Lexical Analysis:
DFA Minimization
Automating Scanner Construction

PREVIOUSLY
RE → NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with ε-moves
NFA → DFA (subset construction)
• Build the simulation

TODAY
DFA → Minimal DFA
• Hopcroft’s algorithm
DFA Minimization

Details of the algorithm

- Group states into maximal size sets, *optimistically*
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent
DFA Minimization

Remember DFA = (Q, Σ, δ, q₀, F)

Initial partition, P₀, has two sets: {D₉} and {D-D₉}

Splitting a set s (“partitioning a set by a”)

• Assume qᵢ, & qⱼ ∈ s and δ(qᵢ, a) = qₓ and δ(qⱼ, a) = qᵧ
• If qₓ and qᵧ are not in the same set, then s must be split
 → qᵢ has transition on a, qⱼ does not ⇒ a splits s
• One state in the final DFA cannot have two transitions on a (otherwise we have an NFA!)
DFA Minimization (the algorithm)

\[
P \leftarrow \{ D_F, \{D-D_F\}\}
\]

while (P is still changing)

\[
T \leftarrow \emptyset
\]

for each set \(p \in P \)

\[
T \leftarrow T \cup \text{Split}(p)
\]

\[
P \leftarrow T
\]

\[
\text{Split}(S)
\]

for each \(\alpha \in \Sigma \)

if \(\alpha \) splits \(S \) into \(s_1 \) and \(s_2 \)

then return \(\{s_1, s_2\} \)

return \(S \)

This is a another
fixed-point algorithm!
Key Idea: Splitting S around α

Original set S

S has transitions on α to R, Q, & T

The algorithm partitions S around α
Key Idea: Splitting S around α

Original set S

S_2 is everything in $S - S_1$

Could we split S_2 further?
Yes, will do this in another iteration!
DFA Minimization

What about $a (b \mid c)^*$?

First, the subset construction:

<table>
<thead>
<tr>
<th>NFA states</th>
<th>ε-closure($\Delta(s,\varepsilon)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>q_0, $q_1, q_2, q_3, q_4, q_6, q_9$</td>
</tr>
<tr>
<td></td>
<td>ε</td>
</tr>
<tr>
<td>s_1</td>
<td>$q_1, q_2, q_3, q_4, q_6, q_9$</td>
</tr>
<tr>
<td></td>
<td>none</td>
</tr>
<tr>
<td>s_2</td>
<td>q_5, q_7, q_8</td>
</tr>
<tr>
<td></td>
<td>q_3, q_4, q_6</td>
</tr>
<tr>
<td>s_3</td>
<td>q_7, q_8, q_9</td>
</tr>
<tr>
<td></td>
<td>q_3, q_4, q_6</td>
</tr>
</tbody>
</table>

Final states
Apply DFA Minimization algorithm

\[
P \leftarrow \{ D_F, \{D-D_F}\}\\
\text{while (} P \text{ is still changing)}\\
\quad T \leftarrow \emptyset\\
\quad \text{for each set } p \in P\\
\quad \quad T \leftarrow T \cup \text{Split}(p)\\
\quad P \leftarrow T
\]

\text{Split}(S)\\
\quad \text{for each } \alpha \in \Sigma\\
\quad \quad \text{if } \alpha \text{ splits } S \text{ into } s_1 \text{ and } s_2\\
\quad \quad \quad \text{then return } \{s_1, s_2\}\\
\quad \text{return } S
DFA Minimization

Then, apply the minimization algorithm

<table>
<thead>
<tr>
<th>Current Partition</th>
<th>Split on</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_0)</td>
<td>a</td>
</tr>
<tr>
<td>{ (s_1), (s_2), (s_3) } ({ s_0 })</td>
<td>none</td>
</tr>
</tbody>
</table>

In a previous lecture, we observed that a human would design a simpler automaton than Thompson’s construction & the subset construction did.

Minimizing that DFA produces the one that a human would design!
Abbreviated Register Specification

Start with a regular expression

\[r0 \mid r1 \mid r2 \mid r3 \mid r4 \mid r5 \mid r6 \mid r7 \mid r8 \mid r9 \]

The Cycle of Constructions
Abbreviated Register Specification

Thompson’s construction produces

To make it fit, we’ve eliminated the ε-transition between “r” and “0...9”.

The Cycle of Constructions
Abbreviated Register Specification

The subset construction builds

This is a DFA, but it has a lot of states ...

The Cycle of Constructions
Abbreviated Register Specification

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

The Cycle of Constructions