
Using Machine Learning to Focus Iterative Optimization

F. Agakov, E. Bonilla, J.Cavazos, B.Franke, G. Fursin,
M.F.P. O’Boyle, J. Thomson, M. Toussaint, C.K.I. Williams

School of Informatics
University of Edinburgh

UK

Abstract

Iterative compiler optimization has been shown to out-
perform static approaches. This, however, is at the cost of
large numbers of evaluations of the program. This paper de-
velops a new methodology to reduce this number and hence
speed up iterative optimization. It uses predictive modelling
from the domain of machine learning to automatically focus
search on those areas likely to give greatest performance.
This approach is independent of search algorithm, search
space or compiler infrastructure and scales gracefully with
the compiler optimization space size. Off-line, a training
set of programs is iteratively evaluated and the shape of the
spaces and program features are modelled. These models
are learnt and used to focus the iterative optimization of a
new program. We evaluate two learnt models, an indepen-
dent and Markov model, and evaluate their worth on two
embedded platforms, the Texas Instrument C6713 and the
AMD Au1500. We show that such learnt models can speed
up iterative search on large spaces by an order of magni-
tude. This translates into an average speedup of 1.22 on the
TI C6713 and 1.27 on the AMD Au1500 in just 2 evalua-
tions.

1 Introduction

Using iterative search as a basis for compiler optimiza-
tion has been widely demonstrated to give superior perfor-
mance over static schemes [1, 3, 11]. The main drawback
of these schemes is the amount of search time needed to
achieve performance improvements given that each point
of the search is a recompilation and execution of the pro-
gram. Although multiple recompilations/executions are ac-
ceptable for embedded code, libraries and persistent appli-
cations, these long compilation/execution cycles restrict the
space of options searched. On a larger scale, they are a sig-
nificant barrier to adoption in general purpose compilation.

There have been a number of papers focusing on reduc-

ing the cost of iterative optimization. As a single evaluation
consists of a compilation plus execution of the program, two
recent papers have investigated reducing the cost of an indi-
vidual compilation or execution [7]. In [1, 6] a more radical
approach is used to reduce the total number of evaluations.
Cooper et al [6] examine the structure of the search space,
in particular the distribution of local minima relative to the
global minima and devise new search based algorithms that
outperform generic search techniques. An alternative ap-
proach is developed in [20]. Here the space of compiler
options is examined off-line on a per function basis and the
best performing ones classified into a small tree of com-
piler options. When compiling a new program, the tree is
searched by compiling and executing the best path in the
tree. As long as the best sequences can be categorized into
a small tree, this proves to be a highly effective technique.

This paper develops a new methodology to speed up it-
erative optimization. It automatically focuses any search on
those areas likely to give the greatest performance. This
methodology is based on machine learning, is independent
of search algorithm, search space or compiler infrastruc-
ture and scales gracefully with the compiler optimization
space size. It uses program features to correlate the pro-
gram to be optimized with previous knowledge in order to
focus the search. Off-line, a training set of programs is iter-
atively evaluated and the shape of the spaces and program
features are recorded. From this data, our scheme automat-
ically learns a model which predicts those parts of the op-
timization space that are likely to give good performance
improvements for different classes of programs. When a
new program is then encountered, an appropriate predictive
model is selected, based on program features, which then
biases the search to a certain area of the space. Using this
technique we are able to speed up search by an up to an
order of magnitude on large spaces.

This paper is structured as follows. Section 2 provides
a motivating example demonstrating how learning where to
search can significantly reduce the number of evaluations
needed to find good performance improvements. This is

1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 10 100 1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

86%

38%
RANDOM

FOCUSSED

(a) (b)

Figure 1. (a) Points corresponding to those transformation sequences whose performance is within
5 per cent of the optimum for adpcm on the TI C6713. The contour is the predicted area for good
optimizations. (b) How close to the best performance random and focused search achieve for each
program evaluation. The random algorithm achieves 38 % of the maximum improvement in 10 evalau-
tions; the focused search 86%.

followed in section 3 by a description of the experimental
setup, an analysis of the optimization spaces encountered
and an examination of how two standard search algorithms,
random and genetic, perform. This is followed in section 4
by a description of two predictive models and a demonstra-
tion of how they can be used to speed up search. Section
5 describes how the standard machine learning techniques
of principal components analysis and nearest neighbors are
used to learn the predictive models. In section 6, these learnt
models are then tested on (i) a medium sized exhaustively
enumerated space and (ii) a very large space, where they
are shown to improve search performance by up to an or-
der of magnitude. Section 7 describes related work and is
followed in section 8 with some brief conclusions.

2 Motivation & Example

This paper focuses on embedded applications where per-
formance is critical and consequently there has been a large
body of work aimed at improving the performance of opti-
mizing compilers, e.g. [14]. Most of this work focuses on
improving back-end, architecture specific compiler phases
such as code generation, register allocation and schedul-
ing. However, the investment in ever more sophisticated
back-end algorithms produces diminishing returns. Iterative
approaches based on back-end optimizations consequently
give relatively small improvements [5]. In this paper, we
consider source-level transformations [19, 8] for embedded

systems. Such an approach is, by definition, highly portable
from one processor to the next and provides additional ben-
efit to the manufacturer’s highly tuned compiler. However,
this portability comes at cost. For example, in [8], Franke
et al require 1000 evaluations to achieve reasonable perfor-
mance improvements.

Search space The reason for this excessive search time
is that determining the best high level sequence of transfor-
mations for a particular program is non-trivial. Consider the
diagram in figure 1 (a) showing the behavior of the adpcm
program on the Texas Instrument’s C6713. This diagram
is an attempt at plotting all of the good performing points
(within 5% of the optimum) in the space of all transforma-
tions of length 5 selected from a set of 14 transformations.
It therefore covers a space of size ����� . It is difficult to rep-
resent a large 5 dimensional space graphically so each good
performing transformation sequence (�����
	��
������ ��� is plotted
at position �������
	 � on the x-axis, which denotes prefixes of
length 2, and position ���������� ��� on the y axis, which denotes
suffices of length 3. The most striking feature is that min-
ima are scattered throughout the space and finding the very
best is a difficult task. Prior knowledge about where good
points were likely to be, could focus our search allowing
the minimal point to be found faster. Alternatively, given a
fixed number of evaluations, we can expect improved per-
formance if we know good areas to search within.

2

Focused search In this paper we develop a technique that
learns off-line, ahead of time, a predictive model from iter-
ative evaluations of other programs. This predictive model
then defines good regions of the space to search. In figure
1 (a) the contour lines enclose those areas where our tech-
nique predicts there will be good points. Using this predic-
tion we are able to reduce the number of searches to achieve
the same performance - rapidly reducing the cost of iterative
search. This can be seen in figure 1 (b), which compares
random search (averaged over 20 trials to be statistically
meaningful) with and without the predictive model focus.
The x-axis denotes (logarithmic scale) the number of evalu-
ations performed by the search. The y-axis denotes the best
performance achieved so far by the search ; 0% represents
the original code performance, 100% the maximum perfor-
mance achievable. It is immediately apparent that the pre-
dictive model rapidly speedups up the search. For instance,
after 10 evaluations, random searching achieves 38% of the
potential improvement available while the focused search
achieves 86%. As can be seen from figure 1 (b), such a
large improvement would require over 80 evaluations using
random search, justifying further investigation of predictive
models.

3 Optimization Space

This paper develops machine learning techniques to im-
prove the search performance of iterative optimization.
This section briefly describes the benchmarks we use, the
program transformations which make up the optimization
space and the embedded platforms we evaluate. It then
characterises the space and presents two standard search al-
gorithms which are later used to show how learnt predictive
models can dramatically speed up search.
����� �����
	������	�����������	���� �

Benchmarks The UTDSP [13, 17] benchmark suite was
designed “to evaluate the quality of code generated by a
high-level language (such as C) compiler targeting a pro-
grammable digital signal processor (DSP)” [13]. This set
of benchmarks contains small, but compute-intensive DSP
kernels as well as larger applications composed of more
complex algorithms. The size of programs ranges from 20-
500 lines of code where the runtime is usually below 1 sec-
ond. However, these programs represent compute-intensive
kernels widely regarded most important by DSP program-
mers and are used indefinitely in stream-processing appli-
cations.

Transformations In this paper we consider source to
source transformations (Many of these transformations
also appear within the optimisation phases of a native

Label Transformation
1,2,3,4 Loop unrolling
f Loop flattening
n FOR loop normalization
t Non-perfectly nested loop conversion
k Break load constant instructions
s Common subexpression elimination
d Dead code elimination
h Hoisting of loop invariants
i IF hoisting
m Move loop-invariant conditionals
c Copy propagation

Table 1. The labeled transformations used
for the exhaustive enumeration of the space.
1,2,3,4 corresponds to the loop unroll factor

compiler[1]), applicable to C programs and available within
the restructuring compiler SUIF 1 [10]. For the purpose
of this paper, we have selected eleven transformations de-
scribed and labeled in table 1. As we (arbitrarily) consider
four loop unroll factors, this increases the number of trans-
formations considered to 14. We then exhaustively evalu-
ated all transformations sequences of length 5 selected from
these 14 options. This allows us to evaluate the relative per-
formance of our proposed techniques. In the later evalua-
tion section (see section 7), we also consider searching, non
exhaustively, a much larger space.

Platforms Our experiments were performed on two dis-
tinct platforms to demonstrate that our technique is generic.
TI: The Texas Instrument C6713 is a high end floating point
DSP. The wide clustered VLIW processor has 256kB of in-
ternal memory. The programs were compiled using the TI’s
Code Composer Studio Tools Version 2.21 compiler with
the highest -O3 optimization level and -ml3 flag (generates
large memory model code). AMD: The AMD Alchemy
Au1500 processor is an embedded SoC processor using a
MIPS32 core (Au1), running at 500MHz. It has 16KB in-
struction cache and 16KB non-blocking data cache. The
programs were compiled with GCC 3.2.1 with the -O3 com-
pile flag. According to the manufacturer, this version/option
gives the best performance - better than later versions of
GCC - and hence was used in our experiments.

���"! #%$&�����(')��	��*�+��� ,-�*$&	�./� �('�	

In order to characterize the optimization space, we ex-
haustively enumerated all ��� � transformation sequences on
both platforms. Table 2 summarizes the performance avail-

3

TI AMD
Prog. Improv. Seq. Improv. Seq.
fft 3.64% � 3nm � 4.49% � 4hns �
fir 45.5% � 4 � 26.7% � 3 �
iir 16.3% � 3h � 29.5% � h4 �
latnrm 0.34% � nsch � 27.1% � csh4 �
lmsfir 0.39% � 1s � 30.3% � s3 �
mult 0.00% ��� 30.5% � 4 �
adpcm 24.0% � 1ish � 0.75% � ism �
compress 39.1% � 4s � 24.0% � hs4 �
edge 5.06% � 3 � 23.1% � ch4 �
histogram 0.00% ��� 24.7% � 4 �
lpc 10.7% � sn2 � 6.01% � h4cnm �
spectral 7.46% � n4 � 8.53% � sh4 �
Average 15.2% - 19.64% -

Table 2. Summary of optimization space on
the TI and AMD using exhaustive search

able; columns 2 and 3 refer to the TI while columns 4 and 5
refer to the AMD respectively.

Improved execution time The columns labeled
Improv. (cols. 2 and 4) shows the maximum re-
duction in execution time obtained on the TI and AMD
within this exhaustively enumerated space. Eight (out
of twelve) benchmarks for Texas Instruments and eleven
(out of twelve) benchmarks for AMD achieved significant
improvement. The best execution time reduction was
45.5% on the TI and 30.5% on the AMD. On average, a
12.7% reduction was achieved for the TI and 13.8% for the
AMD. This translates into an average speedup of 1.15 and
1.16 over the platform specific optimizing compiler.

Best performing sequences The columns labeled Seq.,
(columns 3 and 5) in table 2 contain the best performing
sequence for each benchmark on each machine. The indi-
vidual letters within each entry refer to the labeled trans-
formations in table 1, e.g. i = if hoisting. These en-
tries show that the complexity and type of good transforma-
tion sequences is program dependent. While benchmarks
such as fir and edge detect for the TI and fir, mult and his-
togram for the AMD reach their best performance with sin-
gle transformations, other benchmarks such as adpcm for
the TI and lpc for the AMD obtain their minimum execu-
tion time with four and five-length sequences respectively.
Similarly, transformations that yield good performance on
some benchmarks do not appear in the best sequences of
other programs. For example, on the AMD the sequence
� ism � makes adpcm run at its minimum execution time;

however, none of these three individual transformations is
present in the best performing sequence of compress.

Critically, the best performing sequence on one program
is never the best for another. Therefore, a technique which
tries to simply apply the best sequence found on other pro-
grams is unlikely to succeed.

��� � . 	��(�*'�$ ����,�� �� ��$ �-�

In this section, we describe two common methods used
to search the transformation spaces: a blind random search
(RA) and a “smarter” genetic algorithm (GA). Random
search generates a random string of transformations where
each transformation is equally likely to be chosen and per-
forms surprisingly well in our experience. We configured
our GA in the same manner as ”best” GA in [6] with an
initial randomly selected population of 50.

For the exhaustively enumerated space, both algorithms
have similar performance as can be seen in figure 2. Here
we plot the best performance achieved so far by each al-
gorithm against how many program evaluations have been
performed. This plot is averaged over all programs. Im-
provements by either algorithm are more easily achieved on
the TI due to the much greater number of sequences giving
a significant speedup.

Both algorithms have similar overall performance with
the GA performing well on the AMD in the early part of
the search. However, random search performs better after
a large number of evaluations as the GA appears to more
likely to be stuck in local minima. In both cases, however,
large numbers of evaluations are needed to gain any signif-
icant performance improvements. In the next section we
investigate how predictive models can speed up this search.

4 Models to focus search

In order to speed up the search algorithm we wish to
focus our attention on profitable areas of the optimization
space. We wish to build a model of those transformation
sequences for which a program obtained good performance
in the hope that this can be learnt and used on later pro-
grams. We could simply record the best sequence achieved
on other programs and hope that it improves our current
program. However, this has a number of flaws. Firstly, as
the results in table 2 show, the best transformation on one
program is never the best on others. Secondly, knowing the
best sequence on another program only provides one single
option and cannot guide subsequent search within a larger
space.

Alternatively, we can build intricate models that char-
acterize the performance of all transformation sequences.
Here the problem is that we can easily overfit the model to
the data so that it cannot be generalized to other programs.

4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 10 100 1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

RANDOM
GA

0%

20%

40%

60%

80%

100%

 1 10 100 1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

RAND
GA

(a) TI (b) AMD

Figure 2. Performance with respect to evaluations for the random (RAND) and genetic (GA) search
algorithms on the TI (a) and AMD (b). The x-axis denotes (logarithmic scale) the number of evalu-
ations performed by each search. The y-axis denotes the best performance achieved so far by the
search; 0 % represents the original code performance, 100% the maximum performance achievable.
Results averaged over all benchmarks

Furthermore, such a complex model will require extensive
training data, which may be costly to gather and is unre-
alistic in practise. In this section we consider two differ-
ent models which try to summarize the optimization space
without excessive overfitting. We consider (i) a simple inde-
pendent distribution model and (ii) a more complex Markov
model. Both of these require relatively small amounts of
training data to construct and should be easy to learn (see
section 5).

�&��� ����� 	��
	���� 	���� �� 	������')� ����� � �����*�� ����	��
	 �
���� � ��� 	��

It makes sense to start with the simplest approach first:
modelling program transformations as if they were inde-
pendent. We know that this assumption does not hold in
general, but it might be sufficient to better focus search
algorithms. Consider a set of � transformations ���
��� ��� �
	�������������� � . Let ����� ��� ��	����������!��" be a sequence of
transformations � of length # , where each element �%$ is cho-
sen from the transformations in � . Under the independent
model we assume that the probability of a sequence of trans-
formations being good is simply the product of each of the
individual transformations in the sequence being good, i.e.:

& ��� �%�!��	��������'�!��" � �
"(
$*) �

& ����$ � � (1)

Here
& � ��+ � is the probability that the transformation �,+ oc-

curs in good sequences. For our dataset we have chosen the
set of good sequences to be those sequences that have an

improvement in performance of at least -
.0/ of the maxi-
mum possible improvement. We calculate

& � �1+ � by simply
counting the number of times �1+ occurs in good sequences
and normalize the distribution i.e. 2 �$3) � & ��� + � � � . We
then record within a vector the probability of each of the
�4� ��� transformations.

For each benchmark we can build this probability vector
or IID distribution. We refer to this as the IID-oracle. It is
an oracle in the sense that we can only know its value once
we have exhaustively enumerated the space, which in prac-
tise is unrealistic. Our goal is to be able to predict this oracle
by using machine learning techniques based on a training
set of programs in order to improve search. However, it
is necessary to prove first that this oracle distribution does
indeed lead to better search algorithms.
�&�"! 5 �(�
6 �8795 ��� 	��

As described above, the IID probability distribution
function assumes that all transformations are mutually in-
dependent neglecting the effect of interactions among trans-
formations. This can be very restrictive, particularly when
there are transformations that enable the applicability of
other transformations or when some of them only yield
good performance when others are applied. Therefore, in-
cluding these interactions in our technique makes possible
the construction of richer models that ideally will improve
biased search algorithms and will obtain good performance
in fewer evaluations.

In order to keep the number of samples needed for build-
ing our probability density function low while including in-

5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 10 100 1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

32%

75%

87%

RANDOM
IID-ORC

MAR-ORC
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 10 100 1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

27%

79%

88%

GA
GA-IID-ORC

GA-MAR-ORC

(a) TI: Random (b) TI: GA

Figure 3. TI: Random (a) and GA (b) search versus IID-oracle and Markov oracle. Results averaged
over all benchmarks

teractions among transformations, we can take one step fur-
ther from the IID distribution by using a Markov chain. A
Markov chain for transformation sequences can be defined
as follows:

& ��� � � & ��� � �
"(
$*) 	

& ����$�� ��$�� � � �

The equation above states that the probability of a trans-
formation applied in the sequence depends upon the trans-
formations that have been applied before. The main as-
sumption under this model is that these probabilities do not
change along the sequence, i.e. they are the same at any
position of the sequence, and therefore the model is often
referred as a stationary Markov chain. This oversimplifica-
tion prevents the number of parameters of the model from
increasing with the length of the sequences considered.

Thus, the parameters of the model are the probability
at the first position of the sequence

& ��� � � and the transi-
tion matrix & ����$�� ��$�� � � with � � � �������'� # , which as be-
fore can be learnt from data by counting. Once again
2 �+) � & ��� � � � + � � � and 2 �+) � & ����$ � � + � ��$�� � � � �
must be satisfied.

As in section 4.1 the parameters of the model have been
learnt from those sequences that have an improvement in
performance at least -
.
/ of the maximum possible im-
provement. Using this model gives a 14 x 14 matrix.
�&� � ./�
	�	�� ��&, � � ��	��(�*' $�� � 7 �����&�(����&, ��$ 	

� ����	��������� ��� ��$ 	 � ��� 	����

To test the potential of our scheme, we compared each
baseline search algorithm against this same algorithm us-
ing each predictive model. For the random algorithm, in-
stead of having a uniform probability of a transformation

being selected, each model biases certain transformations
over others. In the case of the GA, the initial population is
selected based on the model’s probabilities and then the GA
is allowed to evolve as usual.

We construct each model using the results obtained from
searching a particular program’s space and then test each
model-enabled search algorithm on the same benchmark;
we call these two learnt models: IID-oracle and Markov-
oracle. These ”oracles” form an upper-bound on the perfor-
mance we can expect to achieve when later trying to learn
each model. This is to evaluate whether such models can
improve the search. Clearly, if the best a model oracle can
achieve is insignificant, it is not worth expending effort in
trying to learn it.

Figure 4 (a) depicts the average performance, over all
our benchmarks, of the baseline random algorithm against
random search biased with the two oracles on the TI. Sim-
ilarly, Figure 4 (b) depicts the performance of the baseline
GA algorithm versus using the two oracles to generate the
initial population. In both figures, we see that the oracles
can significantly speed up finding a good solution. For ex-
ample, at evaluation 10, random achieves less than 20% of
the maximum available performance. In contrast, random
+ IID-oracle achieves more than 50% of the available
performance and random + Markov-oracle achieves
around 80% of the performance. Figures 5 depicts a sim-
ilar picture on the AMD architecture. On the AMD ar-
chitecture, our two oracles significantly improve the per-
formance of each baseline algorithm. The baseline ran-
dom search algorithm only achieves 4% of the available
performance after 10 evaluations. In contrast, random
+ IID-oracle achieves about 20% of the available
performance (5 times better than base) and random +
Markov-oracle achieves 40% of the available perfor-

6

0%

20%

40%

60%

80%

100%

 1 10 100 1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

22%

41%

66%

RAND
IID-ORC

MAR-ORC
0%

20%

40%

60%

80%

100%

 1 10 100 1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

22%

41%

72%

GA
GA-IID-ORC

GA-MAR-ORC

(a) AMD: Random (b) AMD: GA

Figure 4. AMD: Random (a) and GA (b) search versus IID-oracle and Markov-oracle. Results averaged
over all benchmarks

mance, an order of magnitude better than the base random
algorithm. On average, the baseline algorithm needs 100
evaluations to achieve the same performance as the base-
line + the Markov oracle achieves with just 10 evaluations.

We can see from these figures, that the IID and Markov
models have the potential to dramatically improve the per-
formance of both search algorithms. In the next section we
describe how we can learn these models from previous off-
line runs to build a predictive model.

5 Learning a model

The biggest difficulty in applying knowledge learnt off-
line to a novel input is considering exactly which portions of
this knowledge are relevant to the new program. We show
that, as is the case in many other domains, programs can
be successfully represented by program features, which can
then be used to gauge their similarity and thus the applica-
bility of previously learnt off-line knowledge.

Obviously, the selection of these program features is crit-
ical to the success of this method, and so we employ a well
known statistical technique, principal component analysis
(PCA) [2], to assist the selection. Initially, we identified
thirty-six loop-level features we thought might describe the
characteristics of a program well, and use them as input for
the PCA process as shown in table 3. PCA tells us that, in
this instance, due to redundancy and covariance in the fea-
tures’ values, these thirty-six features can be combined in
such a way that they can be reduced to only five features,
whilst retaining 99% of the variance in the data. The output
of this process is a 5-D feature vector for each benchmark,
containing these five condensed feature values.

Nearest Neighbors By using a nearest neighbors classi-
fier [2], we can select which of our previously analyzed pro-
grams our new program is most similar to. Learning using
nearest neighbors is simply a matter of mapping each 5-D
feature vector of our training programs (all our benchmarks)
onto a 5-D feature space.

Classification When a novel program is compiled, it is
first put through a feature extractor, and those features pro-
cessed by PCA. The resulting 5-D feature vector is mapped
onto the 5-D feature space, and the Euclidean distance be-
tween it and every other point in the space calculated. The
closest point is considered to be the ’nearest neighbor’ and
thus the program associated with that point is the most sim-
ilar to the new program.

We can apply this process to each of our twelve bench-
marks by using leave-one-out cross-validation, where we
disallow the use as training data of the feature vector asso-
ciated with the program that is currently being evaluated,
otherwise a program would always select itself as its near-
est neighbor.Having selected a neighbor, a previously learnt
probability distribution for that selected neighbor is then
used as the model for the new program to be iteratively op-
timized.

�/��� � 7 ����� � ���� , ��	��(��� �� ,

It is useful to know how close our learnt distribution is
to the oracle distribution for both models, IID and Markov.
Averaged across all benchmarks, the learnt distribution
achieves approximately ���0/ of the performance per eval-
uation of the IID-oracle and the Markov-oracle on the TI.
On the AMD, we achieve a similar result - approximately
75 % of both oracles’ performance.

7

Features
for loop is simple?
for loop is nested?
for loop is perfectly nested?
for loop has constant lower bound?
for loop has constant upper bound?
for loop has constant stride?
for loop has unit stride? number of iterations in for loop
loop step within for loop
loop nest depth
no, of array references within loop
no. of instructions in loop
no. of load instructions in loop
no. of store instructions in loop
no. of compare instructions in loop
no. of branch instructions in loop
no. of divide instructions in loop no. of noop instructions in loop
no. of call instructions in loop
no. of generic instructions in loop
no. of array instructions in loop
no. of memory copy instructions in loop
no. of other instructions in loop
no. of float variables in loop
no. of int variables in loop
both int and floats used in loop?
loop contains an if-construct?
loop contains an if statement in for-construct?
loop contains an if-construct?
loop iterator is an array index?
all loop indices are constants?
array is accessed in a non-linear manner?
loop strides on leading array dimensions only?
loop has calls?
loop has branches?
loop has regular control flow?

Table 3. Features used

As the oracles have been shown to improve performance
and we are able to achieve a significant percentage of
their improvement, this suggests that both learnt models
should give significant performance improvement over ex-
isting schemes. This is evaluated in the next section.

6 Evaluation

This section evaluates our focused search approach on
two optimization spaces. The first space is the exhaus-
tively enumerated ��� � space described throughout this pa-
per. The second is a much larger space of size ��� 	�� i.e.
transformation sequences of length 20 with each transfor-
mation selected from one of 82 possible transformations
available in SUIF 1 [10]. This was achieved using the stan-
dard leave one out cross-validation scheme i.e. learn the
IID and Markov models based on the training data from all
other programs except for the one about to be optimized or
tested

����� � 7 ����� � �� � � ��� 	��&$ ���&�����7 	�� � 	��/� �-	����
� ��	 � ��� �('�	

Initially, we ran both the baseline random and GA search
algorithms for 500 program evaluations and recorded their
speedup over time on both the TI and AMD. We then ran the
same algorithms again, this time using the two learnt mod-
els: IID and Markov. This was achieved using the standard
leave one out cross-validation scheme i.e. learn the IID and
Markov models based on the training data from all other
programs except for the one about to be optimized or tested.

The results for the TI and AMD are shown in figures 6
and 7 respectively. On the TI the learnt IID based mod-
els achieve approximately twice the potential performance
of either baseline algorithm after 10 evaluations (60%/62%
vs 32%/27%) . The learnt Markov model does even better,
achieving 79% of the perfomance available after the same
number of evaluations. The baseline algorithms would need
over 40 evaluations to achieve this same performance im-
provement. On the AMD, the performance improvements
are less dramatic, yet the learnt Markov based algorithms
achieves more than twice the performance of the baseline
algorithms after 10 evaluations.

���"! � 7 ����� � �� � � � � � ����,�	 ��� �('�	

Experiments within an exhaustively enumerated space
are useful as the performance of a search algorithm can be
evaluated relative to the absolute minima. However, in prac-
tise when we wish to search across a large range of transfor-
mations, it is infeasible to run exhaustive experiments. In-
stead we ran a random search for 1000 evaluations on each
program space as off-line training data.

This time we wish to focus on the performance achieved
in the early parts of iterative optimization. So, we ran the
baseline random search algorithm and both learnt models
for just 50 evaluations. As the genetic algorithm and ran-
dom search have the same behaviour for the first 50 evalua-
tions, the GA was not separately evaluated

The speedups for each benchmark after 2, 5, 10 and 50
evaluations on the TI is shown in figure 7. Due to time
constraints, only those benchmarks with non-negligible
speedup on the exhaustively enumerated space are evalu-
ated. The learnt models both deliver good performance and
the random + IID learnt model achieves an average speedup
of 1.26 after just 2 evaluations. Furthermore, the random +
IID learnt model achieves a greater average performance af-
ter 5 evaluations (1.34) than the baseline random algorithm
does after 50 evaluations (1.29).

Surprisingly, the IID learnt model achieves better perfor-
mance than the Markov learnt model after 50 evaluations
1.41 vs 1.30 speedup in contrast to the results of the ex-
haustively enumerated space (see figures 6 and 7). The rea-

8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 10 100 1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

32%

60%

79%

RANDOM
IID-LRN

MAR-LRN
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 10 100 1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

27%

62%

79%

GA
GA-IID-LRN

GA-MAR-LRN

(a) TI: Random (b) TI: GA

Figure 5. TI: Random (a) and GA (b) search versus IID-learnt and Markov-learnt. Results averaged
over all benchmarks

0%

20%

40%

60%

80%

100%

 1 10 100 1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

22%

35%

51%

RAND
IID-LRN

MAR-LRN
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 10 100 1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

17%

28%

44%

GA
GA-IID-LRN

GA-MAR-LRN

(a) AMD: Random (b) AMD: GA

Figure 6. AMD: Random (a) and GA (b) search versus IID-learnt and Markov-learnt. Results averaged
over all benchmarks

son is that the Markov model needs a greater number of
training evaluations than the IID model to model the space
accurately. Here we have only 1000 evaluations to build a
model.

Similarly, the speedups for the AMD are shown for each
benchmark after 2, 5, 10 and 50 evaluations on in figure 8.
Again both learnt models significantly outperform the base-
line random algorithm. In fact the random + Markov learnt
model achieves a greater average performance (1.33) after
5 evaluations than random does after 50 evaluations (1.32).
It therefore achieves this level of performance an order of
magnitude faster - the same is also true for the TI. Once
again random + IID unexpectedly outperforms random +
Markov at 50 evaluations. Thus after just 2 evaluations a
speedup of 1.27 is found on average, almost three times the

performance of the baseline algorithm.
Finally, the single sequence that gives the best perfor-

mance on average on the AMD in the small space is humc3.
This gives an average speedup of 1.11, significantly less
than that achieved by random + Markov after just 2 eval-
uations. On the TI, there does not exist a single sequence
which gives any performance improvement on average.

Discussion The Markov predictor performs less well on
the exhaustive space due to the reduced amount of train-
ing data. This suggests that the IID model should initially
be used on a new platform when there is relatively small
amounts of training data available. Over time, once suffi-
cient new data is accrued by iterative optimization, this can
be used for a second stage of learning using the Markov

9

‘

TI 2 Evaluations 5 Evaluations 10 Evaluations 50 Evaluations
Benchmark R M I R M I R M I R M I
fft 1.00 1.00 1.00 1.01 1.01 1.34 1.00 1.01 1.65 1.34 1.21 1.81
fir 1.18 1.66 1.67 1.25 1.66 1.83 1.37 1.66 1.85 1.70 1.85 1.85
iir 1.14 1.20 1.19 1.18 1.23 1.19 1.19 1.23 1.21 1.19 1.23 1.23
adpm 1.08 1.33 1.17 1.18 1.33 1.18 1.25 1.35 1.24 1.28 1.43 1.28
edg 1.08 1.13 1.27 1.15 1.13 1.28 1.21 1.13 1.28 1.25 1.13 1.29
lpc 1.09 1.05 1.13 1.10 1.05 1.16 1.10 1.10 1.18 1.24 1.12 1.27
spe 1.01 1.10 1.15 1.03 1.17 1.16 1.05 1.17 1.16 1.07 1.17 1.18
AVG 1.08 1.21 1.22 1.12 1.22 1.34 1.16 1.23 1.36 1.29 1.30 1.41

Figure 7. Speedups up achieved by random search (R), random + Markov learnt model (M), random +
IID learnt model (I) after 2, 5, 10 and 50 evaluations on each benchmark on the TI processor. Random
+ IID learnt model achieves greater average performance (1.34) after 5 evaluations than random does
after 50 evaluations (1.29)

model.

7 Related Work

Iterative search-based optimization As well as the work
of Almagor et al [1] and Triantafyllis et al [20] described
in the introduction, there have been a number of related
projects. A partially user-assisted approach to select opti-
misation sequences for embedded applications is described
in [11]. This approach combines user guides and perfor-
mance information with a genetic algorithm to select lo-
cal and global optimisation sequences. Other authors [9, 5]
have explored ways to search program- or domain-specific
command line parameters to enable and disable specific op-
tions of various optimising compilers. In [8] iterative high
level optimizations are applied to several embedded proces-
sors using two probabilistic algorithms. Good speedups are
obtained at the expense of very large number of evaluations.
Finally, in [?], it is shown that carefully hand generated
models can approach the performance of iterative optimi-
sation.

Machine Learning Machine learning predictive mod-
elling has been recently used for non-search based optimisa-
tion. Here the compiler attempts to learn off-line a good op-
timization heuristic which is then used instead of the com-
piler writer’s hand-tuned method.

Stephenson et al. [18] used genetic programming to
tune heuristic priority functions for three compiler opti-
mizations: within the Trimaran’s IMPACT compiler. For
two optimizations they achieved significant improvements.
However, these two pre-existing heuristics were not well
implemented. Turning off data prefetching completely is
preferable and reduces many of their significant gains. For

the third optimization, register allocation, they were only
able to achieve on average a 2% increase over the manually
tuned heuristic.

Cavazos et al. [4] describe using supervised learning to
control whether or not to apply instruction scheduling. No
absolute performance improvements were reported how-
ever.

Finally, Monsifrot et al. [15] use a classifier based on
decision tree learning to determine which loops to unroll.
They looked at the performance of compiling Fortran pro-
grams from the SPEC benchmark suite using g77 for two
different architectures, an UltraSPARC and an IA64 where
there learnt scheme showed modest improvement.

8 Conclusion and Future Work

This paper develops a new methodology to speed up it-
erative compilation. It automatically focuses any search
on those areas likely to give greatest performance. It use
predictive modelling and program features to learn prof-
itable areas of the optimization space to search. Experi-
ments demonstrate that this approach is highly effective in
speeding up iterative optimization.

Currently, we have a one-off training/learning phase to
build a model which is then applied to each new program.
An obvious next step is to continuously update the learnt
model after each new program is iteratively optimized, sim-
ilar in spirit to lifelong compilation [12]. Future work will
investigate different predictive models on new spaces to fur-
ther improve the performance of search based optimization.

10

‘

AMD 2 Evaluations 5 Evaluations 10 Evaluations 50 Evaluations
Benchmark R M I R M I R M I R M I
fft 1.00 1.04 1.04 1.00 1.05 1.07 1.00 1.07 1.10 1.00 1.15 1.17
fir 1.22 1.33 1.46 1.28 1.44 1.51 1.37 1.44 1.54 1.48 1.55 1.94
iir 1.13 1.29 1.10 1.20 1.32 1.13 1.27 1.37 1.18 1.32 1.39 1.32
lat 1.04 1.48 1.40 1.23 1.53 1.43 1.32 1.53 1.52 1.41 1.53 1.53
lms 1.13 1.15 1.19 1.20 1.22 1.22 1.31 1.33 1.29 1.42 1.44 1.40
mul 1.05 1.54 1.85 1.26 1.89 1.88 1.48 1.89 1.90 1.69 1.92 1.93
adpcm 1.08 1.24 1.27 1.17 1.33 1.31 1.24 1.36 1.35 1.32 1.41 1.44
com 1.11 1.34 1.50 1.22 1.59 1.63 1.27 1.62 1.69 1.60 1.70 1.74
edg 1.10 1.11 1.20 1.21 1.16 1.25 1.29 1.26 1.30 1.32 1.31 1.34
his 1.08 1.27 1.16 1.21 1.31 1.29 1.28 1.32 1.33 1.33 1.33 1.36
lpc 1.00 1.00 1.05 1.00 1.02 1.09 1.00 1.04 1.13 1.06 1.09 1.23
spe 1.00 1.04 1.01 1.00 1.09 1.01 1.00 1.10 1.01 1.00 1.12 1.04
AVG 1.08 1.24 1.27 1.17 1.33 1.31 1.24 1.36 1.35 1.32 1.41 1.44

Figure 8. Speedups up achieved by random search (R), random + Markov learnt model (M), random
+ IID learnt model (I) after 2, 5, 10 and 50 evaluations on each benchmark on the AMD processor.
Random + Markov learnt model achieves greater average performance (1.33) after 5 evaluations than
random does after 50 evaluations (1.32)

References

[1] L. Almagor, K.D. Cooper, A. Grosul, T. J. Harvey, S. W.
Reeves, D. Subramanian, L. Torczon and T. Waterman: Find-
ing effective compilation sequences In LCTES 2004: 231-
239

[2] C. Bishop, Neural Networks for Pattern Recognition, OUP,
2005

[3] F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle,
and E. Rohou. Iterative Compilation in a Non-Linear Op-
timisation Space. Workshop on Profile Directed Feedback-
Compilation, PACT’98, October 1998.

[4] J. Cavazos and J. E.B. Moss, Inducing Heuristics to Decide
Whether to Schedule, In ACM PLDI, May 2004.

[5] K. Chow and Y. Wu. Feedback-directed selection and charac-
terization of compiler optimizations. In (FDDO-4), Decem-
ber 2001.

[6] K. D. Cooper, A. Grosul, T.J. Harvey, S. Reeves, D. Subra-
manian, L. Torczon, and T. Waterman. Searching for compi-
lation sequences. Rice technical report, 2005.

[7] K. D. Cooper, A. Grosul, T.J. Harvey, S. Reeves, D. Sub-
ramanian, L. Torczon, and T. Waterman. ACME: adaptive
compilation made efficient. In ACM LCTES, Chicago, IL,
2005.

[8] B. Franke and M.F.P. O’Boyle, J. Thomson and G. Fursin.
Probabilistic Source-Level Optimisation of Embedded Pro-
grams In ACM LCTES 2005.

[9] E.F. Granston and A. Holler. Automatic recommendation of
compiler options. In (FDDO-4), December 2001.

[10] M. Hall, L. Anderson, S. Amarasinghe, B. Murphy,
S.W. Liao, E. Bugnion, M. and Lam. Maximizing multi-
processor performance with the SUIF compiler. IEEE Com-
puter, 29(12), 84–89, 1999

[11] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley,
J. Davidson, M. Bailey, Y. Park, and K. Gallivan. Finding ef-
fective optimization phase sequences. In ACM LCTES, June
2003.

[12] C.Lattner and V.Adve, LLVM: a compilation framework for
lifelong program analysis & transformation, In CGO, 2004.

[13] C. Lee. UTDSP benchmark suite.
http://www.eecg.toronto.edu/˜corinna/
DSP/infrastructure/UTDSP.html, 1998.

[14] S.Liao, S. Devadas, K. Keutzer, A. Tjiang and A. Wang Op-
timization Techniques for Embedded DSP Micro-processors
In DAC, 1995.

[15] A.Monsifrot, F.Bodin and R.Quiniou, A machine learning
approach to automatic production of compiler heuristics, In
International Conference on Artificial Intelligence: Method-
ology, Systems, Applications, 2002.

[16] K. Yotov, X.Li, G.Ren, M.Cibulskis, G. DeJong, M.Garzarn,
D.Padua, K.Pingali, P.Stodghill, and P. Wu. A Comparison
of Empirical and Model-driven Optimization. In PLDI 2003

[17] M. Saghir, P. Chow, and C. Lee. A comparison of traditional
and VLIW DSP architecture for compiled DSP applications.
In CASES ’98, Washington, DC, USA, 1998.

[18] M. Stephenson, S. Amarasinghe, M. Martin and U-M.
O’Reilly Meta Optimization: Improving Compiler Heuris-
tics with Machine Learning In PLDI 2003.

[19] B. Su, J. Wang, and A. Esguerra. Source-level loop opti-
mization for DSP code generation. In Proceedings of 1999
IEEE International Conference on Acoustic, Speech and Sig-
nal Processing (ICASSP ’99), volume 4, pages 2155–2158,
Phoenix, AZ, 1999.

[20] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I.
August Compiler Optimization-Space Exploration In CGO
March 2003.

11

