
Hybrid Optimizations:
Which Optimization to Use?

John Cavazos
Institute for Computing Systems Architecture

School of Informatics
University of Edinburgh, UK

Motivation

 Register Allocation: important
 Effective use of registers

 Different Algorithms to choose from
 Graph coloring: possibly expensive
 Linear scan: not always effective

 Important for Dynamic Compilation
 Which algorithm to apply?

Allocation Cost
Graph Coloring vs Linear Scan

Graph Coloring Linear Scan

Solution

 Features predict which algorithm to use
 Heuristic function controls allocator

 Reduces cost significantly
 Retains benefit

 Successful with simple features
 Applicable to other optimizations

Hybrid Register Allocation

Heuristic
Controller

Linear Scan
Register Allocator

Graph Coloring
Register Allocator

Features
of code

IR

Target
Code

Target
Code

Source
Code

Compiler

Features of Methods

Number of symbolics (total, avg)Symbolics

Number of live intervals (max, total, avg)Intervals

Size of blocks (max, min, avg)Block size

Number of instructions and blocks in method (total)Insts and Blocks

Number of edges live on entry and exit (total, min,
max)

Live on Entry
Live on Exit

Out, in, and exception out edges in CFG (total, avg)Out, In, and
Exception Out Edges

MeaningFeatures

Hybrid Register Allocation

Heuristic
Controller

Linear Scan
Register Allocator

Graph Coloring
Register Allocator

Features
of code

IR

Target
Code

Target
Code

Source
Code

Compiler

Inducing Heuristic Controller

 For each method generate raw training data
 Features of method
 Dynamic spills incurred
 Cost of allocation algorithms

 Process raw data to generate training set
 Leave-one-out cross-validation
 Rule-Induction
 Learning output heuristic controller

Labelling Training Instances

 Two factors:
 Cost of register allocation
 Spill benefit of different allocators

 Prefer graph coloring
 If spill benefit above threshold

 Prefer linear scan
 If graph coloring cost above threshold
 No spill benefit

Thresholding

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1.E-01 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09

LS Spills - GC Spills
GC less spills --->

1
- (

LS
 C

os
t /

 G
C

 C
os

t)
G

C
 m

or
e

ex
pe

ns
iv

e

>

Cost Threshold (0.5) Spill Threshold(8192)

Graph ColoringLinear Scan

No Instance

Motivation for
Threshold Technique

 Noise reduction technique
 Simplifies learning
 Removes cases of fine distinction
 Separation by a threshold gap

Experimental Setup

 Jikes RVM
•JIT / Adaptive compilation

 PowerPC 533 MHz G4, model 7410
 10 Registers (5 volatiles/5 non-volatiles)
 SPEC JVM benchmarks
 Running Time (NO compile time)

•Min of 25 runs
 Total Time (WITH compile time)

Benchmark Running Times

jack db javac mpegaudio raytrace compress jess geo mean
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

 GC HYBRID

R
at

io
 to

 L
in

ea
r S

ca
n

Benchmark Total Times

jack db javac mpegaudio raytrace compress jess geo mean
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

GC HYBRID

R
at

io
 to

 L
in

ea
r S

ca
n

GC ← avgLiveExitBB ≥ 3.8 ^ avgVirtRegBB ≥ 13

GC ← avgLiveEntryBB ≥ 4 ^ avgCFGInEdgesBB ≥ 1.4 ^

 avgLiveExitBB ≥ 5.5 ^ numberInsts < 294

GC ← avgLiveExitBB ≥ 4.3 ^ maxLiveEntry ≤ 13

GC ← avgLiveExitBB ≥ 3.7 ^ maxLiveEntry ≥ 9 ^

 numVirtReg ≥ 895 ^ maxLiveIntervals ≥ 38 ^

 maxLiveIntervals ≥ 69

LS ←

Sample Induced Heuristic

Conclusion

 Hybrid Register Allocation successful
 Preserves Benefit Graph Colloring
 Reduces total (allocation) time

More Information

 COLO (COmpilersThat Learn to Optimise)
http://www.anc.ed.ac.uk/machine-learning/colo/

 My Website:
http://homepages.inf.ed.ac.uk/jcavazos/

