## Using Machine Learning to Focus Iterative Optimization

F. Agakov, E. Bonilla, J.Cavazos, B.Franke, G. Fursin, *M.F.P. O'Boyle*, J. Thomson, M. Toussaint, C.K.I. Williams

> Institute of Computer Systems Architecture Institute of Adaptive and Neural Computing

> > School of Informatics University of Edinburgh UK

> > > March, 2006

(日) (圖) (필) (필) (필) 표

#### Overview

#### Background + Motivation

- Embedded applications where performance is critical
- Using predictive modelling to guide search/global optimisation

▲□> ▲圖> ▲理> ▲理> 三理 …

- Models to focus search
  - Examined two standard search algorithms: Random + GA
  - Propose two models: IID and Markov to focus search
  - Learning model using nearest neighbour classification
- Evaluation
  - An exhaustively enumerated small space 14<sup>5</sup>
  - A large test space 80<sup>20</sup>
- Summary and Future work

#### Focused Iterative Search: Background

- Compilers are unable to effectively exploit hardware resources
  - Fundamentally this is due to the complexity of the architecture
- Static analysis based approaches try to model the space with simple models/heuristic on a piecemeal basis
  - Experiments show that the optimisation space is massively non-linear.
  - Furthermore architectures evolve faster compiler writers can react

<ロ> (四) (四) (四) (四) (四) (四) (四)

 Try a new approach iterative compilation: try different optimisations, run them - select the best.

## UltraSparc for mm N = 512.



 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

#### Focused Iterative Search: Motivation

- Iterative compilation is now a well known technique:
  - Search the space using random, GA, hill climbing techniques
  - It gives good results but takes a long time -a barrier to use in general purpose setting
- Basic idea is focus search on areas of space likely to be good
- We determine these areas by learning form other programs.
  - So, if my program A is similar to previously searched program B, can I use knowledge of its space to focus my search?

(日) (문) (문) (문) (문)

### Focus reduces search: Adpcm on TI C6713



æ

## How learning helps: TI C6713



SQA

## Optimization Space 14<sup>5</sup>

#### Embedded system application

- UTDSP benchmarks: Compute intensive DSP
- AMD Au1500 gcc 3.2.1 -O3, TI C6713 v2.21-O3
- Exhaustively enumerated an interesting search space
  - 14 transformations selected.
  - All combinations of length 5 evaluated
- Allows comparison of techniques
  - How near the minima each technique approaches

▲□> ▲圖> ▲理> ▲理> 三理 …

- Rate of improvement
- Characterization of the space

## Generating an Exhaustive Space



(日) (四) (문) (문)

- Generate length 1 to 5 in order.
- If ST = S, record and prune subtree

# Exhaustive enumeration: 14<sup>5</sup>

|           | Т       | I          | AMD     |          |  |  |
|-----------|---------|------------|---------|----------|--|--|
| Prog.     | Improv. | Seq.       | Improv. | Seq.     |  |  |
| fft       | 3.64%   | {3nm}      | 4.49%   | {4hns}   |  |  |
| fir       | 45.5%   | {4}        | 26.7%   | {3}      |  |  |
| iir       | 16.3%   | {3h}       | 29.5%   | {h4}     |  |  |
| latnrm    | 0.34%   | $\{nsch\}$ | 27.1%   | ${csh4}$ |  |  |
| Imsfir    | 0.39%   | {1s}       | 30.3%   | {s3}     |  |  |
| mult      | 0.00%   | {}         | 30.5%   | {4}      |  |  |
| adpcm     | 24.0%   | $\{1ish\}$ | 0.75%   | {ism}    |  |  |
| compress  | 39.1%   | {4s}       | 24.0%   | {hs4}    |  |  |
| edge      | 5.06%   | {3}        | 23.1%   | ${ch4}$  |  |  |
| histogram | 0.00%   | {}         | 24.7%   | {4}      |  |  |
| lpc       | 10.7%   | {sn2}      | 6.01%   | {h4cnm}  |  |  |
| spectral  | 7.46%   | $\{n4\}$   | 8.53%   | ${sh4}$  |  |  |
| Average   | 12.7%   | -          | 13.8%   | -        |  |  |

#### How does blind search perform? TI



◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆

#### How does blind search perform? AMD



SQ (P

#### Two models to help focus search

We want models that summarise the space that

- Can be applied to similar programs to focus search
- Are cheap to learn and don't overfit

Examine two basic models

- Identically independent distribution very naive
  - Just note how often a transformation occurs in a good sequence

(日) (圖) (필) (필) (필) 표

- Markov model slightly smarter.
  - Considers limited interactions

IID: Does not consider interactions

$$P(s_1, s_2, \ldots, s_L) = \prod_{i=1}^L P(s_i).$$

 Markov: Considers previous transformation. Not location aware

$$P(s_1, s_2, \ldots, s_L) = P(s_1) \prod_{i=2}^L P(s_i | s_{i-1}).$$

◆□> ◆□> ◆目> ◆目> ◆日> ● ○○

## Models as oracles

Want to check they are useful before trying to learn them

- So we exhaustively enumerated space to learn each model
- 14 transformations upto 5 in length 14<sup>5</sup>
- IID has a 14 element vector.
  - One probability value per transformation
- Markov a 14 × 14 matrix.
  - For each transformation what is the probability of the next one.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Used the model of the space to guide search of this space as a sanity check
  - Similar to hardware oracles

## Oracle vs blind search



Average results on TI. Markov better than IID

(日) (四) (문) (문)

큰

## Learning

- Used over 30 features to characterise programs
  - Then PCA to see which were relevant
  - Reduced to 5
- Used nearest neighbour as learning mechanism
- Evaluated mechanism on small and large 80<sup>20</sup> space
  - Learnt on large space using 1000 training examples

(日) (四) (문) (문) (문) (문)

Compared against random over first 50 evaluations.

## Performance on small space



TI: Markov is best

<ロ> (四) (四) (注) (日) (日)

æ

### Performance on large space

|     | 2 Evaluations |      | 5 Evaluations |      |      | 50 Evaluations |      |      |      |
|-----|---------------|------|---------------|------|------|----------------|------|------|------|
|     | R             | М    |               | R    | М    | Ι              | R    | М    |      |
| ΤI  | 1.10          | 1.25 | 1.26          | 1.15 | 1.26 | 1.30           | 1.29 | 1.32 | 1.35 |
| AMD | 1.08          | 1.24 | 1.27          | 1.17 | 1.33 | 1.31           | 1.32 | 1.41 | 1.44 |

- Significant improvement in first 2 evaluations (1.26,1,27)
  - R = Random, M = Markov, I = IID
- Focus gives an order of magnitude improvement.
  - Greater performance after 5 evaluations vs 50 of random
- IID outperforms Markov on large space
  - Learning an 80 element vector vs 80 × 80 matrix with 1000 samples

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

## Summary and Future Work

- Learning models to focus search works
  - More sophisticated models need more training data
- For continuous optimisation switch models as certain point
- Can be used with other work to reduce cost of each evaluation.
  - Automatically choose the space for self-tuning
- Ultimate goal is to use ML to make iterative compilation as cheap as profile-directed schemes

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

#### Additional Material

- Best single transfromation across 14<sup>5</sup>
  - himc3 on AMD speedup 1.11
  - No single best on TI
- Effective space: measure of pruning
  - Varies: 0.85% on histogram, 15.4%
- PCA: 5 vectors of 26 wieghts. Account for over 95% of variance

(日) (圖) (필) (필) (필) 표

- No clear feature dominating.
- Loop structure important

# Nearest Neighbour

| Benchmark | Nearest Neighbor |  |  |
|-----------|------------------|--|--|
| fft       | lpc              |  |  |
| fir       | compress         |  |  |
| iir       | fir              |  |  |
| latnrm    | iir              |  |  |
| Imsfir    | iir              |  |  |
| mult      | compress         |  |  |
| adpcm     | fir              |  |  |
| compress  | fir              |  |  |
| edge      | iir              |  |  |
| histogram | fir              |  |  |
| lpc       | spectral         |  |  |
| spectral  | lpc              |  |  |