Hybrid Optimizations: Which Optimization to Use?

John Cavazos

Institute for Computing Systems Architecture School of Informatics University of Edinburgh, UK

Motivation

Register Allocation: important Effective use of registers Different Algorithms to choose from Graph coloring: possibly expensive Linear scan: not always effective Important for Dynamic Compilation Which algorithm to apply?

Allocation Cost Graph Coloring vs Linear Scan

Graph Coloring

Linear Scan

Solution

- Features predict which algorithm to use
- Heuristic function controls allocator
 - Reduces cost significantly
 - Retains benefit
- Successful with simple features
- Applicable to other optimizations

Hybrid Register Allocation

Features of Methods

Features	Meaning
Out, In, and Exception Out Edges	Out, in, and exception out edges in CFG (total, avg)
Live on Entry Live on Exit	Number of edges live on entry and exit (total, min, max)
Insts and Blocks	Number of instructions and blocks in method (total)
Block size	Size of blocks (max, min, avg)
Intervals	Number of live intervals (max, total, avg)
Symbolics	Number of symbolics (total, avg)

Hybrid Register Allocation

Inducing Heuristic Controller

- For each method generate raw training data
 Features of method
 Dynamic spills incurred
 Cost of allocation algorithms
- Process raw data to generate training set
- Leave-one-out cross-validation
- Rule-Induction
- Learning output **heuristic controller**

Labelling Training Instances

- Two factors:
 - Cost of register allocation
 - Spill benefit of different allocators
- Prefer graph coloring
 - If spill benefit above threshold
- Prefer linear scan
 - If graph coloring cost above threshold
 - No spill benefit

Thresholding

Motivation for Threshold Technique

- Noise reduction technique
- Simplifies learning
- Removes cases of fine distinction
- Separation by a threshold gap

Experimental Setup

- Jikes RVM
 - •JIT / Adaptive compilation
- PowerPC 533 MHz G4, model 7410
- 10 Registers (5 volatiles/5 non-volatiles)
- SPEC JVM benchmarks
- Running Time (NO compile time)
 - •Min of 25 runs
- Total Time (WITH compile time)

Benchmark Running Times

Benchmark Total Times

Sample Induced Heuristic

- $GC \leftarrow avgLiveExitBB \geq 3.8$ ^ $avgVirtRegBB \geq 13$
- $GC \leftarrow avgLiveEntryBB \ge 4$ ^ $avgCFGInEdgesBB \ge 1.4$ ^
 - avgLiveExitBB ≥ 5.5 ^ numberInsts < 294
- $GC \leftarrow avgLiveExitBB \ge 4.3$ ^ maxLiveEntry ≤ 13
- $GC \leftarrow avgLiveExitBB \geq 3.7$ ^ maxLiveEntry ≥ 9 ^
 - numVirtReg \geq 895 ^ maxLiveIntervals \geq 38 ^

maxLiveIntervals \geq 69

Conclusion

- Hybrid Register Allocation successful
- Preserves Benefit Graph Colloring
- Reduces total (allocation) time

More Information

- COLO (COmpilersThat Learn to Optimise) http://www.anc.ed.ac.uk/machine-learning/colo/
- My Website: http://homepages.inf.ed.ac.uk/jcavazos/