
Rapidly Selecting Good Compiler Optimizations
using Performance Counters

John Cavazos1 Grigori Fursin2 Felix Agakov1 Edwin Bonilla1

Michael F.P. O’Boyle1 Olivier Temam2

Members of HiPEAC
1Institute for Computing Systems Architecture (ICSA)

School of Informatics, University of Edinburgh, UK
2ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud University,France

Abstract

Applying the right compiler optimizations to a particu-
lar program can have a significant impact on program per-
formance. Due to the non-linear interaction of compiler
optimizations, however, determining the best setting is non-
trivial. There have been several proposed techniques that
search the space of compiler options to find good solutions;
however such approaches can be expensive. This paper pro-
poses a different approach using performance counters as a
means of determining good compiler optimization settings.
This is achieved by learning a model off-line which can then
be used to determine good settings for any new program.
We show that such an approach outperforms the state-of-
the-art and is two orders of magnitude faster on average.
Furthermore, we show that our performance counter-based
approach outperforms techniques based on static code fea-
tures. Using our technique we achieve a 17% improve-
ment over the highest optimization setting of the commer-
cial PathScale EKOPath 2.3.1 optimizing compiler on the
SPEC benchmark suite on a recent AMD Athlon 64 3700+
platform.

1 Introduction

Automatically selecting the best set of compiler op-
timizations for a particular program is a difficult task
and there has been much previous work on automatically
searching for the best optimization settings [14, 22, 23, 29].
This previous work is based on iteratively enabling certain
optimizations, running the compiled program and, based on
its performance, deciding on a new optimization setting.
Panet al. [22] introduce a new algorithm calledcombined

elimination (CE) that was shown to outperform all previ-
ous search-based techniques in finding good optimization
settings with considerably fewer evaluations.

However, these pure search or “orchestration” ap-
proaches do not use prior knowledge of the hardware, com-
piler, or program and instead attempt to obtain this knowl-
edge online. Thus, every time a new program is optimized,
the system starts with no prior knowledge. In our experi-
ments, this means on average over 600 evaluations (com-
pile + run) to tune an application. In contrast, the technique
presented in this paper uses knowledge about a program’s
behavior to automatically select the best optimizations with
as little as 3 program evaluations. Specifically, we use the
performance counter values collected from a few runs of
the program as input to an automatically constructed model
which outputs a probability distribution of good compiler
optimizations to use. Using dynamic knowledge of how a
particular program runs on a particular platform, on a set
of benchmark suites we are able to achieve the same per-
formance or better as combined elimination, two orders of
magnitude faster on average. Thus, obtaining knowledge a-
priori (involving a one-off-costat the factory), we can sig-
nificantly speedup the searching of good optimization se-
quences for any new program. In contrast, “pure search”
techniques always obtain knowledge online and must do so
for any new program they optimize.

Performance counters have been extensively used for
performance analysis in explaining program behavior [10,
3]. One of the first papers to investigate how they could
be used systematically to select optimizations [24] showed
impressive performance gains. However, the heuristic used
was manually developed over a 12 month period using de-
tailed simulations. Furthermore, the optimizations selected
were also implemented by hand. A small change in the ar-

 0

 5

 10

 15

 20

 25

 30

 35

 40

L2
_T

C
A

L1
_T

C
H

L1
_T

C
M

F
P

_O
P

S
F

A
D

_I
N

S
F

M
L_

IN
S

L1
_T

C
A

L2
_T

C
H

L1
_I

C
R

L2
_I

C
A

L1
_I

C
A

L2
_I

C
H

L1
_I

C
H

L2
_D

C
W

L2
_D

C
R

L2
_D

C
A

L1
_D

C
A

L2
_D

C
H

L1
_D

C
H

T
O

T
_C

Y
C

R
E

S
_S

T
L

V
E

C
_I

N
S

B
R

_I
N

S
F

P
_I

N
S

B
R

_M
S

P
B

R
_T

K
N

H
W

_I
N

T
S

T
L_

IC
Y

L2
_S

T
M

L2
_L

D
M

L1
_S

T
M

L1
_L

D
M

T
LB

_T
L

T
LB

_I
M

T
LB

_D
M

F
P

U
_I

D
L

L2
_T

C
M

L2
_I

C
M

L2
_D

C
M

L1
_I

C
M

L1
_D

C
M

R
el

at
iv

e
to

 A
ve

ra
ge

 P
er

f C
nt

rs

181.mcf

Figure 1. Performance counter values for
181.mcf compiled with -O0 relative to the aver-
age values for the entire set of benchmark suite
(SPECFP,SPECINT, MiBench, Polyhedron).

FAST
PC Model

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

L2
_T

C
A

L1
_T

C
H

L1
_T

C
M

F
P

_O
P

S
F

A
D

_I
N

S
F

M
L_

IN
S

L1
_T

C
A

L2
_T

C
H

L1
_I

C
R

L2
_I

C
A

L1
_I

C
A

L2
_I

C
H

L1
_I

C
H

L2
_D

C
W

L2
_D

C
R

L2
_D

C
A

L1
_D

C
A

L2
_D

C
H

L1
_D

C
H

T
O

T
_C

Y
C

R
E

S
_S

T
L

V
E

C
_I

N
S

B
R

_I
N

S
F

P
_I

N
S

T
O

T
_I

N
S

B
R

_M
S

P
B

R
_T

K
N

H
W

_I
N

T
S

T
L_

IC
Y

L2
_S

T
M

L2
_L

D
M

L1
_S

T
M

L1
_L

D
M

T
LB

_T
L

T
LB

_I
M

T
LB

_D
M

F
P

U
_I

D
L

L2
_T

C
M

L2
_I

C
M

L2
_D

C
M

L1
_I

C
M

L1
_D

C
M

R
el

at
iv

e
to

 −
o0

 P
er

f C
nt

rs

181.mcf

Figure 2. Performance counter values of -Ofast
(FAST) and our scheme (PCModel) relative to -
O0 for each performance counter for 181.mcf.

chitecture would potentially require the entire process tobe
repeated. In contrast, our scheme is entirely automatic. It
uses machine learning to automatically build a model which
maps performance counters to good optimization options
without human intervention and is thus portable.

The use of learned models to guide the selection of op-
timizations has also received recent attention [1, 5, 27].
Stephensonet al. [27], for instance, use a genetic program-
ming approach to automatically learn individual compiler
optimizations, such as the register allocation spill heuristic,
within the Trimaran compiler. In this paper, however, we
consider the problem of determining the best settings for a
large number of optimizations within a highly-tuned com-
mercial compiler, PathScale EKOPAth 2.3.1 [25] whose
performance is as good as or better than Intel 9.0. We show
significant performance improvements over the highest op-
timization level for this compiler.

In our previous work [1], we used static code features
to obtain good optimizations for new programs being com-
piled. The static features were used to find the most similar
program from a set of previously explored programs. This
was used for estimating a distribution of good sequences
for the matching program, from which optimizations to ap-
ply for the new program were drawn. The idea is that opti-
mizations which performed well on a “similar” (previously
explored) program will work well for the new program be-
ing compiled. This approach worked well on multimedia
kernels on embedded processors, but as we show in Sec-
tion 5.3 it performs poorly on larger general purpose appli-
cations. In fact, there is little or no performance improve-
ment over the highest optimization level provided by the
PathScale compiler. The main reason is that static code fea-
tures, which essentially characterize local code constructs
such as loops, provide a poor global characterization once
aggregated over many such code sections. Furthermore,
code features are a poor mechanism to describe the dynamic

behavior of large control-flow intensive programs. We show
that a performance counter-based scheme overcomes these
challenges. Using performance counters to select good op-
timizations is attractive as it exploits knowledge of the pro-
gram’s behavior without requiring knowledge of the pro-
gramming language syntax.

This paper is organized as follows. The next section
provides a motivating example showing that performance
counters can be used to select good optimizations. Sec-
tion 3 describes the performance counters used in this pa-
per and how they can characterize program behavior. This
section also includes a brief description of how we use a
simple modelling technique,logistic regression[4], to auto-
matically learn a global optimizing heuristic. Section 4 de-
scribes the experimental setup and is followed in Section 5
by the experimental results and their analysis. This includes
a comparison between our scheme and both combined elim-
ination and random selection. We also compare against a
static feature-based modelling approach. This is followed
by a summary of related work and concluding remarks.

2 Motivation

The information obtained from performance counters is
a compact summary of a program’s dynamic behavior. In
particular, they summarize important aspects of a program’s
performance, e.g., cache misses or floating point unit uti-
lization. Our approach uses this information to automati-
cally select compiler optimization settings likely to improve
program performance.

This section looks at just one of the programs evaluated
in this paper to illustrate how such performance counters
can be used to select good compiler optimizations. As the
performance counter values are related to actual program
performance, they can be used by a modelling technique

Compiler Evaluations Execution time Speedup
-O0 1 40.2 1

-Ofast 1 32.3 1.24
CE 240 18.0 2.23

PC Model 3 17.2 2.33

Figure 3. The execution time and speedup
over -O0 for the best compiler setting ob-
tained using different schemes on 181.mcf.
The column labelled Evaluations shows the
number of times the code must be run to
achieve this level of performance by each
scheme.

(described in the next section) to select good optimization
settings. Our model examines performance counter values
of a new program and, using prior knowledge from previ-
ously examined programs, determines the optimization set-
ting most likely to result in a speedup and improved perfor-
mance counter values.

2.1 Performance Counters

Figure 1 illustrates the use of performance counters.
This graph shows the performance counter values for the
181.mcf benchmark relative to the average values for the
SPEC benchmark suite. These values were collected on an
AMD Athlon 64 3700+ processor using the commercially
available PathScale optimizing compiler. What is immedi-
ately apparent is that181.mcf is an unusual program -
having a much greater number of memory accesses per in-
struction than average - up to 38 times more in the case of
L2 store misses (L2STM). A learned model should iden-
tify this and enable transformations that reduce the impact
of cache accesses.

Figure 2 shows the performance counter values after
applying two optimization schemes, -Ofast (FAST), the
highest optimization setting available with PathScale and
the setting found by our performance counter model (PC-
Model). PCModel is able to significantly improve the use
of the L1 and L2 cache. This is shown in the third to the
last and the last bars of Figure 2 in the columns labelled
L1 TCM (L1 total cache miss) and L2TCA (L2 total cache
accesses). These bars show that the model is able to reduce
the number of L1 cache misses by 20% which has the effect
of reducing the number of L2 accesses by 20%. The -Ofast
setting, on the other hand, has no effect on these values.

2.2 Performance

Figure 3 shows the speedups obtained by -Ofast, CE,
and PCModel over -O0. -Ofast is able to achieve a 1.24

speedup over -O0 while PCModel gives a speedup of 2.33,
i.e., a speedup of 1.88 over -Ofast. It achieves this perfor-
mance improvement with just 3 evaluations using a learned
model trained offline. If we compare this to the performance
of combined elimination (CE) [22], our scheme gives a
slightly greater improvement. Furthermore, combined elim-
ination requires 240 evaluations on this benchmark. Using
our trained model, we are able to achieve greater perfor-
mance improvement over the state-of-the-art, approaching
two orders of magnitude fewer evaluations.

2.3 Transformations

Examining the transformations selected by PCModel, it
is apparent that locality enhancing loop optimizations have
been enabled. In effect, the automatically generated model
has learned that181.mcf has a problem with its memory
usage and has selected transformations to overcome this.
If, however, we examine the transformations selected by -
Ofast and PCModel we see that theyboth enable the loop
optimizer -LNO which is aimed at exploiting locality. On
closer inspection, the major difference is that our model de-
cides to turn on the -m32 flag, i.e., generate 32-bit code
rather than the default 64-bit for the AMD. It does this be-
cause the number of data cache accesses and branch instruc-
tions are high. Figure 1 shows that the data cache accesses
are relatively high (L1DCM and L2DCM) for this bench-
mark. Also, looking at the number of branch instructions
(BR INS) we see it is more than 2.5 times the average.

According to the AMD compiler manual [2] the -m32
option “can improve performance if your program has lots
of variables of the type long and/or pointers. As these data-
types are 32-bit in x86, this switch will reduce the memory
footprint of your program.” We note that -m32 is only use-
ful for a few programs, and our model decides based on
the dynamic characteristics (performance counters) of each
program when it should be applied. In fact, many manu-
facturers include the -m32 option in the SPEC “peak” flags
for some codes when using PathScale. By examining the
code of181.mcf we see it accesses its main data structure
through pointers in a loop. Also, it has a large number of
branches executed proportional to the number of total in-
structions due to small tight loops. Reducing the pointer
size, by using -m32, reduces the number of I-cache data
misses dramatically for181.mcf as can be seen in Fig-
ure 2.

Thus, our model has learned that data cache misses and
branch instructions (via the performance counter data) are
the critical characteristics of this program and suggests the
compiler convert pointers from 64-bit to 32-bit, because 64-
bit pointers are reducing the effective cache capacity and
memory bandwidth. This demonstrates the strength of au-
tomatic model construction. It has no a priori human bias

 0

 0.5

 1

 1.5

 2

 2.5

L2
_T

C
A

L1
_T

C
H

L1
_T

C
M

F
P

_O
P

S
F

A
D

_I
N

S
F

M
L_

IN
S

L1
_T

C
A

L2
_T

C
H

L1
_I

C
R

L2
_I

C
A

L1
_I

C
A

L2
_I

C
H

L1
_I

C
H

L2
_D

C
W

L2
_D

C
R

L2
_D

C
A

L1
_D

C
A

L2
_D

C
H

L1
_D

C
H

T
O

T
_C

Y
C

R
E

S
_S

T
L

V
E

C
_I

N
S

B
R

_I
N

S
F

P
_I

N
S

B
R

_M
S

P
B

R
_T

K
N

H
W

_I
N

T
S

T
L_

IC
Y

L2
_S

T
M

L2
_L

D
M

L1
_S

T
M

L1
_L

D
M

T
LB

_T
L

T
LB

_I
M

T
LB

_D
M

F
P

U
_I

D
L

L2
_T

C
M

L2
_I

C
M

L2
_D

C
M

L1
_I

C
M

L1
_D

C
M

R
el

at
iv

e
to

 A
ve

ra
ge

 P
er

f C
nt

rs

SPEC FP

Figure 4. Performance counter values for SPEC
FP average values for the entire benchmark
suite compiled with -O0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

L2
_T

C
A

L1
_T

C
H

L1
_T

C
M

F
P

_O
P

S
F

A
D

_I
N

S
F

M
L_

IN
S

L1
_T

C
A

L2
_T

C
H

L1
_I

C
R

L2
_I

C
A

L1
_I

C
A

L2
_I

C
H

L1
_I

C
H

L2
_D

C
W

L2
_D

C
R

L2
_D

C
A

L1
_D

C
A

L2
_D

C
H

L1
_D

C
H

T
O

T
_C

Y
C

R
E

S
_S

T
L

V
E

C
_I

N
S

B
R

_I
N

S
F

P
_I

N
S

B
R

_M
S

P
B

R
_T

K
N

H
W

_I
N

T
S

T
L_

IC
Y

L2
_S

T
M

L2
_L

D
M

L1
_S

T
M

L1
_L

D
M

T
LB

_T
L

T
LB

_I
M

T
LB

_D
M

F
P

U
_I

D
L

L2
_T

C
M

L2
_I

C
M

L2
_D

C
M

L1
_I

C
M

L1
_D

C
M

R
el

at
iv

e
to

 A
ve

ra
ge

 P
er

f C
nt

rs

MiBench

Figure 5. Performance counter values for
MiBench average values for the entire bench-
mark suite compiled with -O0.

about what are important program characteristics or trans-
formations – it learns solely based on empirical evidence.

This example show that performance counters can be
used by a model to select optimizations that improve per-
formance by examining the values of the counters. Further-
more, it can find good sequences rapidly. The next sec-
tions describe the performance counters used in this paper
in greater detail and explains the technique used to automat-
ically build an automatic optimizing heuristic.

3 Optimization selection based on
performance counters

This section first looks at the performance counters used
in this paper and illustrates that they can be used to char-
acterize well-known properties of SPEC FP and MiBench.
This is followed by a description of the modelling technique
we use which is based on logistic regression. This is a stan-
dard machine learning technique which can learn whether
an optimization is good or bad for a certain set of perfor-
mance counter values and associates a probability with this
decision.

3.1 Dynamic characterization of program
behavior using performance counters

Modern processors are often equipped with a special set
of registers that allow for measuring performance counter
events with no disruption to the running program. These
events can describe several characteristics of the running
program, such as, cache hits and misses and branch pre-
diction statistics. On the AMD Athlon, there are 4 regis-
ters for measuring performance counter events, but up to
60 different events can be measured. It is possible to col-
lect anywhere between 4 and 60 types of events per run by
multiplexing the use of the special registers. Since we aim

at broadly characterizing the program behavior rather than
studying a particular performance phenomenon, we have
collected all 60 events. Using multiplexing, we collected
all 60 performance counter values of a benchmark in 3 runs.
The performance counters used in this study are shown in
Table 1. In order to use the collected statistics as inputs to
our model, we normalized the value of each performance
counter by TOTINS, the total number of instructions exe-
cuted. Normalizing the performance counters is important
since it allows us to generalize across different benchmarks
regardless of how long each benchmark executes.

Table 1 also presents the average values for each counter
across our benchmark suites. As can be seen, some counter
events are relatively common, such as L1 data cache misses
(L1 DCA) while others are relatively rare, such as instruc-
tion TLB misses (TLBIM).

To see how the performance counters can character-
ize program behavior, we have examined two benchmark
suites, SPEC FP and MiBench, out of the four benchmark
suites we evaluated (SPEC INT, SPEC FP, MiBench, Poly-
hedron). We plotted the performance counter values for
each of these suites relative to the average values for the
entire collection of benchmarks. These values are shown in
Figures 4 and 5 where the values are collected when com-
piled with -O0. It is interesting to see that MiBench exer-
cises the cache hierarchy much less than SPEC FP which
can be seen by the much larger number of L2 cache misses
(L2 TCA) for SPEC FP. Also, MiBench has a relatively
large number of branches compare to SPEC FP, almost
twice as many, and many of the branches in MiBench are
mispredicted, while more branches for SPEC FP codes are
easier to predict (BRMSP).

These results are not surprising and have been discussed
in prior work. However, these graphs show that there are
important aspects of program behavior that can be captured
using performance counters. Furthermore, this information
can serve as an input to a model that selects compiler op-

Performance Counter Name Meaning Average Values

HW INT Hardware interrupts 0.000
RESSTL Cycles stalled on any resource 0.660
STL ICY Cycles with no instruction issue 0.035
TOT CYC Total cycles 1.099
TOT INS Instructions completed 1.000
VEC INS Vector/SIMD instructions 0.017

Floating Point Instruction Statistics

FAD INS, FML INS, FPINS, FPOPS, FPUIDL Floating point: Adds, Multiplies, Total Insns, Total
Ops, Cycles Idle

0.030, 0.036, 0.066, 0.066, 0.473

Branch Instruction Statistics

BR INS, BR MSP, BRTKN Branch instructions, Cond. Branches Mispredicted,
Cond. Branches Taken

0.047, 0.002, 0.035

Level 1 Cache Statistics

DCA, DCH, DCM Data Cache: Accesses, Hits, Misses 0.475, 0.472, 0.004
ICA, ICH, ICM, ICR Instruction Cache: Accesses, Hits, Misses, Reads 0.316, 0.315, 0.0006, 0.315
LDM, STM Load Misses, Store Misses 0.0015, 0.0016
TCA, TCH, TCM Total Cache: Accesses, Hits, Misses 0.789, 0.790, 0.004

Level 2 Cache Statistics

DCA, DCH, DCM, DCR, DCW Data Cache: Accesses, Hits, Misses, Reads, Writes0.003, 0.003, 0.0005, 0.0015, 0.0016
ICA, ICH, ICM Instruction Cache: Accesses, Hits, Misses 0.0006, 0.0006, 0.000002
LDM, STM Load Misses, Store Misses 0.0004, 0.00008
TCA, TCH, TCM Total Cache: Accesses, Hits, Misses 0.004, 0.003686, 0.0005

TLB Statistics

TLB DM Data translation lookaside buffer misses 0.0002
TLB IM Instruction translation lookaside buffer misses 0.000001
TLB TL Total translation lookaside buffer misses 0.0002

Table 1. Performance counters used. The first column lists th e performance counter acronyms, the
second column gives a description, and the third column give s the average counter values normal-
ized by total instructions executed across the entire set of benchmark suites.

timizations. Using these statistics our model can learn to
apply optimizations that will reduce the impact of cache
misses for SPEC FP or branch misses for MiBench. The
next section shows how we can use this information to se-
lect good optimizations automatically using machine learn-
ing.

3.2 Automatically learning a good model

The goal of model construction is to learn a mapping
x→ t between a set of performance counters featuresx, and
a set of good optimizationst. Herex is a vector of the 60
normalized performance counters values, andt is a vector
mask indicating which transformations are used in the se-
quence (i.e., each vector entry corresponds to a transforma-
tion, andt corresponds to a sequence of 0/1, 1 meaning the
transformation is used). The goal of the model is to pre-
dict the best possiblet for a program described by features
x. We emphasize this is not the phase-ordering problem.
That is, our models do not find the best order in which to
apply transformations. While this is an interesting problem,
most compilers do not allow changing arbitrarily the order
optimizations are applied.

In the following paragraphs, we first describe how the
training set required for offline training is collected which
is then used to construct a model. We then describe how

this model is used.

Training set

At first, a large number (500) of transformation sequences
are randomly sampled and applied to each program and the
speedup for each of these sequences is recorded. Also, we
require three additional runs of the program to collect the
performance counter values. The runs where the speedup,
relative to -Ofast, is smaller than 1 are filtered out, and
the remaining data forms the training set. Then, we use
the standardLeave One Out Cross-Validationprocedure for
evaluating our models. That is, the models are trained on
N− 1 benchmarks and tested on theNth benchmark that
has been left out. In our experiments,N = 57, therefore our
models were trained with 56× 500= 28000 training data
points. The cost of obtaining 28000 training points is ex-
pensive, however it is a one-off-cost incurred offline at the
factory.

Model construction

The model is now built using the training set. The predic-
tive modelling process is summarized in Figure 6. We use
a probabilistic approach for predictive modelling, where we
determine for each optimizationti the probabilitypi that it

should be evaluated. The technique used islogistic regres-
sion [4]. Intuitively, it attempts to find the set of perfor-
mance counter values for which enabling the transforma-
tion ti leads to improved performance in the training set and
also determines when disabling a transformation is prefer-
able. In effect, it tries to draw a hyperplane in the multi-
dimensional hardware counter space between those occa-
sions when the transformation is best enabled and those
occasions when it is best disabled. Borderline cases near
the hyperplane have a probability,p, around 0.5 associ-
ated with them. Those which should be definitely enabled
have p >> 0.5 and those which should be definitely dis-
abled havep << 0.5. This is a standard machine learning
technique and is computationally inexpensive - see [4] for a
more detailed description. Note that gathering training data
and construction of the model is an offline process, that is,
it would take place “at the factor” before the compiler is
shipped to the costumer.

Using the model

Given a new target benchmark, we first extract the perfor-
mance counter featuresx by running the benchmark. This
requires 3 runs of the benchmark. This features vector is
then fed as input to our trained models which then outputs
a probabilitypi for each transformationti showing whether
each transformation should be applied or not. We then sam-
ple from this probability distribution to generate a suitable
compiler optimization setting. The program is then opti-
mized based on the transformations selected and the new
speedup is measured as shown in Figure 6. An advantage
of this technique is that we can sample as many times as
we wish to generate different settings. We later show in
Section 5.1 that very few samples are required to achieve
good performance. Furthermore, increasing the number of
samples which are evaluated increases the performance ob-
tained.

4 Experimental Setup

This section briefly describes the experimental setup.
First, the hardware platform, OS, and optimizing compiler
are described. Second, we describe the benchmarks and the
optimizations available for selection.

4.1 Platform

We perform all experiments on a cluster of AMD Athlon
64 3700+ 2.4GHz processors with an L1 cache of 64KB,
an L2 cache of 1MB, 3GB of memory, and each running
Mandriva Linux 2006. We use the latest PAPI 3.2.1 hard-
ware counter library [21] and PAPIEx 0.99rc2 tool to collect

hardware performance counters for the benchmarks. Ta-
ble 1 has a brief description of all the counters we use. PA-
PIEx works in the multiplexing mode allowing us to col-
lect a large number of counters in one run. We collect
performance counters using level -O0 so that characteris-
tics of a benchmark are not masked by higher optimization
levels (e.g., -Ofast). We use the latest open-source com-
mercial PathScale EKOPath Compiler 2.3.1 [25] with the
-Ofast flag, which we refer to as ourbaseline. This com-
piler is tuned to AMD processors and on average performs
similarly or better than the Intel 9.0 compilers on the same
platform.

In order to evaluate the stability of our measurements,
we have executed multiple runs of each benchmark using
-Ofast and have found there to be very little variance in
the execution time, on average less than 0.3%.

4.2 Benchmarks

We evaluate our approach on widely-used benchmark
suites written in C, C++, Fortran and Fortran 90. These are
SPEC 95 FP (ref dataset), SPEC 2000 FP and INT (train
dataset), Polyhedron 2005 [18], and MiBench [13]. We
used train inputs for the SPEC 2000 benchmarks due to
the large number of experiments we ran, on average over
1000 for each benchmark. SPEC and Polyhedron bench-
marks are relatively large programs used for performance
evaluation of servers and for comparison of performance of
various compilers on these servers. These benchmarks are
used by PathScale to tune their compiler suite. MiBench is
a free, commercially representative embedded benchmark
suite consisting of a large number of applications and ker-
nels. We believe that all these programs cover a large vari-
ety of different dynamic behaviors. In the experimental sec-
tion, we partition the benchmark results into SPEC, which
includes allSPECbenchmarks andOthers, which includes
MiBench and Polyhedron.

4.3 Transformations

The PathScale EKOPath compiler suite includes a
PathOpt tool that randomly selects from a variety of global
compiler settings. PathOpt iterates for a user-specified
amount of evaluations and is used to iteratively find the best
optimization settings for a program on a targeted platform.
We select 121 flags that are known to influence performance
and use PathOpt to apply 500 random settings of these flags
on all benchmarks. We also allow our model to generate
sequences with optimizations that are mutually exclusive,
e.g, different unroll factors. When this happens, the com-
piler simply ignores all but the last option. We could have
easily adapted our models to handle this directly (e.g., us-
ing a soft-max approach where the optimization with the

N
ew

 p
ro

g
ra

m

predicted set of best
transformations

Architecture

 (t A
1 t A

2 … t A
M)

 (t
B
1 t B

2 … t B
M)

TB (baseline option) X

performance
counter features
for the baseline

PCModel

(b) Inference using a predictive model. Given a new benchmark, we first extract performance
counter features. These features are then fed into our trained models which then output a set of
transformation sequences to apply to the new benchmark.

…

best
speedups

…

sA

sB

P
ro

g
ra

m
s

(t
ra

in
in

g
 s

et
)

 bes t set of transformations
(option sequences)

Architecture (t

1 t 1

2 … t 1
M)

 (t 2
1 t 2

2 … t 2
M)

…

 (t
N
1 t N

2 … t N
M)

…

TB (baseline option)

s1

s2

sN

Speedups

…

X

 performance
counter features
for the baseline

PCModel

(a) Summary of the predictive modelling procedure. We use the features x, the transformations
t, and (implicitly) the speed-ups {s} for constructing the training data < x , t >. We then
evaluate the mapping from the performance counters to the transformation sequences x

�
 t by

fitting a probabilistic model to the training set.

Figure 6. Training and using the models.

highest probability is chosen), however this would make it
harder to compare with combined elimination and random.
The speedups for each setting were used along with perfor-
mance hardware counters as training data for our logistic
regression model.

5 Experimental results

In this section we evaluate our proposed technique in a
number of ways. Initially, we report the performance im-
provement achieved by our technique compared to com-
bined elimination and the number of evaluations each
scheme needs to achieve such a level of performance. Since
we use a probabilistic model we have generated our re-
sults for multiple trials. For random selection, we have also
generated our results for multiple trials. This is then fol-
lowed by a comparison of the performance of a number
of different schemes with respect to the number of eval-
uations available. Here, we compare combined elimina-

tion (CE), our models (PCModel), and a random selec-
tion (RAND) approach which generates random transfor-
mation sequences. RAND is implemented using a pseudo-
random number generator to choose which optimizations to
apply in the sequence. Each optimization has a .5 proba-
bility of being used in each sequence. We then provide a
study examining the use of static code features as a means
of selecting compiler optimizations. Finally, we perform
some analysis to evaluate the most important performance
counter features. All results in this section, unless other-
wise stated, are relative to -Ofast, the highest optimization
level available in PathScale. Note, all of our techniques
(CE,PCModel,Random) start with the -Ofast as their initial
sample, so none of our techniques can perform worse than
-Ofast. We emphasize that our models are built using leave-
one-out cross validation, so the models are not trained using
any information of the programs it is optimizing.

CE
PC Model

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

av
er

ag
e

30
1.

ap
si

30
0.

tw
ol

f
25

6.
bz

ip
2

19
7.

pa
rs

er
19

1.
fm

a3
d

18
9.

lu
ca

s
18

8.
am

m
p

18
6.

cr
af

ty
18

3.
eq

ua
ke

18
1.

m
cf

17
9.

ar
t

17
8.

ga
lg

el
17

7.
m

es
a

17
5.

vp
r

17
3.

ap
pl

u
17

2.
m

gr
id

17
1.

sw
im

16
8.

w
up

w
is

e
16

4.
gz

ip
14

6.
w

av
e5

14
1.

ap
si

12
5.

tu
rb

3d
11

0.
ap

pl
u

10
7.

m
gr

id
10

4.
hy

dr
o2

d
10

3.
su

2c
or

10
2.

sw
im

10
1.

to
m

ca
tv

R
el

at
iv

e
to

 −
of

as
t

Combined Elimination (CE) and PC Model

Figure 7. The speedup of Combined Elimina-
tion (CE) versus our model (PCModel) for the
SPEC benchmarks relative to the performance
of -Ofast. The number of evaluations used by
PCModel is limited to 25 while CE uses on aver-
age 609.

CE
PC Model

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

av
er

ag
e

tff
t

te
st

_f
pu

gs
m

C
R

C
32

ad
pc

m
_c

sh
a

rij
nd

ae
l

rn
flo

w
pr

ot
ei

n
pi

x
st

rin
gs

ea
rc

h
pa

tr
ic

ia
di

jk
st

ra
m

db
x

lin
pk

ga
s_

dy
n

fa
tig

ue
dr

ag
do

du
c

la
m

e
jp

eg
_d

jp
eg

_c
ch

an
ne

l
su

sa
n_

s
su

sa
n_

e
su

sa
n_

c
bi

tc
ou

ntai
r

ac

R
el

at
iv

e
to

 −
of

as
t

Combined Elimination (CE) versus PC Model

Figure 8. The speedup of Combined Elimination
(CE) versus our model (PCModel) for the Other
(non-SPEC) benchmarks relative to the perfor-
mance of -Ofast. The number of evaluations
used by PCModel is limited to 25 while CE uses
on average 609.

5.1 Speedup and number of evaluations
for PCModel and CE

Figure 7 shows the speedups of our model and combined
elimination relative to -Ofast on the SPEC benchmarks. PC-
Model achieves a speedup of 1.17 on average compared to
1.09 by CE. In this example, we have set the number of
evaluations selected by our model to 25 evaluations. How-
ever, CE needs on average 609 evaluations of the program
to achieve this. We note that both PCModel and CE can
find significant improvements for several programs. For in-
stance, PCModel finds improvements of 10% or more over
-Ofast for half (14 of 28) of the SPEC benchmarks. Thus we
are able to achieve better performance than CE with consid-
erable fewer evaluations. In fact, our model achieves the
same performance as CE on the SPEC benchmarks in only
3 iterations. Figure 8 shows a similar comparison for the
other benchmarks. In this case both schemes give approx-
imately the same performance improvement of 1.17. Fig-
ure 9 however, shows that CE needs a large number of eval-
uations to achieve this performance level, ranging form 240
evaluations up to 1550 with an average of 609 needed.

It is not suprising that the CE algorithm requires a large
number of evaluations. The CE algorithm first evaluates
the effect of each of the optimizations by turning them off
one at a time. This is 121 evaluations for the entire set of
optimizations we explored. Then it “combines” the knowl-
edge gathered by these initial evaluations to choose opti-
mizations that lead to better improvement when turned off.
After several iterations of turning off single optimizations it
converges to a setting where no additional flags turned off
improve performance. We refer the reader to the combined
elimination paper [22] for further details of the algorithm.

5.2 Performance versus number of
evaluations for different schemes

To give a different view of how our model performs we
considered the performance it achieves as a function of the
number of evaluations we select from it. Figure 10 shows
the performance achieved averaged across all the bench-
marks versus the number of evaluations allowed. We also
compare our approach relative to combined elimination and
random selection. For each technique, the more evaluations
allowed the better the performance achieved. Our model
achieves the same performance after 60 evaluations as ran-
dom does after 200 evaluations. Surprisingly, random se-
lection does quite well! Other papers [15, 1] have reported
on the excellent performance of pure random search.

CE’s initial step involves turning off each optimization
in turn which gives a small speedup of 1.04 across the first
121 evaluations. Only after all 121 optimizations have been
evaluated does it improve its behavior by “combining” its
results. However, after 200 evaluations it only achieves the
same performance as that achieved by our model after 2
evaluations. Random selection achieves this in just 10 eval-
uations. RAND and CE both found an improvement of 17%
over -Ofast using 200 and 60 iterations, respectively. CE
finds less improvement at 12%. We note that for these ex-
periments the CE algorithm was run to completion. On the
other hand, given the nature of the RAND and PCModel
algorithms, we could continue to construct sequences with
these algorithms until we are satisfied with the optimizied
performance of our application. Both, RAND and PCModel
whould reach the same maximum available speedup in the
limit, however PCModel should reach that speedup sooner.

We believe RAND and PCModel perform well in our ex-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

P
C

M
od

el
--

--
--

--
--

-
av

er
ag

etff
t

te
st

_f
pu

gs
m

C
R

C
32

ad
pc

m
_csh
a

rij
nd

ae
l

rn
flo

w
pr

ot
ei

n
pi

x
st

rin
gs

ea
rc

h
pa

tr
ic

ia
di

jk
st

ra
m

db
x

lin
pk

ga
s_

dy
n

fa
tig

ue
dr

ag
do

du
c

la
m

e
jp

eg
_d

jp
eg

_c
ch

an
ne

l
su

sa
n_

s
su

sa
n_

e
su

sa
n_

c
bi

tc
ou

ntai
r

ac
30

1.
ap

si
30

0.
tw

ol
f

25
6.

bz
ip

2
19

7.
pa

rs
er

19
1.

fm
a3

d
18

9.
lu

ca
s

18
8.

am
m

p
18

6.
cr

af
ty

18
3.

eq
ua

ke
18

1.
m

cf
17

9.
ar

t
17

8.
ga

lg
el

17
7.

m
es

a
17

5.
vp

r
17

3.
ap

pl
u

17
2.

m
gr

id
17

1.
sw

im
16

8.
w

up
w

is
e

16
4.

gz
ip

14
6.

w
av

e5
14

1.
ap

si
12

5.
tu

rb
3d

11
0.

ap
pl

u
10

7.
m

gr
id

10
4.

hy
dr

o2
d

10
3.

su
2c

or
10

2.
sw

im
10

1.
to

m
ca

tv

Ite
ra

tio
n

C
ou

nt

Combined Elimination and PC Model Iterations

Figure 9. The number of evaluations of the CE algorithm per be nchmark. The mininum evaluations
is 240 (181.mcf), maximum is 1562 (fatigue), and the average is 609. We compared CE to PCModel
with an evaluation count 25 (far right).

periments because the search space has many good points.
However, in certain scenarios it is possible that CE could
outperform RAND (and models trained with RAND data,
such as PCModel). CE’s main goal is toeliminateopti-
mizations that degrade performance. If we encouter an op-
timization space with many optimizations that degrade per-
formance of a benchmark, it would take a large number of
iterations for RAND to construct a sequence with none (or
few) of these degrading optimizations.

5.3 Static versus dynamic features

As mentioned in the introduction, we previously used a
model-based approach [1] to characterize programs using
static code features. In this section, we quantitatively com-
pare the merit of static (code) versus dynamic (performance
counter) features using the same number of evaluations. In
previous work [1], we applied this approach to the UTDSP
benchmarks, which are small embedded kernels often con-
taining only a single loop nest with affine array accesses.
Here, we extracted the same code features for several of the
SPEC INT benchmarks, which are large control-flow inten-
sive programs. We also used a K-nearest neighbor approach
and built IID distributions similar to what we used in our
previous work to be as fair as possible. We choose neigh-
bors using either static code features or dynamic perfor-

mance counter features and drew samples from the neigh-
bor’s IID distribution to apply to a new program.

The results of this experiment are shown in Figure 11.
The static code feature-based approach finds some improve-
ment in 4 of the 7 programs achieving an average speedups
of just 1.01 when compared to -Ofast. In contrast, our
performance counter model significantly improves over the
static code feature-based approach giving a speedup aver-
age of 1.08 over -Ofast. The graph shows performance
counters are significantly better for characterizing large
programs with complex control flow, e.g.,181.mcf and
186.crafty.

5.4 Analysis of the importance of the
performance counters

The goal of this analysis is to understand which perfor-
mance counters are most important for predicting good opti-
mization sequences. The fundamental objective in this con-
text is mutual informationbetween asubsetof the perfor-
mance counters and good optimization sequences (for defi-
nition of mutual information, see e.g. [19]). Our goal was to
maximize the mutual information for subsets of the retained
features.

In general, it is intractable to compute the mutual infor-
mation exactly, therefore approximations need to be consid-

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1 10 100 1000

S
pe

ed
up

Number of Evaluations

Performance versus Number of Evaluations (PC Model, CE, RAND)

PC Model
RAND

CE

Figure 10. The speedup of Combined Elimina-
tion (CE), PCModel, and random selection aver-
aged across all benchmarks versus the number
of program evaluations used.

STATIC
DYNAMIC

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

av
er

ag
e

30
0.

tw
ol

f

25
6.

bz
ip

2

19
7.

pa
rs

er

18
6.

cr
af

ty

18
1.

m
cf

17
5.

vp
r

16
4.

gz
ip

R
el

at
iv

e
to

 −
of

as
t

Static vs Dynamic Features

Figure 11. Performance of SPEC INT 2000
Benchmarks using static code features and dy-
namic features.

ered. For our analysis we applied a novel subset-selection
approach which greedily maximizes the Gaussian approx-
imation of the mutual information. For training data con-
taining one good optimization sequence per benchmark, we
found that over 95% of the total information (if all features
are retained) was typically contained in just 15 performance
counters. In contrast, conventional approximations disre-
garding interactions between the inputs (e.g. [28]) would
typically require twice as many features to retain the same
amount of information, which in our case is not much bet-
ter than random selection (see Figure 12left). Interestingly,
while the choice of the informative features generally de-
pends on the training data, we found that there was a lot of
overlap between the performance counters found for various
good transformation sequences (typically with one or two
unique features per training set). Figure 12right shows in-
formative performance counters for training sequences con-
structed with the CE algorithm.

6 Related Work

Parelloet al. [24] presents a systematic, but manual it-
erative approach for program optimization using dynamic
features. At each iteration, performance counters are used
to identify a performance anomaly of a program and a set
of program transformations is suggested to solve this prob-
lem. Then the transformed program is run again to detect
further performance anomalies. The process is manual and
can take several weeks per benchmark. Our technique is
fully automated and can generate heuristics to predict good
optimizations in seconds.

In the area of predictive modelling, Zhaoet al. use man-
ually constructed cost/benefit models to predict whether to
apply PRE or LICM[34]. They achieve 1% to 2% improve-
ment over always applying an optimization, but at a cost of

greatly increasing compilation time (by up to 68%). Their
models appear to be quite complicated and have to be manu-
ally constructed. Our models, on the other hand, are simple
and automatically constructed using machine learning.

During the past several years, the benefits of iterative
compilation have been widely reported [15, 8, 9, 11, 14].
Iterative compilation is able to find optimization sequences
that out-perform the highest optimization settings in com-
mercial compilers and when applied to library subroutines
they find solutions that compare favorably with highly-
optimized hand-tuned vendor libraries [31, 12, 26, 30].
However, iterative compilation requires searching a com-
binatorially large space defined by the optimizations of in-
terest. This search can take several days to weeks depend-
ing on the running time of the program, speed of the com-
piler and target architecture, and thoroughness of the search.
There have been a number of papers focusing on reducing
the cost of iterative optimization.

Kulkarni et al. [16] introduce the VISTA system, an
interactive compilation system which concentrates on re-
ducing compilation time. This system uses a variety of
techniques to reduce the number of different compilation
sequences evaluated. Their system stores a representation
of each program compiled then detects when identical or
equivalent code has been generated and only executes code
that has not been previously generated. They also prohibit
specific optimizations and optimization sequences from be-
ing performed if it is unlikely that these optimizations will
not change the code. These techniques are only effective
when programs are extremely small, such as those used in
embedded domains.

Kulkarni et al. [17] also introduce techniques to allow
exhaustive enumeration of all distinct function instances
that would be produced from the different phase-orderings
of 15 optimizations. This exhaustive enumeration allowed
them to construct probabilities of enabling/disabling inter-

2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Retained PCs

I(
{x

},
t)

Feature Selection by Information Maximization

Gaussian I({x},t)

Gaussian I(x
i
,t)

Quantized I(x
i
,t)

Uniform

Most Informative Performance Counters

1) L1 TCA 2) L1 DCH 3) TLB DM
4) BR INS 5) RESSTL 6) TOT CYC
7) L2 ICH 8) VEC INS 9) L2 DCH

10) L2 TCA 11) L1 DCA 12) HW INT
13) L2 TCH 14) L1 TCH 15) BR MS

Figure 12. Analysis of the importance of the performance cou nters. The data contains one good opti-
mization sequence per benchmark. Left: Approximate amount of information retained in the selected
features. Top curve: our method; lower curves: simpler heur istics. Conventional approach [28]
which uses binning and ignores input interactions (dash-do tted curve) is comparable with the uni-
form random selection. Right: 15 most informative performance counters sorted in the orde r of the
descending importance.

actions between the different optimization passes. Using
these probabilities, they constructed aprobabilistic batch
compilerthat determined which optimization should be ap-
plied next depending on which one had the highest proba-
bility of being enabled. This method however does not con-
sider the benefits each optimization can potentially provide.
In contrast, we train our model based on the impact of opti-
mizations applied, and therefore our technique learns which
optimizations are beneficial to apply to “unseen” programs
with similar characteristics.

Another system to speedup iterative compilation was
recently introduced by Cooperet al. called ACME [7].
ACME utilizes a technique called estimated virtual execu-
tion (EVE) which estimates changes to the execution counts
of basic blocks when an optimization that changes the CFG
is performed. This is done by inserting a pass into the opti-
mization sequence after each invocation of a CFG-changing
optimization and fixes the basic block counts based on the
changes. They can then model the advantages and disad-
vantages of applying optimizations by multiplying the num-
ber of instructions in a block by its dynamic frequency then
summing over all blocks. This technique can estimate the
performance of very simple models, however this method
is vastly inaccurate when estimating the performance of to-
day’s complex machines, especially out-of-order issue pro-
cessors. It also requires significant changes to be made to
each optimization in a compiler.

Triantafyllis et al. [29] develop an alternative approach
to reduce the total number of evaluations of a new program.
Here the space of compiler options is examined off-line on
a per function basis and the best performing ones are clas-
sified into a small tree of compiler options. When compil-
ing a new program, the tree is searched by compiling and
executing the best path in the tree. As long as the best se-
quences can be categorized into a small tree, this proves to

be a highly effective technique.

Pan et al. [22] develop an algorithm calledcombined
eliminationwhich selectively turns off optimizations until
the best performance is found for a new application. This al-
gorithm was compared to other algorithms for tuning com-
piler settings [14, 29] and was shown to achieve the same or
better performance as these algorithms while dramatically
reducing the tuning time. In a recent paper [23], they parti-
tion a program intotuning sectionsand then use combined
elimination to find the best combination of optimizations
for each of these tuning sections. By using rating methods,
the authors can evalute several different optimization set-
tings for a tuning section during one run of the program.
They are able to reduce the time to find good optimization
settings from hours to minutes. However, the techniques of
partitioning a program and rating methods are orthogonal to
the particular search algorithm used, therefore we could as
well use our models to find good sequences even faster.

Yotov et al.[32] describe a model-based approach to op-
timize BLAS libraries that can is effective as empirical eval-
uation. In a later paper [33], they refine analytical models
based on the results of the empirical search for the ATLAS
library. A local neighborhood search around the best found
points is used to further improve the solutions and perform
comparable to the ATLAS global search strategy. However,
the analytical models require manual tuning and are com-
plicated to design.

Cooperet al. [8] use genetic algorithms to solve the
compilation phase-ordering problem. They were concerned
with finding “good” compiler optimization sequences that
reduced code size. Their technique was successful at reduc-
ing code size by as much as 40%. Unfortunately, their tech-
nique is application-specific. That is, a genetic algorithm
has toretrain for each program to decide the best optimiza-
tion sequence for that program.

Several researchers have also looked at using machine
learning to construct heuristics that control a single opti-
mization. Stephensonet al. [27] used genetic program-
ming (GP) to tune heuristic priority functions for three com-
piler optimizations: hyperblock selection, register alloca-
tion, and data prefetching within the Trimaran’s IMPACT
compiler. For two optimizations, hyperblock selection and
data prefetching, they achieved significant improvements.
However, a closer look at the results indicate that all the
improvement was obtained from the initial population indi-
cating that these two pre-existing heuristics were not well
tuned. For the third optimization, register allocation, they
were able to achieve on average only a 2% increase over the
manually tuned heuristic.

Cavazoset al. [5] describe an idea of using supervised
learning to control whether or not to apply instruction
scheduling. They induced heuristics that used features of
a basic block to predict whether scheduling would benefit
that block or not. Using the induced heuristic, they were
able to reduce scheduling effort by as much as 75% while
still retaining the effectiveness of scheduling all blocks.

Monsifrot et al. [20] use a classifier based on decision
tree learning to determine which loops to unroll. They
looked at the performance of compiling Fortran programs
from the SPEC benchmark suite using g77 for two different
architectures, an UltraSPARC and an IA64. They showed
an improvement over the hand-tuned heuristic of 3% and
2.7% over g77’s unrolling strategy on the IA64 and Ultra-
SPARC, respectively.

These results highlight the diminishing results obtained
when only controlling a single optimization and highlight
the need to control the application of multiple compiler op-
timizations.

Recently, Cavazoset al. [6] describe using static code
features and supervised learning to control several opti-
mizations to apply during method compilation in a JIT com-
piler. Since Java methods are typically small, static code
features were successfully used to characterizing them. In
future work, we will compare static versus dynamic fea-
tures to predict which optimizations to apply to local code
segments.

7 Conclusions

In this paper we address the problem of predicting good
compiler optimizations by using performance counters to
automatically generate compiler heuristics. We do this by
using machine learning techniques that predict good code
transformations to apply given a program’s performance
counter features. Our technique automates the tuning pro-
cess and eliminates the need for manual experimentation.
Additionally, the heuristics induced by these techniques can
generalize to programs that have not been seen before. Us-

ing performance counters allows us to apply transforma-
tions that will benefit the program being compiled while
avoiding optimizations that will degrade performance. Us-
ing our models, we can achieve a 10% average speedup over
the highest optimization setting in the PathScale compiler
on SPEC benchmarks on a recent AMD Athlon much faster
than the current state-of-the-art pure search techniques.

References

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,
M. OBoyle, J. Thomson, M. Toussaint, and C. Williams.
Using machine learning to focus iterative optimization. In
Proceedings of the International Symposium on Code
Generation and Optimization, pages 295–305, 2006.

[2] AMD. Compiler usage guidelines for 64-bit operating
systems on amd64 platforms. http://www.amd.com/us-
en/assets/contenttype/whitepapersand tech docs/32035.pdf,
2006.

[3] R. Azimi, M. Stumm, and R. W. Wisniewski. Online
performance analysis by statistical sampling of
microprocessor performance counters. InICS ’05:
Proceedings of the 19th annual international conference on
Supercomputing, pages 101–110, New York, NY, USA,
2005. ACM Press.

[4] C. M. Bishop.Neural Networks for Pattern Recognition.
Oxford University Press, Oxford, UK, 1996.

[5] J. Cavazos and J. E. B. Moss. Inducing heuristics to decide
whether to schedule. InProceedings of the ACM SIGPLAN
’04 Conference on Programming Language Design and
Implementation, pages 183–194, Washington, D.C., June
2004. ACM Press.

[6] J. Cavazos and M. O’Boyle. Method-specific dynamic
compilation using logistic regression. InProceedings of the
ACM SIGPLAN ’06 Conference on Object Oriented
Programming, Systems, Languages, and Applications,
Portland, Or., October 2006. ACM Press.

[7] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves,
D. Subramanian, L. Torczon, and T. Waterman. Acme:
adaptive compilation made efficient. InProceedings of the
2005 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, pages 69–77,
New York, NY, USA, 2005. ACM Press.

[8] K. D. Cooper, P. J. Schielke, and D. Subramanian.
Optimizing for reduced code space using genetic
algorithms. InWorkshop on Languages, Compilers, and
Tools for Embedded Systems, pages 1–9, Atlanta, Georgia,
July 1999. ACM Press.

[9] K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive
optimizing compilers for the 21st century.Journal of
Supercomputing, 23(1):7–22, August 2002.

[10] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Z. Chrysos. Profileme : Hardware support for
instruction-level profiling on out-of-order processors. In

International Symposium on Microarchitecture, pages
292–302, 1997.

[11] B. Franke, M. O’Boyle, J. Thomson, and G. Fursin.
Probabilistic source-level optimisation of embedded
programs. InProceedings of the 2005 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, pages 78–86, New York,
NY, USA, 2005. ACM Press.

[12] M. Frigo and S. G. Johnson. The design and
implementation of FFTW3.Proceedings of the IEEE,
93(2):216–231, 2005. special issue on ”Program
Generation, Optimization, and Platform Adaptation”.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark suite. In
IEEE 4th Annual Workshop on Workload Characterization,
Austin, TX, December 2001.

[14] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff.
Automatic selection of compiler options using
non-parametric inferential statistics. InProceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, pages 123–132, Washington, DC,
USA, 2005. IEEE Computer Society.

[15] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle.
Combined selection of tile sizes and unroll factors using
iterative compilation. InProceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, page 237, Washington, DC, USA, 2000. IEEE
Computer Society.

[16] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and
D. Jones. Fast searches for effective optimization phase
sequences. InProceedings of the ACM SIGPLAN ’04
Conference on Programming Language Design and
Implementation, pages 171–182, New York, NY, USA,
2004. ACM Press.

[17] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W.
Davidson. Exhaustive optimization phase order space
exploration. InProceedings of the International Symposium
on Code Generation and Optimization, pages 306–318,
Washington, DC, USA, 2006. IEEE Computer Society.

[18] P. S. Ltd. http://www.polyhedron.com, 2006.

[19] R. J. McEliece.The Theory of Information and Coding.
Addison-Wesley, 1977.

[20] A. Monsifrot, F. Bodin, and R. Quiniou. A machine
learning approach to automatic production of compiler
heuristics. InAIMSA ’02: Proceedings of the 10th
International Conference on Artificial Intelligence:
Methodology, Systems, and Applications, pages 41–50.
Springer-Verlag, 2002.

[21] P. Mucci. Papi – the performance application programming
interface. http://icl.cs.utk.edu/papi/index.html, 2000.

[22] Z. Pan and R. Eigenmann. Fast and effective orchestration
of compiler optimizations for automatic performance
tuning. InProceedings of the International Symposium on
Code Generation and Optimization, pages 319–332, 2006.

[23] Z. Pan and R. Eigenmann. Fast automatic procedure-level
performance tuning. InProceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, Seattle, WA, September 2006. IEEE Computer
Society.

[24] D. Parello, O. Temam, A. Cohen, and J.-M. Verdun.
Towards a systematic, pragmatic and architecture-aware
program optimization process for complex processors. In
SC ’04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 15, Washington, DC, USA, 2004.
IEEE Computer Society.

[25] I. PathScale. http://www.pathscale.com, 2006.

[26] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. Spiral: Code
generation for dsp transforms.Proceedings of the IEEE,
93(2):232–275, 2005. special issue on ”Program
Generation, Optimization, and Platform Adaptation”.

[27] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M.
O’Reilly. Meta optimization: Improving compiler heuristics
with machine learning. InProceedings of the ACM
SIGPLAN ’03 Conference on Programming Language
Design and Implementation, pages 77–90, San Diego, Ca,
June 2003. ACM Press.

[28] M. Stephenson and S. P. Amarasinghe. Predicting unroll
factors using supervised classification. InProceedings of
the International Symposium on Code Generation and
Optimization, pages 123–134, 2005.

[29] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I.
August. Compiler optimization-space exploration. In
Proceedings of the International Symposium on Code
Generation and Optimization, pages 204–215, Washington,
DC, USA, 2003. IEEE Computer Society.

[30] R. Vuduc, J. W. Demmel, and J. A. Bilmes. Statistical
models for empirical search-based performance tuning.Int.
J. High Perform. Comput. Appl., 18(1):65–94, 2004.

[31] R. C. Whaley and J. J. Dongarra. Automatically tuned
linear algebra software. InSC ’98: Proceedings of the 1998
ACM/IEEE conference on Supercomputing, pages 1–27,
Washington, DC, USA, 1998. IEEE Computer Society.

[32] K. Yotov, D. Padua, K. Pingali, P. Stodghill, and P. Wu. A
comparison of empirical and model-driven optimization. In
Proceedings of the ACM SIGPLAN ’03 Conference on
Programming Language Design and Implementation, pages
63–76, San Diego, Ca, June 2003. ACM Press.

[33] K. Yotov, K. Pingali, and P. Stodghill. Think globally,
search locally. InICS ’05: Proceedings of the 19th annual
international conference on Supercomputing, pages
141–150, New York, NY, USA, 2005. ACM Press.

[34] M. Zhao, B. R. Childers, and M. L. Soffa. A model-based
framework: an approach for profit-driven optimization. In
Proceedings of the International Symposium on Code
Generation and Optimization, pages 317–327, 2005.

