?

Yes, will do this in another iteration!

S2 is everything
in S - S1

DFA Minimization
What about a (b | c)* ?

First, the subset construction:

q0 q1
a ε

q4 q5

b

q6 q7
c

q3 q8 q2 q9

ε

ε

ε ε

ε ε

ε ε

s3

s2

s0 s1

c

b

a

b

b

c

c

Final states

Apply DFA Minimization algorithm

s3

s2

s0 s1

c

b

a

b

b

c

c

final
states

P ← { DF, {D-DF}}
while (P is still changing)
 T ← Ø
 for each set p ∈ P

 T ← T ∪ Split(p)
 P ← T

Split(S)
 for each α ∈ Σ	

 if α splits S into s1 and s2

 then return {s1,s2}
 return S

DFA Minimization
Then, apply the minimization algorithm

To produce the minimal DFA

s3

s2

s0 s1

c

b
a

b

b

c

c

s0 s1

a

b | c

In a previous lecture, we observed that a
human would design a simpler automaton
than Thompson’s construction & the
subset construction did.

Minimizing that DFA produces the one
that a human would design!

final states

Abbreviated Register Specification
Start with a regular expression

r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

minimal
DFA RE NFA DFA

The Cycle of Constructions

Abbreviated Register Specification
Thompson’s construction produces

r 0

r 1

r 2

r 8

r 9

… …

s0 sf

ε	

ε	

ε	

ε	

ε	

ε	

ε	

ε	

ε	

ε	

ε	

ε	

 ε	

ε	

ε	

ε	

ε	

ε	

ε	

ε	

…

minimal
DFA RE NFA DFA

The Cycle of Constructions

To make it fit, we’ve eliminated the ε-
transition between “r” and “0...9”.

Abbreviated Register Specification
The subset construction builds

This is a DFA, but it has a lot of states …

r
0

sf0

s0

sf1 1
sf2 2

sf9

sf8

…
9

8

minimal
DFA RE NFA DFA

The Cycle of Constructions

Abbreviated Register Specification
The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

r s0 sf

0,1,2,3,4,
5,6,7,8,9

minimal
DFA RE NFA DFA

The Cycle of Constructions

