
My Short Course on
Machine Self-Reference

John Case
Department of Computer and

Information Sciences
University of Delaware

Newark, DE 19716 USA
Email: case@cis.udel.edu

Course Outline:

• Introductory talk on Machine Self-
Reference And The Theater Of Con-
sciousness.

• Relevant Mathematical Preliminaries in
Theory of Computation.

• Large number of illustrative results proved
by Machine Self-Reference.
– Most from General computability The-

ory.
– Some from Computability Theoretic

Learning Theory.

• As time permits: Survey of results at-
tempting to insightfully mathematically
characterize or otherwise understand Ma-
chine Self-Reference.

1

Course Math References
[Cas91] J. Case. Effectivizing inseparability. Zeitschrift für Math-

ematische Logik und Grundlagen der Mathematik, 37:97–
111, 1991. Typos in journal version corrected in version
at http://www.cis.udel.edu/∼case/papers/mkdelta.pdf.

[Cas94] J. Case. Infinitary self-reference in learning theory. Journal
of Experimental and Theoretical Artificial Intelligence, 6:3–
16, 1994.

[Cas74] J. Case. Periodicity in generations of automata. Mathe-
matical Systems Theory, 8:15–32, 1974.

[CM07a] J. Case and S. Moelius. Characterizing programming sys-
tems allowing program self-reference. Computation and Logic
in the Real World - 3rd Conference of Computability in Eu-
rope, volume 4497 of LNCS, pages 115–124. Springer, 2007.
Journal version accepted for the associated special issue of
Theory of Computing Systems, 2008.

[CM07b] J. Case and S. Moelius. Properties complementary to
program self-reference. Proceedings of the 32nd International
Symposium on Mathematical Foundations of Computer Sci-
ence 2007, volume 4708 of LNCS, pages 253–263. Springer,
2007.

[JORS99] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems
that Learn: An Introduction to Learning Theory. MIT Press,
Cambridge, Mass., 2nd edition, 1999.

[Odi99] P. Odifreddi. Classical Recursion Theory, volume II. El-
sivier, 1999.

[Ric81] G. Riccardi. The independence of control structures in ab-
stract programming systems. Journal of Computer and Sys-
tem Sciences, 22:107–143, 1981.

[Rog58] H. Rogers. Gödel numberings of partial recursive func-
tions. Journal of Symbolic Logic, 23:331–341, 1958.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective
Computability. McGraw Hill, New York, 1967. Reprinted,
MIT Press, 1987.

[Roy87] J. Royer. A Connotational Theory of Program Structure.
Lecture Notes in Computer Science 273. Springer-Verlag,
1987.

[RC94] J. Royer and J. Case. Subrecursive Programming Systems:
Complexity and Succinctness. Progress in Theoretical Com-
puter Science. Birkhäuser Boston, 1994.

2

Machine Self-Reference And
The Theater Of
Consciousness

John Case
Department of Computer and

Information Sciences
University of Delaware

Newark, DE 19716 USA
Email: case@cis.udel.edu

Talk: www.cis.udel.edu/∼case/siena.pdf

Talk Outline:
• Brief history of linguistic self-reference in

mathematical logic.

• Meaning, achievement & applications of
machine self-reference.

• Self-modeling/self-reflection: segue from
machine case to the human refective com-
ponent of consciousness (other aspects of
the complex phenomenon of conscious-
ness, e.g., awareness and qualia, are not
treated).

• What use is self-modeling/reference?
Lessons from machine cases. Summary
and What the Brain Scientist Should Look
For!

3

Background:
Self-Referential

Paradoxes of LANGUAGE

Epimenedes’ Liar Paradox
(7th Century BC)

Modern Form:
“This sentence is false.”

4

Mathematical Logic (1930’s+):

Paradox Resolved−→ Theorems

5

Examples:

Gödel (1931) & Tarski (1933)

Liar Paradox
Resolved−→ Suitable Mathematical

Systems cannot express their own truth.

Gödel (1931)

Liar Paradox
Transformed−→

“This sentence is not provable”
Resolved−→ Suit-

able Mathematical Systems with Algorithmi-
cally Decidable Sets of Axioms are Incomplete
(have unprovable truths).

6

An Essence of These Arguments:

Sentences which assert something about
themselves

“ . . . blah blah blah . . . about self.”

7

This talk is about self-referential (syn: self-
reflecting) MACHINES (Kleene 1936) — not
sentences.

While self-referential sentences assert some-
thing about themselves, self-referential ma-
chines compute something about themselves.

8

Problem

Can machines take their entire inter-
nal mechanism into account as data?
Can they have “complete self-
knowledge” and use it in their
decisions and computations?

We need to make sure there is not some in-
herent paradox in this — Not a problem in the
linguistic case.

9

 OF THEMSELVES?
1. ________

M

MODEL OF M

MODEL OF MODEL OF M

.

.

.
INF.INFINITE REGRESS!

HENCE, M NOT A MACHINE.

THEREFORE, M CANNOT CONTAIN A MODEL OF ITSELF!_________

M

CAN MACHINES CONTAIN A COMPLETE MODEL

10

So —

2. Can machines create a
model of themselves — exter-
nal to themselves?

YES! — by:

a. Self-Replication or

b. Mirrors.

We’re gonna do it with mirrors!

— No smoke, just mirrors.

Later in course we’ll explore
Self-Replication approach.

11

3 + 4 = ?

172

123x

The robot has a transparent front so
its internal mechanism is visible. It
faces a mirror and a writing board, the
latter for “calculations.”

It is shown having copied already a
portion of its internal mechanism, cor-
rected for mirror reversal, onto the
board. It will copy the rest.

Then it can do anything preassigned
and algorithmic with its board data
consisting of: its complete (low-level)
self-model and any other data.

As we will see, above essentially de-
picts Kleene’s Strong Recursion Theo-
rem (1936) from Computability Theory (see
[Cas94,RC94]).

12

As an informal application of Kleene’s
Recursion Theorem, i.e., of machine self-
reference/self-reflection, I’ll give a very
informal, pictorial proof of a fundamental,
standard theorem about the limitations of
machines —

More particularly:

Q. Is there a (possible) machine which, when
shown the underlying (static) mechanism of
any machine M, predicts correctly whether or
not M, once started, will ever (in principle)
halt?

A.

Theorem (≈ Turing 1936)

NO!

Informal Non-Standard Proof:

13

SCREEN

ENVIRONMENT

YES

NO

C

.

14

SCREEN

ENVIRONMENT

YES

NO

C

.

P

LC

15

SCREEN

ENVIRONMENT

YES

NO

C

.

P

LC

MIRROR

LC

16

Next some formality: Fix a standard formal-
ism for computing all the (partial) computable
functions mapping tuples from N (the set of
non-negative integers) into N. Numerically
name/code the programs/machines in this for-
malism onto N. Let ϕp(·, . . . , ·) be the (par-
tial) function (of the indicated number of ar-
guments) computed by program number p in
the formalism.

Kleene’s Theorem

(∀p)(∃e)(∀x)[ϕe(x) = ϕp(e, x)].

p plays role of an arbitrary preassigned use to
make of self-model. e is a self-knowing pro-
gram/machine corresponding to p. x is any in-
put to e. Basically, e on x, creates a self-copy
(by a mirror or by replicating like a bacterium)
and, then, runs p on (the self-copy, x).

In any natural programming system with effi-
cient (linear time) numerical naming/coding
of programs, passing from any p to a cor-
responding e can be done in linear time;
furthermore, e itself efficiently runs in time
O(the length of p in bits + the run time of p)
[RC94].

17

Following provides a program e which,
shown any input x, decides whether x
is a (perfect) self-copy (of e).

Proposition

(∃e)(∀x)[ϕe(x) =
{
1, if x = e;
0, if x 6= e].

Proof.
e on x creates a self-copy and, then,
compares x to the self-copy, outputting
1 if they match, 0 if not. p here is
implicit; it’s the use just described
that e makes of its self-copy.

18

Some Points:

a. There are not-so-natural programming sys-
tems without Kleene’s Theorem but which
suffice for computing all the partial com-
putable functions (mapping tuples from N

into N). Proof later in the course.

b. Self-simulation can be practical, e.g., a
Science article [BZL06] reports exper-
iments showing that self-modeling in
robots enables them to compensate for in-
juries to their locomotive functions.

c. Each of next two slides provides a suc-
cinct, game-theoretic application of ma-
chine self-reference which shows a result
about program succinctness.∗

∗Our pictorial proof of the Algorithmic Unsolvability of the
Machine Halting Problem is also succinct & game-theoretic:
In a two move, two player game, think of Candidate machine
C as the move of player 1 and the self-referential machine
e = LC as the move of player 2. Player 2’s goal is to have
the theorem be true; 1’s is the opposite. Player 2’s strategy
involves e’s using self-knowledge (and knowledge of C) to
do the opposite of what C says e = LC will do regarding
halting.

19

Let s(p)
def
= dlog2 pe, the size of pro-

gram/machine number p in bits.

Proposition Let H be any (possibly horren-
dous) computable function (e.g., H(x) =

100100 + 2222x

). Then

(∃e)(∃D, a finite set | ϕe = CD)[|D| > H(s(e))].

Intuitively, e does not decide D by table look-
up since a table for the huge D would not fit
in the H-smaller e.
Proof.
By Kleene’s Theorem,

(∃e)[ϕe = C{x | x≤H(s(e))}].

Let D = {x | x ≤ H(s(e))}. Clearly, |D| =
H(s(e)) + 1 > H(s(e)).

In a two move, two player game, think of (a
program for) H as the move of player 1 and
e as the move of player 2. Player 2’s goal
is to have the proposition be true; 1’s is the
opposite. Player 2’s strategy involves e’s using
self-knowledge (and knowledge of a program
for H) to compute H(s(e)) and make sure it
says Yes to a finite number of inputs which
number is (one) more than H(s(e)).

20

The theorem on the next slide provides an
improvement of the just previous result. It’s
proof is also game-theoretic. First:

Definition h is a limiting-computable func-

tion
def⇔ for some computable function g, for

each x, the sequence g(x,0), g(x,1), g(x,2), . . .
is, past some point, h(x), h(x), h(x)

Proposition There is a (big) limiting com-
putable function h such that, for each com-
putable f , for all but finitely many x, h(x) >
f(x).

Proof.
For each x, let h(x) = 1 + max{ϕp(x) | p ≤
x ∧ ϕp(x) is defined}.

For each x, t, let g(x, t) = 1 + max{ϕp(x) | p ≤
x ∧ ϕp(x) defined in ≤ t steps}.

Clearly, this computable g witnesses that h is
limiting-computable.

21

Theorem Let H be any (possibly horrendous)
limiting-computable function. Then

(∃e)(∃D, a finite set | ϕe = CD)[|D| > H(s(e))].

Proof.
Let G be a computable function witnessing H
is limiting computable. By Kleene’s Theorem
there is a self-referential program e such that

ϕe = C{x| card({w<x|ϕe(w)=1})≤G(s(e),x)}.

≈

22

Levels of Self-Modeling?
The complete wiring diagram of a ma-
chine provides a low-level self-model.

Other, higher-level kinds of self-
modeling are of interest, e.g., general
descriptions of behavioral propensi-
ties.
A nice inhuman example (provided by
a machine) is: I compute a strictly
increasing mathematical function.

A human example is: I’m grumpy,
upon arising, 85% of the time.
For machines, which we likely are
[Jac90,Cas99∗], such higher-level self-
knowledge may be proved from some
powerful, correct mathematical theory
provided the theory has access to
the complete low-level self-model.
Hence, the complete, low-level self-
model is more basic.
∗The expected behaviors in a discrete, quantum mechani-
cal world with computable probability distributions are com-
putable!

23

Human Thoughts and Feelings
We take the point of view that conscious hu-
man thought and feeling inherently involve
(attenuated) sensing in any one of the sen-
sory modalities. E.g.,

a. Vocal tract “kinesthetic” [Wat70] and/or
auditory sensing for inner speech.

b. There is important sharing of brain ma-
chinery between vision and production
and manipulation of mental images.
Many ingenious experiments show that
the same unusual perceptual effects occur
with both real images and imagined ones
[Jam90,FS77,Fin80,She78,Kos83,KPF99].

In the following we will exploit for exposition
the visual modality since it admits of pic-
torially, metaphorically representing the other
modalities: inner speech, feelings,

Generally the only aspects of our inner cogni-
tive mechanism and structure we humans can
know by consciousness are by such means as:
detecting our own inner speech, our own so-
matic and visceral concomitants of emotions,
our own mental images,

24

The Robot Revisited

. ...

Sensors

Mechanism

Mirror/Board

Robot

Internal Images

Now, make the mirror/board tunable,
e.g., as to its degree of “silvering,” the
degree to which it lets light through
vs. reflects it.

25

The Robot Modified
Attach, then, the tunable mirror/board to the
transparent and sensory front of the robot to
obtain the new robot:

NewRobot

Tunable Mirror/Board

External Images

Int. Images

The new robot controls how much it looks
at externally generated data and how much it
looks at internally generated data, e.g, images
of its own mechanism.∗
The attached, tunable mirror/board is now
part of the new robot.
∗For humans ‘external’ means roughly ‘external to the brain’,
e.g., for affect, the concomitant felt somatic and visceral
sensations are from the body.

26

More About The Human Case
The robot’s tunable mirror/board is analogous
to the human sensory “surface.” The latter
is also tunable as to how much it attends to
internal “images” and how much it attends to
external (external to brain, not body).

However, we humans can only “see” the part of
our internal cognitive structure originally built
from sense data and sent back to our sensory
surface to be re-experienced as modified and,
typically, attenuated, further sense data. We
don’t see our own neural net, synaptic chem-
istry, etc. This is not surprising since we likely
evolved from sensing-only organisms.

I recommend that brain scientists locate in the
human brain a functional decomposition corre-
sponding to the elements of our modified robot
with tunable mirror/sensory surface! A lot is
already known, e.g., regarding where in the vi-
sual cortex both real and imagined pictures are
processed [KPF99]!

27

Lessons Of Machine Case?
From Kleene’s Recursion Theorem (eventu-
ally) came our modified robot with attached,
tunable mirror/board.

In applications of Kleene’s Recursion Theorem
[Cas94,RC94] (within Computability Theory)
we see that, while is it not needed to compute
all that is computable,

a. It provides very succinct proofs and pro-
gram constructs [RC94]: Our example
proofs are succinct & tight.

b. As we saw, from a game-theoretic view-
point, in some cases, a (machine) player’s
self-knowledge is an important compo-
nent of its winning strategy [Cas94].

Quite possibly, then, our own, less complete,
human version of self-reflection evolved thanks
to a premium on compact (i.e., succinct)
brains and the need to win survival games.
Emotions and reflection on them useful to sur-
vival too.∗ Of course, self-simulations and sim-
ulations of variants of self can be useful.
∗Wonder if right-brain whole picture [Kin82] reflection on
negative affect and possible left-brain detailed non-whole
picture reflection on positive affect evolved also for survival.

28

Summary
Kleene’s Strong Recursion Theorem pro-
vides for non-paradoxical self-referential ma-
chines/programs.

In effect, such a machine/program externally
projects onto a mirror a complete, low level
model of itself (i.e., wiring diagram, flowchart,
program text, . . .).

We modified this machine self-reference to
produce an idealization of the self-modeling
component of human consciousness by attach-
ing the mirror to the “sensory surface.”

The analog of the mirror above is the human
sensory “surface,” tunable as to its degree of
“silvering!”

Brain scientists should further map a Func-
tional Decomposition Corresponding to Our
Model.

From applications of Kleene’s Theorem in
Computability Theory: complete machine self-
modeling aids with machine/program suc-
cinctness and with winning games. Perhaps
the uses of human reflective thought are
similar: need to have a compact brain and to
win survival games. Emotions and reflection
on them useful to survival too. Simulations of
self and variants is clearly useful.

29

Talk References
[BZL06] J. Bongard, V. Zykov, and H. Lipson. Resilient machines

through continuous self-modeling. Science, 314:1118–1121,
2006.

[Cas94] J. Case. Infinitary self-reference in learning theory. Journal
of Experimental and Theoretical Artificial Intelligence, 6:3–
16, 1994.

[Cas99] J. Case. The power of vacillation in language learning.
SIAM Journal on Computing, 28:1941–1969, 1999.

[Fin80] R. A. Finke. Levels of equivalence in imagery and percep-
tion. Psychological Review, 87:113–139, 1980.

[FS77] R. A. Finke and M. J. Schmidt. Orientation-specific color
after-effects following imagination. Journal of Experimental
Psychology: Human Perception and Performance, 3:599–606,
1977.

[Jac90] R. Jackendoff. Consciousness and the Computational
Mind. Bradford Books, 1990.

[Jam90] W. James. Principles of Psychology, volume II. Henry
Holt & Company, 1890. Reprinted, Dover, 1950.

[Kin82] M. Kinsbourne. Hemispheric specialization and the growth
of human understanding. American Psychologist, 35:411–
420, 1982.

[Kos83] S. Kosslyn. Ghosts in the Mind’s Machine: Creating and
Using Images in the Brain. Harvard Univ. Press, Cambridge,
Massachusetts, 1983.

[KPF99] S. Kosslyn, A. Pascual-Leone, O. Felician, S. Cam-
posano, J. Keenan, W. Thompson, G. Ganis, K. Kukel, and
N. Alpert. The role of area 17 in visual imagery: Convergent
evidence from PET and rTMS. Science, 284:167–170, 1999.

[RC94] J. Royer and J. Case. Subrecursive Programming Sys-
tems: Complexity and Succinctness. Research mono-
graph in Progress in Theoretical Computer Science.
Birkhäuser Boston, 1994.

[She78] R. N. Shepard. The mental image. American Psycholo-
gist, 33:123–137, 1978.

[Wat70] J. Watson. Behaviorism. W.W. Norton, 1970.

30

