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Abstract. We introduce a new class of compiler heuristics: hybrid optimizations.
Hybrid optimizations choose dynamically at compile time which optimization al-
gorithm to apply from a set of different algorithms that implement the same opti-
mization. They use a heuristic to predict the most appropriate algorithm for each
piece of code being optimized. Specifically, we construct a hybrid register alloca-
tor that chooses between linear scan and graph coloring register allocation. Linear
scan is more efficient, but sometimes less effective; graph coloring is generally
more expensive, but sometimes more effective. Our setting is Java JIT compila-
tion, which makes optimization algorithm efficiency particularly important.
Our hybrid allocator decides, based on features of a method, which algorithm to
apply to that method. We used supervised learning to induce the decision heuris-
tic. We evalute our technique within Jikes RVM [1] and show on average it out-
performs graph coloring by 9% and linear scan by 3% for a typical compilation
scenario. To our knowledge, this is the first time anyone has used heuristics in-
duced by machine learning to select between different optimization algorithms.

1 Introduction

Compiler writers constantly invent new optimization algorithms to improve the state
of the art. They frequently arrive at significantly different algorithms for a particular
compiler optimization. Often, however, there is no clear winner among the different
algorithms. Each algorithm has situations in which it is preferable to the other algo-
rithms. For example, many different register allocation algorithms have been invented
that achieve either a good running time performance [8, 6, 10, 2], possibly at the expense
of increased allocation time, or a reduction in allocation time [13, 16] at the expense of
performance. Two register allocation algorithms that differ in these seemingly mutually
exclusive goals are graph coloring and linear scan.

Graph coloring is an aggressive technique for allocating registers, but is computa-
tionally expensive due to its use of the interference graph, which can have a worst-case
size that is quadratic in the number of live ranges. Linear scan (LS), on the other hand,
does not build an interference graph, but instead allocates registers to variables in a



greedy fashion by scanning all the live ranges in a single pass. It is simple, efficient,
and produces a relative good packing of all the variables of a method into the available
physical registers. Graph coloring can sometimes lead to more effective packing of the
registers, but it can be much more expensive than linear scan.1

We invent a new class of optimization heuristics, hybrid optimizations. Hybrid op-
timizations assume that one has implemented two or more algorithms for the same
optimization. A hybrid optimization uses a heuristic to choose the best of these algo-
rithms to apply in a given situation. Here we construct a hybrid register allocator that
chooses between two different register allocation algorithms, graph coloring and linear
scan. The goal is to create an allocator that achieves a good balance between two fac-
tors: trying to find a good packing of the variables to registers (and thereby achieving
good running time performance) and trying to reduce the overhead of the allocator.

We discuss how we use supervised learning to construct a hybrid allocator. The
induced heuristic should be significantly cheaper to apply than register allocation itself;
thus we restrict ourselves to using properties (features) of a method that are cheap to
compute or have already been computed in a previous compilation phase.

The contributions of the paper are:

1. To our knowledge, this is the first time anyone has used properties of code to con-
struct automatically (using machine learning) a heuristic function that selects be-
tween different optimization algorithms.

2. We can construct an allocator that is as good as always using graph coloring with a
significant reduction in allocation/compilation time.

Fig. 1. Algorithm running time versus method size for GC and LS. Each point represents a
method, where x-axis is size of method and y-axis is time to allocate.

2 Motivation

We measured the time to run GC and LS for the case of 24 registers (12 volatile (callee-
save) registers and 12 non-volatile (caller-save) registers) on a PowerPC processor. Fig-

1 Poletto et al. [13] show data where graph coloring can be as much as 1000 times more expen-
sive than linear scan as the size of the live variables grows.



ure 1 shows scatter plots of the running time versus method size (expressed in number of
instructions). Both graphs omit outliers that have very large running times. LS’s running
time is consistent and fairly linear. GC’s time is in the same general region, but is worse
and does not have as clear a linear relationship with method size (this is to be expected,
given the overhead of constructing an interference graph in the GC algorithm).

(µs) / Inst
Algorithm (µs) / Inst Without Outliers
GC 1241 300
LS 183 176

Table 1. Average running time to allocate with GC and LS in microseconds (µs) per instruction.

Table 1 gives statistics on the measured running times of GC and LS. The sec-
ond column gives the average time to allocate registers in units of microseconds per
(low-level intermediate code) instruction. GC is nearly 7 times slower than LS on this
measure. However, if we exclude a small number of methods that took more than 1
second to schedule (outliers), then the ratio is 1.7. This shows that a small percentage
of methods strongly bias GC’s average running time. A possible strategy to ameliorate
this is to predict when applying GC will benefit a method over LS, and run GC only in
those cases. This is exactly the goal of a hybrid optimization. A hybrid optimization will
reduce compilation effort, using an efficient algorithm most of the time, but will use a
more effective, but expensive, optimization algorithm seldomly, when it deems the ad-
ditional benefit is worth the effort. This trade-off is especially interesting if compilation
time is important, such as in a JIT (just-in-time) compilation environment.

3 Problem and Approach

We want to construct a heuristic that with high effectiveness predicts which alloca-
tion algorithm is most beneficial to apply. We opted not to construct a hybrid allocator
by hand, but instead to try to induce a choice function automatically using supervised
learning techniques.

Developing and fine-tuning a hybrid allocator manually requires experimenting with
different features (i.e., combinations of features of the method). Fine-tuning heuristics
to achieve suitable performance is therefore a tedious and time-consuming process.
Machine learning, if it works, is thus a desirable alternative to manual tuning.

Our approach uses a technique called rule induction to induce a hybrid allocator
that is based on the features of the method. Rule induction heuristics are typically faster
to induce than using other machine learning techniques, 2 they are more understandable
than heuristics learned using other techniques (e.g., neural networks and decision trees),
and are easier to make work (than unsupervised learning).

2 Our technique induces heuristics in seconds on one desktop computer. Stephenson et al. [15]
report taking days to induce heuristics on a cluster of 15 to 20 machines.



The first step in applying supervised learning to this problem requires phrasing the
problem as a classification problem. For this task, this means that each method is rep-
resented by a training instance and each training instance is labeled with respect to
whether graph coloring achieves enough additional benefit (fewer spills) over linear
scan to warrant applying it.

3.1 Features

What properties of a method might predict which allocation algorithm to use? One can
imagine that certain properties of a method’s interference graph might predict whether
or not to use graph coloring. However, building the interference graph often dominates
the overall running time of the graph coloring algorithm. Since we require cheap-to-
compute features, we specifically choose not to use properties of the interference graph.

Instead, we use features that have previously been computed for other compilation
phases. For instance, we use features summarizing the control flow graph, CFG, such
as statistics pertaining to regular (non-exceptional) versus exceptional edges.3 We also
use features that describe liveness information, such as the number of variables that are
live in and out of a block. We also try other cheap-to-compute features that we thought
might be relevant. Computing these features requires a single pass over the method.

Features Meaning
In/Out Edges Number of CFG In/Out Edges
Exception In/Out Number of CFG Exceptional In/Out Edges
Live on Entry/Exit Number of edges live on entry/exit
Intervals Number of live intervals
Virtual Registers Number of virtual registers
Insts per block Number of instructions per blocks
Insts per method Number of instructions in method
Blocks per method Number of blocks in method

Table 2. Features of a method.

The features can be grouped into three different categories. The first set of features
pertains to edges in the control flow graph. These features include regular CFG edges
and exceptional CFG edges. The second set of features pertains to the live intervals. We
provide features for statistics describing the number of intervals (roughly, “variables”)
that are live going in and out of the blocks. This set also includes features for the num-
ber of live intervals and virtual registers. 4 The third set of features describes statistics
about sizes of blocks and the total number of instructions and blocks in the method. See
Table 2 for a complete list of the features. These features were either pre-computed or

3 Exceptional edges represent control flow if an exception is raised.
4 Virtual registers refers to user-defined variables and compiler generated temporaries that we

would like to allocate to machine registers.



as cheap to compute as we can imagine while offering some useful information. These
features work well so we decided not to refine them further. Our domain knowledge al-
lowed us to develop a set of features that on our first attempt produced highly-predictive
heuristics.

We present all of the features (except number of instructions and blocks) in several
forms, such as minimum, maximum, total, and mean. This allows the learning algorithm
to generalize over many different method sizes.

It might be possible that a smaller set of features would perform nearly as well.
However, calculating features and evaluating the heuristic functions takes less than
0.1% of compile time (a negligible fraction of compile time) in our experiments, so
we did not explore this possibility. In addition, rule induction automatically finds the
set of most significant features, so we did not need to eliminate features manually. One
final observation is that these features are machine independent and should be useful
across a wide range of systems. For instance, we performed experiments varying the
number of available registers and found this set of features worked well across all con-
figurations we evaluated.5

3.2 Generating Training Instances

We have constructed a set of features and now take the next step, generating training
instances. Each training instance consists of a vector of feature values, plus a boolean
classification label, i.e., LS (Linear Scan) or GC (Graph Coloring), depending on which
algorithm is best for the method.

After the Java system compiles and optimizes each Java method, the last phase
involves presenting the method for register allocation. As we allocate the variables in
the method to registers we can compute the features in Table 2. We instrument both a
graph coloring allocator and a linear scan allocator to print into a trace file, for each
method, raw data for forming a training instance.

Each raw datum consists of the features of the method that make up the training
instance and statistics used to calculate the label for that instance. For the particular step
of computing the features of a method, we can use either algorithm since the features
are not algorithm specific. However, computing the final statistics used for labeling
requires allocating the method with both graph coloring and linear scan. These statistics
include the time to allocate the method with each allocation algorithm, and the number
of additional spills incurred by each algorithm. We discuss the use of these statistics for
labeling each training instance in Section 3.3.

We obtain the number of spills for a method by counting the number of loads and
stores added to each block after register allocation and multiplying this by the number
of times each basic block executes. We obtain basic block execution counts by profiling
the application. We emphasize that these steps take place in an instrumented compiler,
run over a benchmark suite, and all happen off-line. Only the heuristics produced by
supervised learning are part of the production compiler and these heuristics are fast.

5 The exact heuristic functions may vary. For rather larger registers (24 or more), graph coloring
only rarely beats linear scan, while for small sets (4 or 8) graph coloring is even more important
than the medium size case we consider here (12).



3.3 Labeling Training Instances

We label an instance based on two different thresholds, a cost threshold and a benefit
threshold. The cost threshold pertains to the time it takes to allocate registers with each
algorithm. The benefit threshold pertains to the number of spill loads and stores incurred
by each allocation algorithm. We use spills as an indirect method to measure the benefit
of an allocation algorithm instead of using the direct metric of a method’s running
time. Measuring running time of an individual method is hard to do reliably, whereas
measuring dynamic spill count is easy to do and does not change between runs. Our
results show that this indirect metric works well.

For the experiments in this paper we use the following procedure to label the training
instances. We label an instance with “GC” (prefer graph coloring) if the number of spills
using linear scan minus the number of spills using graph coloring on the same method is
greater than some threshold (Spill Threshold). We label an instance with “LS” (prefer
linear scan) if there is no spill benefit by allocating the method with graph coloring. We
also label an instance with “LS” if the cost of using graph coloring is above a threshold
(Cost Threshold) more than the cost of applying linear scan. Those instances where
there is no clear benefit, in terms of spills or cost, in using graph coloring or linear scan
are discarded and not considered for learning. They do not provide useful guidance and
only push rule induction to try to make inconsquential fine distinctions. Figure 2 depicts
this algorithm for labeling.

if (LS Spill � GC Spill � Spill Threshold)
Label as GC;

else if (LS Spill - GC Spill ��� 0)
Label as LS;

else if (LS Cost/GC Cost � Cost Threshold)
Label as LS;

else�
// No Label (discard instance) �

Fig. 2. Procedure for labeling instances with GC and LS

We experimented with different threshold values for the spill benefit and cost thresh-
old. Varying these threshold values gave us a variety of different heuristic functions. We
report results for the best heuristic function found from 6 heuristic functions explored.

3.4 Learning Algorithm

An important rule in applying machine learning successfully is to try the simplest learn-
ing methodology that might solve the problem. We chose the supervised learning tech-
nique called rule set induction, which has many advantages over other learning method-
ologies. The specific tool we use is Ripper [9].



Ripper generates sets of if-then rules that are more expressive, more compact, and
more human readable (hence good for compiler writers) than the output of other learn-
ing techniques, such as neural networks and decision tree induction algorithms. We
analyze one of the induced if-then rule sets in Section 3.5.

3.5 A Sample Induced (Learned) Heuristic

As we mentioned, rule sets are easier to comprehend and are often compact. It is also
relatively easy to generate code from a rule set that can be used to build a hybrid allo-
cator.

Table 3 shows a rule set induced by our training data. If the right hand side condition
of any rule (except the last) is met, then we will apply GC on the method; otherwise
the hybrid allocator predicts that GC will not benefit the method and it applies LS. The
numbers in the first two columns give the number of training examples that are correctly
and incorrectly classified by the rule.

( 20/ 9) GC � avgLiveOnExitBB ��� 3.8 � avgVirtualRegsBB ��� 13
( 22/13) GC � avgLiveOnEntryBB ��� 4 � avgCFGInEdgesBB ��� 1.4 � avgLiveOnExitBB ��� 5.5 �

numberInsts ��� 294
( 10/ 5) GC � avgLiveOnExitBB ��� 4.3 � maxLiveOnEntry ��� 13
( 12/ 2) GC � avgLiveOnExitBB ��� 3.7 � maxLiveOnEntry ��� 9 � numVirtualRegs ��� 895 �

maxLiveIntervals ��� 38 � maxLiveIntervals ��� 69
(1815/78) LS �

Table 3. Induced Heuristic Generated By Ripper.

In this case we see that liveness information and the number of virtual registers are
the most important features, with the rest offering some fine tuning. For example, the
first if-then rule predicts that it is beneficial to use graph coloring on methods consisting
blocks with a high average number of live intervals exiting the block and a high average
number of virtual registers in the block. Note that for this training set a large percentage
of methods (1815 � 78 � 1893 of 1986 � 95%) were predicted not to benefit from graph
coloring. As we see in Section 6.2, determining the feature values and then evaluating
rules like this sample one does not add very much to compilation time, and takes much
less time than actually allocating the methods.

3.6 Integration of the Induced Heuristic

After training, the next step is installing the heuristic function in the compiler and ap-
plying it online. When the optimizer invokes register allocation on a method, we first
compute our features for the method. We then call the heuristic function, passing the
features. If the heuristic functions says to use graph coloring, we do so, otherwise we
apply linear scan. If a method is re-optimized, as sometimes happens in adaptive com-
pilation, the heuristic will be applied again, to the new code, and may make a different
decision.

We include in our reported timings of allocation the cost of computing features and
invoking the heuristic function. These costs are quite small compared with running the
allocation algorithms.



4 Experimental infrastructure

We implemented our register allocation algorithms in Jikes RVM, a Java virtual ma-
chine with JIT compilers, provided by IBM Research [1]. The system provides a linear
scan allocator in its optimizing compiler. In addition, we implemented a Briggs-style
graph coloring register allocator [5].

We experiment with Jikes RVM in an adaptive scenario, which is a typical scenario
for compiling Java programs. In this scenario, the compiler identifies and optimizes only
frequently executed (hot) methods at progressively higher levels of optimization [3].
This is the typical compilation scenario of a Java JIT compiler. It achieves most of the
benefit of optimizing all methods, but with much lower compilation cost.

Our specific target architecture is the PowerPC. We ran our experiments on an Apple
Macintosh system with two 533 MHz G4 processors, model 7410. This is an aggressive
superscalar architecture whose microarchitecture is representative of the state of the
art in processor implementations. We motivated this work allocating 24 registers, the
number available on a PowerPC. We present results for allocating 12 registers (6 volatile
and 6 non-volatile), which corresponds to AMD, ARM, and many embedded processors
in wide-spread use.

4.1 Benchmarks

We examine 7 programs drawn from the SPECjvm98 suite [14] for the experiments in
this paper. We detail these benchmarks in Table 4. We ran these benchmarks with the
largest data set size (called 100).

Program Description
compress Java version of 129.compress from SPEC 95
jess Java expert system shell
db Builds and operates on an in-memory database
javac Java source to bytecode compiler in JDK 1.0.2
mpegaudio Decodes an MPEG-3 audio file
raytrace A raytracer working on a scene with a dinosaur
jack A Java parser generator with lexical analysis

Table 4. Characteristics of the SPECjvm98 benchmarks.

5 Evaluation Methodology

As is customary in evaluating a machine learning technique, our learning methodology
was leave-one-out cross-validation: given a set of n benchmark programs, in training for
benchmark i we train (develop a heuristic) using the training set (the set of instances)
from the n � 1 other benchmarks, and we apply the heuristic to the test set (the set of



instances from benchmark i). This makes sense in our case for two reasons. First, we
envision developing and installing of the heuristic “at the factory”, and it will then be
applied to code it has not “seen” before. Second, while the end goal is to develop a sin-
gle heuristic, it is important that we test the overall procedure by developing heuristics
many times and seeing how well they work. The leave-one-out cross-validation proce-
dure is a commonly used way to do this. Another way is repeatedly to choose about half
the programs and use their data for training and the other half for testing. However, we
want our heuristics to be developed over a wide enough range of benchmarks that we
are likely to see all the “interesting” behaviors, so leave-one-out may be more realistic
in that sense.

To evaluate a hybrid allocator on a benchmark, we consider three kinds of results:
spill loads, total running time, and benchmark running time.

Spill loads refers to the additional number of loads (read memory accesses) incurred
by the allocation algorithm. Spill loads give an indication of how well the allocator is
able to perform its task. Memory accesses are expensive, and although the latency of
some additional accesses can be hidden by overlapping with execution of other instruc-
tions, the number of spill loads is highly correlated with application running time. We
do not count spill stores because their latency can be mostly hidden with store buffers.
(A store buffer is an architectural feature that allows computation to continue while a
store executes. Store buffers are typical in modern architectures.)

Total time refers to the running time of the program including compile time. We
compare our hybrid allocator to always using linear scan and always using graph color-
ing. Since timings of our proposed system include the cost of computing features and
applying the heuristic function, this (at least indirectly) substantiates our claim that the
cost of applying the heuristic at run time is low. (We also supply measurements of those
costs in Section 6.2.)

Running time refers to the running time of the program without compilation time.
This measures the change in execution time of the allocated code, compared with al-
ways using linear scan and always using graph coloring. This validates not only the
heuristic function but also our instance labeling procedure, and by implication the spill
model we used to develop the labels.

The goal of the hybrid allocator is to achieve application running time close to
always applying graph coloring, while reducing compilation time to substantally less
than applying graph coloring to every method. If these two objectives are met, a hybrid
allocator should reduce total time compared to always applying either graph coloring
or linear scan.

6 Experimental Results

We aimed to answer the following questions: How effective is the hybrid allocator in
obtaining best application performance compared to graph coloring? How efficient is
our hybrid allocator compared to allocating all methods with linear scan? We ask these
questions on the SPECjvm98 benchmark suite. We then consider how much time it
takes to apply the hybrid heuristic in the compiler.



We answer the first question by comparing the running time of the application,
with compilation time removed. We address the second by comparing total time which
includes time spent compiling including allocating. Since we are using adaptive opti-
mization in a JIT compiler, total time is the key measure of overall importance.

We requested that the Java benchmark iterate 26 times garbage collecting between
iterations. The first iteration will cause the program to be loaded, compiled, and allo-
cated according to the allocation algorithm. The remaining 25 iterations should involve
no compilation; we use the best of the 25 runs as our measure of application perfor-
mance.

Section 6.1 discusses the benefit of our allocators with respect to reducing spills.
Section 6.2 discusses the cost of using the hybrid heuristic. Finally, Section 6.3 dis-
cusses the effect of using hybrid allocators in reducing program execution (running and
total) time.

6.1 Spill Loads

Before looking at execution times on an actual machine, we consider the quality of
the induced hybrid allocator (compared with always applying either graph coloring or
linear scan) in terms of the number of spill loads added by register allocation. Spill
loads predict whether a method will benefit from the additional effort of applying the
more expensive graph coloring allocator.

Spill loads are used in the labeling process, thus we hoped that our hybrid allocator
would perform well on the spill load metric. Comparing the allocators against spill loads
allows us to validate the learning methodology, independently of validating against the
actual performance on the target machine.

We calculate the dynamic number of spill loads added to each method by multiply-
ing the number of spill loads added to each block by the number of times that block is
executed (as reported by profiling information). Then we sum the number of dynamic
spill loads added to each block. We obtain the dynamic number of spills loads for the
entire program by summing the number of dynamic spill loads added to each method.
More precisely, the performance measure for program P is:

SPILLSπ
�
P � � ∑

M � P
∑

b � M

�
# Executions of b ��� � spill loads added to b under allocator π �

where M is a method, b is a basic block in that method, and π is hybrid, graph coloring,
or linear scan.

Table 5 shows the spill loads for each allocator as a ratio to spill loads produced
by our graph coloring algorithm. These numbers are given as geometric means over
the 7 SPECjvm98 benchmarks. We see improvements for the hybrid allocator over lin-
ear scan. These improvements do not correspond exactly to measured execution times,
which is not surprising given that the number of spill loads is not an exact measure of
performance on the architecture. What the numbers confirm is that the induced heuristic
indeed improves the metric on which we based its training instances. Thus, supervised
learning was able to solve this learning problem. Whether we get improvement on the



Register mpeg- ray- com- geo.
Allocator jack db javac audio trace press jess Mean
HYBRID 1.07 1.00 1.04 1.49 1.05 2.01 1.33 1.25
LS 1.07 1.20 1.07 2.13 1.55 2.01 1.42 1.44

Table 5. Spill loads for hybrid and linear scan relative to graph coloring.

real machine is concerned with how predictive reducing spill loads (i.e., the spill model)
is to benchmark performance. The hybrid allocator was able to reduce the number of
spills obtained by linear scan by 19%. In Section 6.3, we see that reducing the number
of dynamic spill loads leads to an average reduction in running time of 5% for hybrid
allocation over linear scan for our set of benchmarks.

6.2 The Cost of Evaluating a Hybrid Heuristic

Table 6 gives a breakdown of the compilation costs of our system, and statistics con-
cerning the percentage of methods and instructions allocated with each allocator. The
costs are given as geometric means over the 7 benchmarks.

Allocator GCM GCI LSM LSI f � a f � c a � c

GC 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 21.26%
HYBRID 2.42% 9.53% 97.58% 90.47% 1.20% 0.09% 7.31%
LS 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 3.41%

Table 6. Cost breakdowns: GCM/GCI � GC allocated methods/instructions; LSM/LSI � LS
allocated methods/instructions; f � time to evaluate features and heuristic function; a � time
spent allocating methods; c � compile time excluding allocation time.

Here are some interesting facts revealed in the table. First, the fraction of methods
and of instructions allocated with GC drops significantly for our hybrid scheme. Sec-
ond, the fraction of instructions allocated with GC, which tracks the relative cost of
allocation fairly well, is about 4 times as big as the fraction of methods allocated with
GC, implying that the hybrid allocator tend to use GC for longer methods. This makes
sense in that longer methods probably tend to benefit more from graph coloring.

Third, the cost of calculating the heuristic, as a percentage of compilation time, is
less than 0.1%. Finally, we obtain a factor of 3 reduction in allocation time compared
with GC (applying graph coloring to every method).

6.3 Effectiveness and Efficiency

We now consider the quality of the hybrid heuristic induced for adaptive optimization.
Figure 3(a) shows the impact of the hybrid allocation and GC on application running
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(a) Running Time Using Hybrid versus Graph Coloring relative to Lin-
ear Scan
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(b) Total Time Using Hybrid versus Graph Coloring relative to Linear
Scan

Fig. 3. Efficiency and Effectiveness Using Hybrid Allocator with Adaptive Compiler.



time, presented relative to LS. Here there is little variation between graph coloring and
hybrid allocation across the benchmarks, with GC doing well at 5% and the hybrid
allocator doing just as well. Given the lower cost of the hybrid allocator to run, it is
preferable to running GC all the time. The results are fairly consistent across the bench-
marks, though some benchmarks improve more than others.

As Figure 3(a) shows we can effectively select dynamically the methods where
graph coloring improves over linear scan with our hybrid heuristic. The hybrid allocator
is effective, but what happened to efficiency?

Figure 3(b) shows the total time of the hybrid allocator and GC (always performing
graph coloring), relative to LS (always performing linear scan). The average for the total
time graph shows an improvement using the hybrid allocator over either always using
linear scan or always using graph coloring. Using the hybrid allocator we can achieve
up to an 15% improvement over linear scan for compress with an average improve-
ment of 3%. Using graph coloring, we can also achieve a substantial improvement on
some benchmarks over linear scan, but we also incur a significant degradation on some
programs (up to 22% for mpegaudio) over linear scan. However, by selective applying
GC only when it is beneficial we can reduce total time by 9% on average using hybrid
allocator over graph coloring. The improvement in total time of hybrid allocation over
graph coloring shows we were able to cut the compilation effort (and therefore total
time) significantly.

7 Related Work

Lagoudakis et al. [11] describe an idea of using features to choose between algorithms
for two different problems, order statistics selection and sorting. The authors used re-
inforcement learning to choose between different algorithms for each problem. For the
order statistics selection problem, the authors choose between Deterministic Select and
Heap Select. For sorting, they choose between Quicksort and Insertion Sort. The hybrid
algorithms were able to outperform each individual algorithm.

Cavazos et al. [7] describe an idea of using supervised learning to control whether
or not to apply instruction scheduling. They induced heuristics that used features of a
basic block to predict whether scheduling would benefit that block. Using the induced
heuristic, they were able to reduce scheduling effort by as much as 75% while still
retaining about 92% of the effectiveness of scheduling all blocks.

Monsifrot et al. [12] use a classifier based on decision tree learning to determine
which loops to unroll. They looked at the performance of compiling Fortran programs
from the SPEC benchmark suite using g77 for two different architectures, an Ultra-
SPARC and an IA64, where their learned scheme showed modest improvement.

Stephenson et al. [15] used genetic programming to tune heuristic priority functions
for three compiler optimizations within the Trimaran IMPACT compiler. For two op-
timizations they achieved significant improvements. However, these two pre-existing
heuristics were not well implemented. For instance, turning off data prefetching com-
pletely is preferable and reduces many of their significant gains. For the third optimiza-
tion, register allocation, they were able to achieve on average only a 2% improvement
over the manually tuned heuristic.



Bernstein et al. [4] describe an idea of using three heuristics for choosing the next
variable to spill, and choosing the best heuristic with respect to a cost function. This is
similar to our idea of using a hybrid allocator to choose which algorithm is best based on
properties of the method being optimized. Their technique applies all the spill heuristics
and measures the resultant code with the cost function. Their technique results in about
a 10% reduction in spills and a 3% improvement in running time. Our technique, on
the other hand, does not try each option, but instead uses features of the code to make
a prediction. By making a prediction using simple properties of the code, our heuristics
are more efficient while still remaining effective. In fact, our technique could be used
as an alternative to the cost function used in their work.

8 Conclusions

Choosing which optimization algorithm to apply among different optimization algo-
rithms that differ in efficiency and effectiveness can avoid potentially costly compiler
optimizations. It is an important open problem. We consider here the particular case of
register allocation, with the possible choices being linear scan, graph coloring , and a
hybrid allocator that chooses between these two algorithms. Since many methods do
not gain additional benefit from applying graph coloring over linear scan, a hybrid al-
locator applies graph coloring only to a subset of the methods. We demonstrated that
for an aggressive optimizing compiler (in a typical adaptive scenario) it is possible to
induce a function automatically that is competent at making this choice: we obtain the
effectiveness benefit of graph coloring and the efficiency benefit of linear scan.

Sometimes (only rarely) it is beneficial to perform graph coloring in a JIT, depend-
ing on how long the program runs, etc. Since it is only rarely worthwhile, that empha-
sizes the need for our heuristic to decide when to apply it. The general approach we
took here should apply in other optimization situations.

Supervised learning worked well for this learning task. In addition, the learning
algorithm we use produces understandable heuristics. As with any machine learning
technique, devising the appropriate features is critical. Choosing which register alloca-
tion algorithm to apply turns out to require only simple, cheap-to-compute features.

We conclude that machine learning shows promise for developing heuristics for
choosing between multiple algorithms for the same optimization task. A useful direc-
tion for future exploration is more expensive, rarely helpful, yet sometimes essential,
optimizations, such as redundant load and store elimination.
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