
Bottom-Up Parsing

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Recap of Top-down Parsing
•  Top-down parsers build syntax tree from

root to leaves
•  Left-recursion causes non-termination in

top-down parsers
— Transformation to eliminate left recursion
— Transformation to eliminate common prefixes in

right recursion

Recap of Top-down Parsing (cont’d)
•  FIRST, FIRST+, & FOLLOW sets + LL(1)

condition
— LL(1) uses left-to-right scan of the input,

leftmost derivation of the sentence, and 1 word
lookahead

— LL(1) condition means grammar works for
predictive parsing

•  Given an LL(1) grammar, we can
— Build a table-driven LL(1) parser

•  LL(1) parser keeps lower fringe of partially
complete tree on the stack

Parsing Techniques
Top-down parsers (LL(1), recursive descent)
•  Start at root of the parse tree and grow toward leaves
•  Pick a production & try to match the input
•  Bad “pick” ⇒ may need to backtrack
•  Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)
•  Start at the leaves and grow toward root
•  As input consumed, encode possibilities in internal state
•  Start in a state valid for legal first tokens
•  Bottom-up parsers handle a large class of grammars

Bottom-up Parsin (definitions)
The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

•  Each γi is a sentential form
— If γ contains only terminal symbols, γ is a sentence in

L(G)
— If γ contains 1 or more non-terminals, γ is a sentential

form

Bottom-up Parsing (definitions)

 S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence
•  To get γi from γi–1, expand some NT A ∈ γi–1 by

using A →β
— Replace the occurrence of A ∈ γi–1 with β to get γi
— In a leftmost derivation, it would be first NT A ∈ γi–1

A left-sentential form occurs in a leftmost
derivation

A right-sentential form occurs in a rightmost
derivation

Bottom-up parsers build rightmost derivation in
reverse

Bottom-up Parsing (definitions)

A bottom-up parser builds derivation by
working from input sentence back toward
the start symbol S

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

bottom-up

assuming A→β, match
some rhs β here

replace β with its
corresponding lhs, A here

Bottom-up Parsing (definitions)
In terms of parse tree, it works from leaves to root
•  Nodes with no parent in partial tree form upper fringe
•  Each replacement of β with A shrinks the upper fringe,
 we call this a reduction.
•  “Rightmost derivation in reverse” processes words left to

right

<id,y>

<num,2>

Fact.

Fact. Term * upper fringe

Bottom-up Parsing (definitions)
In terms of parse tree, it works from leaves to root
•  Nodes with no parent in partial tree form upper fringe
•  Each replacement of β with A shrinks the upper fringe,
 we call this a reduction.
•  “Rightmost derivation in reverse” processes words left to

right

<id,y>

<num,2>

Fact.

Fact. Term

Term

*

reduction

Finding Reductions
Consider the grammar

And the input string abbcde

0 Goal → a A B e
1 A → A b c
2 | b
3 B → d

Sentential Next Reduction
Form Prod’n Pos’n

abbcde 2 2
a A bcde

“Position” specifies where the right end of
β occurs in the current sentential form.

We call this position k.

Finding Reductions
Consider the grammar

And the input string abbcde

0 Goal → a A B e
1 A → A b c
2 | b
3 B → d

Sentential Next Reduction
Form Prod’n Pos’n

abbcde 2 2
a A bcde 1 4
a A de 3 3
a A B e 0 4

Goal — —

“Position” specifies where the right end of
β occurs in the current sentential form.

We call this position k.

Finding Reductions (Handles)
Parser must find substring β at parse tree’s frontier that

matches some production A → β

 (⇒ β → A is in Reverse Rightmost Derivation)

 We call substring β a handle

Finding Reductions (Handles)
Formally,

A handle of a right-sentential form γ is a pair <A→β,k>
where

A→β ∈ P and k is the position in γ of β’s rightmost symbol.
If <A→β,k> is a handle, then replacing β at k with A

produces the right sentential form from which γ is
derived in the rightmost derivation.

On ChalkBoard Example

A simple left-recursive
form of the classic
expression grammar

 0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → number
8 | id
9 | (Expr)

Bottom up parsers can handle
either left-recursive or
right-recursive grammars.

On ChalkBoard Example

A simple left-recursive form of
the classic expression grammar

Handles for rightmost derivation of x – 2 * y

 0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → number
8 | id
9 | (Expr)

Prod’
n

Sentential Form Handle

8 <id,x> - <num,2> * <id,y> 8,1
Factor - <num,2> * <id,y>

parse

On ChalkBoard Example

A simple left-recursive form of
the classic expression grammar Handles for rightmost derivation of x – 2 * y

 0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → number
8 | id
9 | (Expr)

Prod’
n

Sentential Form Handle

8 <id,x> - <num,2> * <id,y> 8,1
6 Factor - <num,2> * <id,y> 6,1
3 Term - <num,2> * <id,y> 3,1
7 Expr - <num,2> * <id,y> 7,3
6 Expr - Factor * <id,y> 6,3
8 Expr - Term * <id,y> 8,5
4 Expr - Term * Factor 4,5
2 Expr - Term 2,3
0 Expr 0,1
- Goal -

parse

Bottom-up Parsing (Abstract View)
A bottom-up parser repeatedly finds a handle A → β in

current right-sentential form and replaces β with A.

To construct a rightmost derivation
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ w

Apply the following conceptual algorithm
for i ← n to 1 by –1
 Find the handle <Ai →βi , ki > in γi
 Replace βi with Ai to generate γi–1

This takes 2n steps

of course, n is
unknown until
the derivation
is built

More on Handles
Bottom-up parsers finds rightmost derivation
•  Process input left to right
•  Handle always appears at upper fringe of

partially completed parse tree

LR parsing
•  Keep upper fringe of the partially completed

parse tree on a stack
— Stack makes position information irrelevant
— Handles appear at top of the stack (TOS)

If G is unambiguous, then every right-sentential
form has a unique handle.

More on Handles

Prod’n Sentential Form Handle

8 <id,x> - <num,2> * <id,y> 8,1

6 Factor - <num,2> * <id,y> 6,1

3 Term - <num,2> * <id,y> 3,1

7 Expr - <num,2> * <id,y> 7,3

Expr

-
<num,2>

* <id,y>

Rest of input
from scanner

stack

TOS

7 Factor → number
K=3

Shift-Reduce Parsing

To implement a bottom-up parser, we adopt the shift-
reduce paradigm

A shift-reduce parser is a stack automaton with four
actions

•  Shift — next word is shifted onto the stack
•  Reduce — right end of handle is at top of stack

 Located handle (rhs) on top of stack
 Pop handle off stack & push appropriate lhs

Shift is just a push and a call to the scanner
Reduce means found a handle, takes |rhs| pops & 1 push

But how does parser know when to shift and when to reduce?
It shifts until it has a handle at the top of the stack.

Shift-Reduce Parsing

•  Accept — stop parsing & report success
•  Error — call an error reporting/recovery routine

Accept if no input and Goal symbol on top of stack (TOS)

Error otherwise

But how does parser know when to shift and when to reduce?
It shifts until it has a handle at the top of the stack.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
 if the top of the stack is a handle A→β
 then // reduce β to A
 pop |β| symbols off the stack
 push A onto the stack
 else if (token ≠ EOF)
 then // shift
 push token
 token ← next_token()
 else // need to shift, but out of input

 report an error

What happens on an error?

•  It fails to find a handle

•  Thus, it keeps shifting
•  Eventually, it consumes
 all input

This parser reads all input
before reporting an error,
not a desirable property.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
 if the top of the stack is a handle A→β
 then // reduce β to A
 pop |β| symbols off the stack
 push A onto the stack
 else if (token ≠ EOF)
 then // shift
 push token
 token ← next_token()
 else // need to shift, but out of input

 report an error

What happens on an error?

•  It fails to find a handle

•  Thus, it keeps shifting
•  Eventually, it consumes
 all input

This parser reads all input
before reporting an error,
not a desirable property.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
 if the top of the stack is a handle A→β
 then // reduce β to A
 pop |β| symbols off the stack
 push A onto the stack
 else if (token ≠ EOF)
 then // shift
 push token
 token ← next_token()
 else // need to shift, but out of input

 report an error

What happens on an error?

•  It fails to find a handle

•  Thus, it keeps shifting
•  Eventually, it consumes
 all input

This parser reads all input
before reporting an error,
not a desirable property.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
 if the top of the stack is a handle A→β
 then // reduce β to A
 pop |β| symbols off the stack
 push A onto the stack
 else if (token ≠ EOF)
 then // shift
 push token
 token ← next_token()
 else // need to shift, but out of input

 report an error

What happens on an error?

•  It fails to find a handle

•  Thus, it keeps shifting
•  Eventually, it consumes
 all input

This parser reads all input
before reporting an error,
not a desirable property.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
 if the top of the stack is a handle A→β
 then // reduce β to A
 pop |β| symbols off the stack
 push A onto the stack
 else if (token ≠ EOF)
 then // shift
 push token
 token ← next_token()
 else // need to shift, but out of input

 report an error

What happens on an error?

•  It fails to find a handle

•  Thus, it keeps shifting
•  Eventually, it consumes
 all input

This parser reads all input
before reporting an error,
not a desirable property.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
 if the top of the stack is a handle A→β
 then // reduce β to A
 pop |β| symbols off the stack
 push A onto the stack
 else if (token ≠ EOF)
 then // shift
 push token
 token ← next_token()
 else // need to shift, but out of input

 report an error

What happens on an error?

•  It fails to find a handle

•  Thus, it keeps shifting
•  Eventually, it consumes
 all input

This parser reads all input
before reporting an error,
not a desirable property.

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

Expr is not a handle at this point because reducing now
will cause backtracking.
While that statement sounds like oracular, we will see
that the decision can be automated efficiently.

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id 6,3 reduce 6
$ Expr - Term * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id 6,3 reduce 6
$ Expr - Term * id none shift
$ Expr - Term * id none shift
$ Expr - Term * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Back to x - 2 * y

5 shifts +
9 reduces +
1 accept

Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id 6,3 reduce 6
$ Expr - Term * id none shift
$ Expr - Term * id none shift
$ Expr - Term * id 8,5 reduce 8
$ Expr - Term * Factor 4,5 reduce 4
$ Expr - Term 2,3 reduce 2
$ Expr 0,1 reduce 0
$ Goal none accept

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact. Term

Term

*

Stack Input Action
$ id - num * id shift
$ id - num * id reduce 8
$ Factor - num * id reduce 6
$ Term - num * id reduce 3
$ Expr - num * id shift
$ Expr - num * id shift
$ Expr - num * id reduce 7
$ Expr - Factor * id reduce 6
$ Expr - Term * id shift
$ Expr - Term * id shift
$ Expr - Term * id reduce 8
$ Expr - Term * Factor reduce 4
$ Expr - Term reduce 2
$ Expr reduce 0
$ Goal accept

Back to x - 2 * y

Corresponding Parse Tree

An Important Lesson about Handles
A handle must be a substring of a sentential

form γ such that :
— Must match rhs β of some rule A → β;

and
•  Simply looking for right hand sides that

match strings is not good enough

An Important Lesson about Handles

•  Critical Question: How can we know when
we have found a handle without generating
lots of different derivations?

An Important Lesson about Handles

•  Critical Question: How can we know when
we have found a handle without generating
lots of different derivations?
— Answer: We use left context, encoded in the

sentential form, left context encoded in a
“parser state”, and a lookahead at the next
word in the input. (Formally, 1 word beyond the
handle.)

— We build all of this knowledge into a handle-
recognizing DFA

LR(1) Parsers
•  LR(1) parsers are table-driven, shift-reduce

parsers that use a limited right context (1
token) for handle recognition

•  The class of grammars that these parsers
recognize is called the set of LR(1)
grammars

LR(1) means left-to-right scan of the input,
rightmost derivation (in reverse), and 1 word of
lookahead.

LR(1) Parsers

Informal definition:
A grammar is LR(1) if, given a rightmost

derivation
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

We can

1. isolate the handle of each right-sentential form
γi, and

2. determine the production by which to reduce,
by scanning γi from left-to-right, going at

most 1 symbol beyond the right end of the
handle of γi

