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Abstract. A U-shaped curve in a cognitive-developmental trajectory refers to a three-step process:
good performance followed by bad performance followed by good performance once again. U-shaped
curves have been observed in a wide variety of cognitive-developmental and learning contexts. U-
shaped learning seems to contradict the idea that learning is a monotonic, cumulative process and
thus constitutes a challenge for competing theories of cognitive development and learning. U-shaped
behaviour in language learning (in particular in learning English past tense) has become a central
topic in the Cognitive Science debate about learning models. Antagonist models (e.g., connectionism
vs. nativism) are often judged on their ability of modeling or accounting for U-shaped behaviour.
The prior literature is mostly occupied with explaining how U-shaped behaviour occurs. Instead, we
are interested in the necessity of this kind of apparently inefficient strategy. We present and discuss
a body of results in the abstract mathematical setting of (extensions of) Gold-style computational
learning theory addressing a mathematically precise version of the following question: Are there
learning tasks that require U-shaped behaviour? All notions considered are learning in the limit
from positive data. We present results about the necessity of U-shaped learning in classical models
of learning as well as in models with bounds on the memory of the learner. The pattern emerges
that, for parameterized, cognitively relevant learning criteria, beyond very few initial parameter
values, U-shapes are necessary for full learning power! We discuss the possible relevance of the
above results for the Cognitive Science debate about learning models as well as directions for
future research.

1 Introduction and Motivation

A U-shaped curve in a cognitive-developmental trajectory refers to a three-step process: good
performance followed by bad performance followed by good performance once again. In learning
contexts, U-shaped learning is a behaviour in which the learner first learns the correct behaviour,
then abandons the correct behaviour and finally returns to the correct behaviour once again.
This kind of cognitive-developmental trajectory has been observed by cognitive and develop-
mental psychologists in a variety of child development phenomena: language learning [9,60,90]
understanding of temperature [90,91], understanding of weight conservation [9,90], object per-
manence [9,90], and face recognition [12].3

U-shaped curves in cognitive development seem to contradict the ‘continuity model of cog-
nitive development,’ i.e., the idea that performance improves with age, and that learning is
a monotonic, cumulative process of improvement.4 Thus, the apparent regressions witnessed
by U-shaped learning trajectories have become a challenge for competing theories of cognitive
development in general and of language acquisition in particular.
3 Siegler’s [89] tracks the historical U-shaped interest in U-shaped behaviour, and, as a corollary, references

some more developmental phenomena where U-shapes have been found.
4 This concept of monotonic should not be confused with the interesting technical senses in computational

learning theory [51,99]. These latter seem not to be cognitively relevant and, hence, are not dealt with herein.



The case of language acquisition is paradigmatic. In the case of the past tense of English
verbs, it has been observed that, early in language acquisition, children learn correct syntactic
forms (call/called, go/went), then undergo a period of ostensible over-regularization in which
they attach regular verb endings such as ‘ed’ to the present tense forms even in the case of
irregular verbs (break/breaked, speak/speaked), and finally reach a final phase in which they
correctly handle both regular and irregular verbs.

This example of U-shaped learning has been used as evidence against domain-general as-
sociative learning theories of language acquisition by supporters of linguistic nativism. It has
figured so prominently in the so-called ‘Past Tense Debate’ between connectionism and rule-
based theory (the original papers are [87,76,79], but see [77,62] for a more recent follow-up)
that U-shaped learning has become the test-bed for theories of language acquisition: compet-
ing models are often judged on their capacity of accounting for the phenomenon of U-shaped
learning (see, e.g., [60,79,92]).5

The prior literature is typically concerned with modeling how humans achieve U-shaped
behaviour. Instead, we are mostly interested in why humans exhibit this seemingly inefficient
behaviour. Is it a mere harmless evolutionary accident or is it necessary for full human learning
power — for humans being competitive in their genetic marketplace? This is of course presently
empirically very difficult to answer. Herein we pursue, nonetheless for potential interesting
insight into this problem, a mathematically precise version of the following question: are there
some formal learning tasks for which U-shaped behaviour is mathematically necessary? We
discuss a large and growing body of results ([15,13,5,14,28,23,24]) in the context of (extensions
of) Gold’s formal model of language learning from positive data [40] that suggest an answer to
this latter question.6 Gold’s model has been very influential in theories of language acquisition
[73,95,94,70,8] and has been developed and extended into an independent area of mathematical
research [71,50].

The basics of the model are as follows. A learner is an algorithm for a (partial) computable
function [83] that is fed an infinite sequence consisting of all and only the elements of a formal
target language, in arbitrary order and possibly with repetitions. At each stage of the learning
process, the learner outputs a corresponding hypothesis based of the evidence available so far.
These hypotheses are candidate (formal) grammars for the target language. Learning in this
context means that after some point the grammars produced by the learner are correct for the
target language. Importantly, different criteria can be defined by imposing conditions on the
cardinality of the set of correct grammars that the learner produces in the limit, combined with
restrictions on the learner’s memory and other computational power. In this context a U-shape
occurs whenever, in the process of eventually successfully learning some language, a learner
semantically returns to a previously abandoned correct conjecture.7 For each learning criterion
we consider, we say that a learner is a non-U-shaped learner if it commits no U-shapes while
learning languages that it learns according to that criterion (i.e., as in the empirical settings,
we mostly do not care about possible U-shapes on other languages8). We consider non-U-shaped
learners since, mathematically, it is useful to examine the consequences for learning power when
U-shapes are forbidden. U-shaped learning is necessary for a given criterion if some class of
languages can be learned by that criterion, but not if one uses the same criterion — except with
U-shapes forbidden.

5 Interestingly, the idea that U-shaped cognitive development might be “the quintessential hallmark of the
developmental process” has been advanced by Marcowitch and Lewcowicz in their short paper [58].

6 Various extensions of Gold’s model will hereinafter be referred to as just Gold’s model.
7 Semantic return can be to a syntactically very different grammar — but a grammar, nonetheless, for exact

same language.
8 The case of forbidding returning semantically to an abandoned conjecture on all languages is called decisiveness

[71,38,5], and there is a little more about it below.
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We present, then, results about the impact of forbidding U-shaped behaviour in a number of
learning models/criteria within Gold’s framework. In some cases of interest U-shaped learning
will turn out to be unavoidable: if U-shapes are forbidden, strictly less classes of languages are
learnable. The general pattern that so far emerges from this line of research is the following. For
cognitively relevant, parameterized learning criteria, beyond very few initial parameter values,
U-shapes are necessary for full learning power!9

The paper is organized as follows. In Section 2 we review the main notions and assumptions of
Gold-style learning theory and present our formal definition of U-shaped behaviour. In Section 3
we present results about the necessity of U-shaped learning in the context of classical learning
criteria with no memory limitations. In Section 4 we present results about the necessity of U-
shaped learning in the context of learning criteria with memory limitations. In Section 5 we
discuss some features of the proof techniques that might be relevant for Cognitive Science. In
Section 6 we present results about the necessity of forms of non-monotonic learning other than
U-shaped learning. In Section 7 we offer a final discussion and prospects and seemingly difficult,
cognitively relevant, open questions for future research.

2 Gold-Style Computational Learning Theory

We review the basic assumptions and ingredients of (extended) Gold-style computational learn-
ing theory [50] in an informal yet rigourous way.

2.1 Languages, Grammars, Texts and Learners

An alphabet is a finite set of symbols. A language is modeled as a set of finite strings from an
alphabet. Without loss of generality — using standard coding techniques — a language can be
identified with a set of natural numbers. This model of language may seem to be very naive
but is broad enough to model most of the schemes of language description commonly used in
Linguistics. Typically, the alphabet symbols are taken to represent the words of the language
and the strings of alphabet symbols are taken to represent the sentences of the language. Other
interpretations are equally possible: the elements of the alphabet can represent morphemes,
phonemes, IPA symbols, and the elements of the language can be identified with the strings
satisfying the phonotactical constraints of the language.

As in most computational learning theories, a learner in Gold’s model is an agent that tries
to identify a target language based on implicit information.

The learning process is modeled as an inductive procedure (indexed by a discrete time
parameter n) in which a learner is trying to identify a target language based on implicit infor-
mation. At time n the learner has to make a guess about what the target language is based on
the finite amount of information seen so far. Gold’s model is in this sense a theory of inductive
inference.

In Gold’s original model, and for all learning criteria of interest in the present paper, the
information available to the learner is an infinite sequence consisting of all and only the elements
of the language. The elements of the language can appear in any order whatsoever and with
repetitions. Any such a sequence is called a text or a presentation of a language. Each (non-
empty) language has infinitely many different presentations (indeed any infinite language has
uncountably [42] many presentations). A learner is fed a text element by element, and after
receiving each new piece of information, has to make a guess about the target language.

Children appear to be learning natural languages by a casual and unsystematic exposure to
the linguistic activity of adults around them. The issue of whether children profit from negative
9 We’ll develop below some important, parameterized learning criteria.
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information in language learning is still debated in Psycholinguistic (see, e.g., [59] and, for a
review, the recent [36]).10 A substantial body of experimental evidence suggests that children
learn natural language in the absence of feedback ([11,59,92]). Accordingly, the learners in Gold’s
(to be sure idealized) model learn from positive data only: the learner receives as input all and
only the correct sentences of the language. In [67] a well-documented body of experimental
evidence suggests that children are insensitive to the way language is presented, in terms of
order, repetitions, frequency and the like.11 This is mirrored in Gold’s model by the requirement
that the learners correctly learn the language no matter how the input is presented, as long as
it contains all and only the correct sentences of the language.

The hypotheses of a learning machine in Gold’s model are (numerical codes for) computer
programs in a pre-given (typically general) programming system. The idea here is that human
language acquisition involves the acquisition of a grammar for the target language. How the
knowledge of such a grammar is coded in the brain is still unknown. According to formal
language theory, a grammar for a language is a finite list of rules that effectively generate
all and only the correct sentences of the language. Such a grammar can be identified with a
computer program such that, when the program is run, all and only the elements of the language
are produced as output. Such a computer program has to be written in some programming
language. Nowadays we have a mathematically precise notion of algorithm and of general-
purpose (universal) programming language. We can thus fix a programming language in which
any algorithm can be implemented and ask that the grammars are written in that language.
Any general-purpose high level modern programming language will do. Formally, an acceptable
programming system is a universal programming system (such as Turing Machines, Random
Access Machines, C, Lisp, etc.) into which one can compile from any programming system, or,
equivalently, in which any control structure can be implemented [82,83,85]. Computer programs
are finite objects and can thus be coded as natural numbers (see [83]). We refer to these codes
as names of the associated computer program and as indices of the corresponding language
generated by the computer program.

What kinds of languages can be captured by such grammars? The Chomsky Hierarchy
classifies formal languages in terms of the complexity of the grammars that generate them.
The most general class is the class of computably enumerable (c.e.) languages. These are the
languages that can be generated by arbitrary algorithmic procedures. Any such language has
at least one index in any fixed acceptable programming system (indeed, it has infinitely many
distinct ones, corresponding, for example, to the different ways of generating the language).
The view that the class of natural languages could be identified with one of the classes of
the Chomsky Hierarchy had been dominant in Cognitive Science for many years. Nowadays
researchers are more inclined to think that natural languages form a class that is orthogonal
to the classes of the Chomsky Hierarchy. It is clear that context-free languages are not enough
to model all natural languages ([80,54,88,10,46]), but no one objects to the idea that natural
languages are computably enumerable.

The modeling of all human cognition by algorithms or, equivalently, by computer programs
is a well-established trend in Cognitive Science ([53,81]). Accordingly, we only consider those
computing (partial) computable functions, i.e., learners whose behaviour can be simulated by
an algorithm. On the other hand, each (non-empty) language admits many non-computable
presentations.12 It might be interesting to study U-shaped learning with the restriction to
computable texts, but we do not make such an assumption here. Note that, for some learning

10 Some theoretical results appear, e.g., in [4]. See below for more such references.
11 Some associated theoretical results for some learning criteria are presented in [18].
12 It can be argued that non-computable texts can be and are generated by randomness in the environment,

including from quantum mechanical phenomena.

4



criteria, it is known that restricting to computable texts makes no difference as to successful
learning [18].

2.2 Successful Learning

What does it mean that a learner learns a language? Empirically, we say that a child has
acquired knowledge of a natural language after the time he or she stops to make errors (or if
the error rate drops below a threshold) and starts to generalize (i.e., produce original linguistic
output) correctly. We can (at least currently) never be sure that some error will not occur
later on in an individual’s linguistic behaviour. From a theoretical viewpoint, however, it makes
sense to require that knowledge is acquired once a point is reached in the process of hypothesis
formation, after which the learner does not make wrong guesses about the target language.

We do not ask that the learner knows when this point of convergence has been reached
and consequently stops learning. The process of learning is in the limit in the sense that the
successful learner will eventually output only correct conjectures but will not necessarily be
able to know that he/she is doing so and consequently halt the learning process. To require this
would result in serious limitation of the power of the model. We would here like to quote Gold’s
[40] own justification for studying learning in the limit.

A person does not know when he is speaking a language correctly; there is always the
possibility that he will find that his grammar contains an error. But we can guarantee
that a child will eventually learn a natural language, even if it will not know when it is
correct.

We further illustrate the setting and introduce some terminology. Suppose that, at some
point, after reading the elements t0, t1, . . . tn of a text for a language L, machine (algorithmic
procedure) M conjectures a grammar gn, and that grammar gn is a correct grammar for L.
Suppose now that, after conjecturing gn, M outputs forever only correct grammars for L, i.e.,
all later grammars gn+1, gn+2, . . . output while seeing the rest of the input text tn+1, tn+2, . . . ,
are correct grammars for L. In that case we say that M has converged to a set of correct
grammars, in this case to the set {gn, gn+1, gn+2, . . . }. We call this set the set of M’s final
conjectures.

For all criteria of interest to the present paper, a learner is required to converge to a set
of correct grammars for the target language, in response to any text for the target language.
Different learning criteria can be defined by imposing conditions on the set of correct grammars
to which the learner converges (e.g., the set is a singleton, the set has cardinality less or equal
to than b, the set is finite, . . . ). Other criteria of interest are obtained by imposing restrictions
on the learner’s memory (plausible for us humans), and will be discussed later.

It is commonly assumed that children are able to learn any natural language, given the
appropriate input. Any proposed definition of natural language determines a class of languages
that fulfill the definition. Accordingly, we are interested in machines that learn classes of lan-
guages, rather than individual languages. In fact in Gold’s model learning a single language
is trivial: the learner can blindly output a fixed grammar for the language, regardless of its
received input. A learner is said to learn a class of languages according to a given learning
criterion if the learner learns every language in the class according to that criterion.

2.3 U-Shaped Behaviour

As Strauss and Stavy write in the Introduction to [90], U-shaped learning consists in “the
appearance of a behaviour, a later dropping of it, and what appears to be its subsequent
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reappearance [. . . ] Phase 1 behaviour is a correct performance and Phase 2 is an incorrect
performance, whereas Phase 3 behaviour is a correct performance.” From a theoretical viewpoint
we decide to interpret a good performance as the (sometimes observable) consequence of the
learner’s conjecturing a correct grammar, and a bad performance as the (sometimes observable)
consequence of the learner’s conjecturing a wrong grammar, i.e., a grammar for a language
differing from the target language. This is a reasonable working hypothesis, and we adopt this
perspective in our formal setting. It is indeed analogous to assuming that a child learning a
language eventually acquires at least one grammar for the learned language.

We say that a learner learning a class L of languages is U-shaped on the class L if it exhibits
U-shaped behaviour on some presentation of some language in the class. That is, a machine
M is U-shaped on a class L of languages if there is a language L in L and a text T for L
such that, while learning L from T , M outputs at some point a correct grammar for L, then
later abandons it and makes a wrong conjecture, and later outputs a correct conjecture again.
More formally, if the text T for L is the infinite sequence t0, t1, t2, . . . , M is U-shaped on T if
there exists three elements tm, tn, tp such that (1) m < n < p, and (2) after reading the input
up through tm the machine M conjectures a grammar gm which is a correct for the language
L, (3) after reading the input up through tn the machine M conjectures a grammar gn which
is not a correct grammar for L, and (4) after reading the input up through tp the machine
M conjectures a grammar gp which is again a correct grammar for L. We do not require the
two correct conjectures (gm and gp) to be syntactically the same. We only ask that they both
generate the target language L. We occasionally refer to this form of U-shaped learning as
semantic U-shaped learning. For mathematical convenience we will state our results in terms of
non-U-shapedness. A learner is said to be non-U-shaped on a class L of languages if and only
if it is not U-shaped on the class. When such a learner M is presented with the elements of
an L it learns in the order of some text T , if at some point M outputs a correct conjecture
for L, then all conjectures output by M after that point are correct conjectures for L. As just
hinted, we actually mostly care about U-shaped behaviour of learners on classes of languages
they actually learn (according to some fixed learning criterion of interest), so that convergence
on a set of correct conjectures is ensured from the onset for every text for every language in the
class under consideration.

Our definition of U-shaped learning obviously constitutes an idealization of the experimen-
tally observed learning behaviours. ‘U-shaped learning’ is an experimental concept. A U-shaped
learning curve is a qualitative feature of a quantitative representation of measurable linguis-
tic performance rather than of linguistic competence. At the present time it is impossible to
look into people’s heads to see what grammar(s) they are using. The same current empirical
untestability holds for the problem of testing whether the grammar used in Phase 1 is the same
as the grammar used in Phase 3. We thus believe that requiring correct identification of the
target language in Phase 1 of a U-shaped curve is a viable abstraction — in fact akin to the
common idea that a competent learner knows some grammar for the language. Also, we believe
that biological biases and genetic constraints make the possibility of the child reaching a correct
linguistic knowledge (i.e., a correct grammar) at an early age not so far-fetched.

We will occasionally mention stronger forms of non-U-shaped learning appearing in the
literature. Strong non-U-shaped learning (from [97], where it is called semantically finite) refers
to learning in which the stronger requirement of never syntactically returning to a previously
abandoned conjecture is imposed. We also call it syntactical non-U-shaped learning. Another
strong notion appears in the literature: as above, a decisive learner [71] is a learner that never
semantically returns to a previously abandoned conjecture — be it right or wrong.

We are now able to formulate, for each formal learning criterion, the following fundamental
questions. Is U-shaped behaviour necessary for the full learning power? Are there classes that
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are learnable only by resorting to U-shaped behaviour (on some text for some language of the
class)?

3 U-Shaped Learning with Full Memory

In this Section we present results about the necessity of U-shapes in three classical learning
contexts in which the learner has full access to previously seen data items. At any stage n of
the learning process, such a learner can access the full initial segment t0, t1, . . . , tn seen up to n
of the input text T and consequently recompute any of its own previously output conjectures
g0, g1, . . . , gn−1 as well as the new one gn. Explanatory Learning requires the learner to converge
to a single correct hypothesis in the limit. Explanatory Learning is Gold’s [40] original model
of learning in the limit. At the other extreme, Behaviourally Correct learning [26,72] allows
the learner to stabilize on possibly infinitely many syntactically different correct conjectures in
the limit. Vacillatory Learning is intermediate between the two: the learner there is allowed to
vacillate between at most a finite fixed (or finite unbounded) number of correct conjectures in
the limit.13 Vacillatory Learning [18] defines an infinite hierarchy of more and more powerful
learning criteria strictly intermediate between Explanatory and Behaviourally Correct Learning.
The case of Vacillatory Learning is paradigmatic and is the first example of a general pattern
of which we will see more: in parametrized learning models, beyond very few initial parameters,
U-shaped learning is necessary for full learning power.

3.1 Explanatory, Behaviourally Correct and Vacillatory Learning

We here more formally define Behaviourally Correct, Explanatory and Vacillatory Learning.
The minimal requirement for a learner M to learn a language L is that M, given any

text for L, eventually outputs only correct grammars for L. These grammars can possibly
be infinitely many syntactically distinct ones. A learner that satisfies this minimal and correct
convergence requirement is said to behaviourally identify the language L. Such a learner identifies
the language only extensionally but not intensionally: it does not have to stabilize on a single
grammar for the language, but is nevertheless able to correctly capture the extension of the
language and thus to eventually reach correct linguistic behaviour. We refer to this criterion as
Behaviourally Correct Learning.

By fixing a finite number b ≥ 1 as an upper bound to the number of correct conjectures to
which a learner is allowed to converge in the limit we obtain the concept of Vacillatory Learning
with vacillation bound b. For each choice of a positive natural number b we get a distinct
criterion. If we require that the number of correct conjectures to which the learner converges is
finite (but undetermined), we get a different criterion.

Finally, if we require that the learner converges to a single correct grammar, we have the
concept of Explanatory Learning . This is Gold’s original concept from [40], and is obviously
equivalent to vacillatory learning with vacillation bound of b = 1. Such a learner is said to
explanatory learn the language in the sense of stabilizing on a single correct description or
explanatory definition of the language — without changing its mind later.

We compare the power of the learning criteria by comparing the classes of learnable languages
as sets. A learning criterion is more powerful than another if it allows learning of more classes
of languages. What is learnable in the explanatory sense is also learnable in the vacillatory and
in the behaviourally correct sense — by definition. For each b, learning with vacillation bound

13 An example fixed finite bound would be 3. Finite unbounded allows different finite bounds (on the number
of successful programs in the limit) on different texts and languages (on which the learner is successful).
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b is contained in learning with vacillation bound b + 1 by definition and in learning with an
arbitrary but finite number of correct grammars in the limit.

It is known that all the above mentioned inclusions are indeed strict [18]. Thus, all the
learning criteria defined so far are different and give rise to a hierarchy of more and more
powerful learning paradigms — according to which more and more language classes become
learnable.

It might be profitable here to recall that the general problem of deciding whether two
grammars generate the same language is algorithmically undecidable. Also, grammars for the
same language can be so different that it is impossible to prove their equivalence from the
axioms of Set Theory [83]. This gives a hint on what can be gained by allowing a learner more
than one correct conjecture in the limit.

The Vacillatory Learning criteria with vacillation bounds b = 1, 2, 3, . . . form an infinite
strict hierarchy of more and more powerful learning criteria, on top of which is learning with
an arbitrary finite number of correct conjectures in the limit [18]. We call this hierarchy the
Vacillation Hierarchy. We state the existence of this hierarchy as a theorem for ease of further
reference.

Theorem 1. For each choice of a positive natural number b there are classes of languages that
are learnable by vacillating between at most b + 1 correct grammars in the limit but not by
vacillating between at most b grammars. Also, there are classes that are learnable by converging
to a finite but not preassigned number of correct grammars but are not learnable by vacillation
between at most b correct grammars, for any choice of a positive natural number b.

Let us briefly describe in detail a class of languages that witnesses the separation between
learning with vacillation bound b+1 and b.14 Since grammars are coded as natural numbers and
languages are sets of natural numbers, it might well be the case that a (code for a) grammar
g generating a language L is also an element of L. Choose a positive natural number b. Now
consider the class Lb+1 of languages defined by the following two requirements: (1) Among the
first b+1 elements of L (with respect to the usual order < of the natural numbers) there occurs
at least a code of a grammar for L, and (2) None of the elements of L beyond the b + 1-th is
a code of a grammar for L. Consider, for example, the concrete case of b = 1. In other words,
L2 contains all and only those languages L such that one or both of the first two elements of
L, and no other, is a code for a grammar for L. A variant of a proof of a theorem of [18] shows
that the class Lb+1 can be learned by vacillating in the limit between at most b + 1 correct
grammars, but cannot be learned by vacillating between at most b correct grammars. Thus the
class Lb+1 witnesses the fact that learning with vacillation bound b + 1 is strictly more powerful
than learning with vacillation bound b.15 The results can be strengthened by showing that even
allowing a learner to converge on approximately correct conjectures (in the sense of grammars
that identify the target language up to a finite number of errors) does not make the class Lb+1

learnable with vacillation bound b [18].

3.2 U-Shapes in Explanatory, Vacillatory and Behaviourally Correct Learning

The first result in the area [5] showed that U-shaped learning is not necessary for the full power
of Explanatory Learning, as stated in the following Theorem.

Theorem 2. Every class of languages that can be learned by convergence to a single correct
grammar can be learned in this sense by a non-U-shaped learner.
14 This class is a variant of that employed in [18] and is from [14].
15 A similar class shows that learning with arbitrary but finitely many correct grammars in the limit is strictly

more powerful than learning with vacillation bound b for each positive natural number.
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A very succinct proof can be found in the more recent [24]. The result has been strengthened
in [27] to show that any explanatory learner can be transformed into an explanatory learner
that is strongly non-U-shaped. This has to be contrasted with the fact that decisive learning
— i.e., imposing no semantical return to any previously abandoned conjecture — does restrict
learning power of explanatory learners — as shown in [5].

From a Cognitive Science perspective the above results means that, if Explanatory Learn-
ing as such is an adequate model of human learning acquisition, then U-shaped behaviour is
an unnecessary feature of human behaviour. However, few may be inclined to think that Ex-
planatory Learning is an adequate model of human language acquisition. In particular, the
requirement that the learner must converge on exactly one correct grammar in the limit seems
to be too restrictive. While it is possible to measure changes in linguistic behaviour experimen-
tally, as noted above, it is not currently possible to detect experimentally syntactic changes in
people’s heads. Recall that, on the other hand, general grammar equivalence is algorithmically
undecidable. Humans might be taking advantage of not committing to a single description of
the target language.

Behaviourally Correct Learning is known to be strictly more powerful than Explanatory
Learning, and it is interesting to investigate what the impact of U-shaped learning is in this
context. As observed in [5,14], based on a proof from [38], U-shaped behaviour is necessary for
the full learning power of behavioural learners, as stated in the following Theorem (see [14]).

Theorem 3. There are classes of languages that can be behaviourally identified but cannot be
behaviourally identified by a non-U-shaped learner.

If Explanatory Learning seems to be too restrictive, Behaviourally Correct Learning seems
much too liberal — in allowing the learner to converge on up to infinitely many distinct correct
grammars for the target language. The case of infinitely many distinct correct grammars must
include humanly unrealistically large size grammars.

Vacillatory Learning is more realistic in this respect, and gives rise to a completely different
and much richer picture.16

We already know from Theorem 2 that U-shaped behaviour is redundant for the first level
of the Vacillation Hierarchy (since it’s just Explanatory Learning). What about the other levels,
the levels in which the power of vacillation is actually used?

Consider a learner M1 learning a class C with vacillation bound b > 1. Suppose now that
this learner is non-U-shaped on that class. Now imagine another learner M2 observing the
behaviour of M1 on a text T for some language L in the class C and acting as follows. As soon
as M1 outputs a conjecture for the first time, M2 outputs the same grammar. Each time M1

(syntactically) repeats a previously output conjecture, M2 just forgets it, and outputs again its
own most recent conjecture. We claim that M2 learns the language L in the explanatory sense,
i.e., that M2 will eventually converge on a single correct conjecture for L. Why is that so? Since
M1 learns L in the vacillatory sense, at some point n of the learning process, M1 will output,
for the first time, a correct conjecture for L, call it g. By design, M2 will output g as well. Since
M1 by assumption converges on at most b different correct grammars, M1 can output after g
only finitely many previously unseen grammars. Also, since M1 is by assumption non-U-shaped
on L, all conjectures output by M1 after g are correct conjectures for L.

Let g′ be the — last but not least! — grammar to appear in M1’s output beyond g, i.e.,
after all other grammars output by M1 from g on have already been output once. It is easy to see
16 For the human case, the b, bounding the number of correct grammars in the limit, must have an upper limit.

A slight paraphrase of an relevant argument from [18] follows. At least one of b distinct grammars would have
to be of size proportional to the size of b (i.e., to log b); hence, for extraordinarily large b, at least one of b
distinct grammars would be too large to fit in our heads — unless, as seems highly unlikely, human memory
storage mechanisms admit infinite regress.
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that M2 will converge on g′. Thus, M2 will learn L in the explanatory sense. As L and T were
arbitrary in the above argument, it shows that M2 learns the whole class C in the explanatory
sense.

So we have the following Theorem from [14].

Theorem 4. For all b > 1 the following holds. Every class that is learnable by vacillation
between at most b correct grammars and without U-shapes is already learnable by convergence
to a single correct grammar.

U-shaped behaviour is therefore necessary for the full power of Vacillatory Learning in a
very strong sense: if U-shapes are forbidden, then the extra power gained by vacillation is lost.
The Vacillation Hierarchy (see Theorem 1) collapses to Explanatory Learning.

It is an easy consequence of Theorems 2, 1, and 4 that the class Lb+1 (defined above) cannot
be learned without U-shaped behaviour by vacillating between at most b + 1 grammars in the
limit. In fact, the same holds if the learner is allowed to converge on grammars approximating
the target language modulo a finite number of anomalies. Consider the particular case of b = 1.
Then L2 is a concrete example of a class that requires U-shaped behaviour to be learned. In fact
we know from above that L2 is learnable by vacillating between at most two correct grammars
but not by converging to a single correct grammar in the limit. Consider a learner M learning
L2 by vacillation between no more than 2 correct grammars. Such a learner exists because L2 is
learnable with vacillation bound 2. Now suppose that M does not exhibit U-shaped behaviour.
By the argument sketched above (see Theorem 4), this would mean that there is another learner,
M′ that learns the class L2 in the explanatory sense. But this is a contradiction. Formally, we
have the following Corollary (see [14]).

Corollary 1. Let b ∈ {2, 3, . . .}. Then any M witnessing that Lb is learnable with vacillation
bound b necessarily employs U-shaped learning behaviour on Lb.

The above results suggest that, if some of the natural language learning tasks humans have
to face are of the kind of the classes Lb+1, and to the extent that Vacillatory Learning is an
adequate model of human language learning, then U-shaped behaviour is not an harmless and
accidental feature of human behaviour, but may be necessary for learning what humans need
to learn to be competitive in their genetic marketplace.17 From this perspective it would be
interesting to find insightful characterizations of the language classes that require U-shaped
behaviour to be successfully learned in the vacillatory sense.

3.3 Getting Around U-shapes

We know from the previous section that some classes require U-shaped behaviour in order to
be learned in the vacillatory sense. But how deep is the necessity of U-shaped behaviour in
such cases? What happens if we remove the finite vacillation bound and consider behaviourally
correct learnability of those classes? Obviously every class which is vacillatorily learnable is also
behaviourally learnable by definition. But can we avoid some U-shapes if we only have to learn
in a behaviourally correct way? The picture that emerges is interesting in our opinion. First,
if we consider behaviourally correct learnability of the classes in the first non-trivial level of
the Vacillation Hierarchy the necessity U-shaped behaviour disappears. We have the following
Theorem from [14].

Theorem 5. Every class that can be identified by vacillating between at most 2 indices can also
be behaviourally identified by a non-U-shaped learner.
17 See the discussion in Section 5.1 below re the thesis from [18] that self-referential examples portend natural

ones.
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In contrast, from the third level of the Vacillation Hierarchy on the necessity of U-shaped
learning cannot be removed even by allowing the learner to converge to infinitely many syn-
tactically different correct grammars in the limit! We have the following Theorem from [14].

Theorem 6. For b > 2 there are classes that can be identified by vacillating between at most
b correct grammars but which cannot be behaviourally identified by any non-U-shaped learner.

In this sense, we can say that the necessity of U-shaped behaviour for these classes is
even deeper than the necessity of U-shaped behaviour for learning with vacillation bound 2.
Note how a (arguably) cognitively implausible model of learning such as Behaviourally Correct
Learning can be usefully used to qualitatively strengthen results about the un-eliminability of a
cognitively relevant learning strategy (U-shaped learning) for some not so implausible learning
model (Vacillatory Learning). It is difficult to judge whether the asymmetry between 2 and
strictly larger than 2 might have some significance from the Cognitive Science perspective.

4 U-Shaped Learning with Memory Limitations

For modeling humans, a major limitation of the models considered so far is that they allow a
learner too easy access to all the previous data. Humans certainly have memory limitations.
It is therefore of cognitive science relevance to investigate the impact of forbidding U-shaped
strategies in the presence of memory limitations. In this Section we present results about the
necessity of U-shaped learning in learning models featuring very severe memory limitations. For
all these models, the convergence requirement is the same as for Explanatory Learning: a single
correct grammar must be output in the limit. The models differ in the forms of memory allowed
to a learner.

It is profitable to distinguish between intensional memory and extensional memory, although
they cannot always be kept distinct. Intensional memory refers to the learner’s memory of his
own past conjectures. Extensional memory refers to the learner’s memory of previously seen
data items.

4.1 Iterative Learning

Iterative Learning [96,95] is a fundamental model of inductive learning with memory limitations.
An iterative learner computes its guesses about the target language based on its own most
recent conjecture and on the current data item only.18 Iterative Learning is a well-studied
model [56,21,49,47,29,6]. Most interestingly, from the perspective of the present paper, Iterative
Learning is the base case of a hierarchy of stronger and stronger memory-limited models. It is
thus an interesting question whether U-shapes are necessary or not in this model. An attempt
at answering this question was made in [13]. The problem was solved only later by Case and
Moelius [28]. Their result shows that U-shapes are not necessary for the full learning power of
iterative learners.

Theorem 7. All classes of languages that can be learned by an iterative learner can be learned
by an iterative learner without U-shapes.

By contrast with Theorem 7 just above, it is shown in [24] that some iteratively learned
classes cannot be iteratively learned strongly non-U-shapedly.
18 Note that an iterative learner can make up from its inability to explicitly remember previously seen data items

by coding them into its conjectures. This trick can only be used a finite number of times, and has to stop by
the time the learner has converged to its final conjecture. Knowing when to stop is, of course, a hard part.
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4.2 Bounded Example Memory Learning

Few would defend the claim that humans are iterative learners. At the very least, humans have
some form(s) of extensional memory. Yet Theorem 7 above is important for the investigation of
U-shaped learning in memory-limited models. As observed above, Iterative Learning is the base
case of a parametrized family of criteria of learning with bounded memory of past examples. It is
indeed easy to extend Iterative Learning by allowing learners to store a bounded number of items
in their long-term memory. A Bounded Example Memory learner with memory bounded by n
is an iterative learner that can store in memory up to n previously seen data items. This model
has been introduced in [57] and studied further in [21]. A hierarchy of more and more powerful
learning criteria — the Bounded Example Memory Hierarchy — is obtained by increasing the
size of the long-term memory: for every n ≥ 0, with the storing of n + 1 data items in memory,
more language classes can be learned than by storing only n data items. If a learner is allowed
to store an arbitrary but finite number of items in its long-term memory, a criterion is obtained
that is strictly more powerful than each finite level of the hierarchy. Allowing long term memory
of one previously seen data item is already strictly stronger than Iterative Learning. The impact
of forbidding U-shaped behaviour in this setting is largely unknown and is of primary interest
for future research! Mathematically, it seems interestingly very difficult.

We strongly conjecture that U-shapes are necessary in the Bounded Example Memory hi-
erarchy — at least beyond the first few memory bound parameter values!

Below we present results on models with more severe memory limitations.

4.3 Bounded Memory States Learning

In Bounded Memory States Learning [13] a learner has an explicit bound on it’s memory and
otherwise only knows it’s current datum. No access to previously seen data and to previously
formulated conjectures is allowed!19 At each step the learner computes its conjecture as a func-
tion of the current (bounded) memory state and the current data item. The learner also chooses
the new (bounded) memory state to pass on to the next learning step. Intuitively, for c ≥ 1, a
learner that can choose between c memory states is a learner that can store one out of c different
values in its memory. When c = 2k, a learner with c memory states is equivalent to a learner
with k bits of memory. Bounded Memory State learning with an arbitrary but finite number of
memory states is equivalent to Iterative Learning (see [13]).

It was shown in [13] that U-shaped behaviour does not enhance the learning power of
bounded memory states learners with only two memory states. Note that two memory states
amount to one bit of memory. The full picture was later obtained by Case and Kötzing in [23].
This gives another instance of the 2 vs. 3 phenomenon.

Theorem 8. There are language classes that are learnable with three memory states but cannot
be learned without U-shaped behaviour with any finite number of memory states.

The above result is consistent with the emerging picture so far: U-shaped learning is un-
avoidable in parametrized learning models beyond a few initial parameters. On the other hand,
U-shapes are unnecessary for Bounded Memory States learning with an arbitrary but finite
number of memory states. This was proved in [23] on the bases of Theorem 7 and of the fact
that the model is equivalent to Iterative Learning. Again, the limit case (arbitrary but finitely
many) behaves very differently from the finite cases. The same might be the case for Bounded
Example Memory Learning.
19 In the human case it is plausible that we do have available our prior working hypothesis for computing our

next one. This makes it more urgent to solve the problem of whether U-shapes are necessary (beyond the first
few parameter values) in the Bounded Example Memory Hierarchy!
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4.4 Memoryless Learning with Queries

Queries are meant to formalize a kind of interactive memory. A query is a question of the form
“Have I previously seen the following item(s)?”

In Memoryless Feedback Learning [13] a learner may ask, in each round, a bounded number
of queries about whether computed items have been previously seen in its input data — and
otherwise only knows it’s current datum. In this model the queries are parallel, in the sense,
in each round, that the choice of a question — within each learning step — cannot depend
on the answer to a previous question. If sequential queries are allowed (each computed query
beyond the first one can depend on the answer to the previous queries) we obtain the model of
Memoryless Recall Learning, introduced in [23].

U-shaped learning is necessary for the full learning power of n-memoryless feedback learners,
for every n > 0.

Theorem 9. For every n > 0, there are classes of languages that can be learned with n parallel
queries by a memoryless feedback learner but not with n + 1 parallel queries by a non-U-shaped
memoryless feedback learner.

As an open problem, it was asked in [13] whether this necessity could be overturned by
allowing more queries. Is it the case that for every m > 0 there exists an n > m (possibly
with n much larger than m) such that all classes learnable with m queries can be learned with
n queries but, then, without U-shapes? The question was answered negatively by Case and
Kötzing in [23]. Indeed, much more was shown.

Theorem 10. There is a class learnable with a single feedback query by a memoryless learner
that cannot be learned by a non-U-shaped memoryless learner with any finite number of feedback
queries, even if sequential (rather than parallel) queries are allowed.

Interestingly, the above result is complemented by a result showing that any class of infi-
nite languages that is learnable by a memoryless feedback learner with finitely many feedback
queries is so learnable without U-shapes. In fact, all classes of infinite languages learnable with
complete memory and, moreover, explanatorily learnable, can be learned without U-shapes by
a memoryless feedback learner using a finite but unbounded number of feedback queries. We
will see more about this pattern: the necessity of U-shaped learning sometimes disappears when
learning classes of infinite languages only.

On the other hand, there is a class of infinite languages that can be learned by a memoryless
feedback learner with a single feedback query, but that cannot be learned without U-shapes
using any particular number of feedback queries.

It’s a cognitively important open question whether U-shapes are necessary for feedback or
recall learning for which the learner also knows its just prior working hypothesis/conjecture!
This too seems to be interestingly mathematically difficult. From [21] it is known this kind of
learning forms a hierarchy in dependence on the bound on the number of queries.

Suppose m + n > 0. A more general, cognitively important open question is whether U-
shapes are necessary for full learning power for learning criterion where the learner knows
its prior conjecture and its current input datum, can remember m prior data items and can
(feedback or recall) query in each round n computed items. We conjecture that, at least for
m + n beyond the first few positive values, U-shapes are necessary!

4.5 Counters and Time/Data Awareness

Memory-limited learners such as human beings might take advantage from other forms of infor-
mation during their training. For example, humans are to some large extent aware of the passage
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of time and data — certainly when they are awake. Can this awareness give some additional
learning advantage — in bounded memory cases?

In [28] the authors introduced an extension of Iterative Learning featuring the use of coun-
ters. In particular, they considered a model in which an iterative learner also knows the number
of not necessarily distinct data items it’s seen so far. In other words, the learner is aware of the
iteration stage number of the learning process. This information is naturally coded as a counter
going from 0 to infinity. We call this type of counter a full counter. We think of counters as
modeling the fact that humans are at least somewhat aware of time and/or data passage. Some
people may be more aware than others.

It was shown in [28] that iterative learners with full counters are strictly more powerful than
plain iterative learners. Not surprisingly, they are also strictly less powerful than explanatory
learners — since explanatory learners have available the data input sequence up to any point
in time, so they can calculate the length of this sequence.

Kötzing [55] began a systematic study of how counters can improve learning power. Which
properties of counters give a learning advantage? Is it the higher and higher counter values,
which can, for example, be used to time-bound computations? Is it merely unbounded counter
values? Is it, as above, knowing the exact number of data (not necessarily distinct) items seen
so far? In [55] the impact of six different types of counters — each one modeling one of six
potential advantages of using a counter — is fully studied — at least in the context of Iterative
Learning. It is not so clear to us yet which type of counter best models human performance —
again there may be human individual differences. More work needs to be done on this.

On the one hand, [55] showed that even the weakest of his six types of counter does improve
learning power — at least of iterative learners. On the other hand, the six types of counters
studied in [55] turned out to fall into two groups with respect to iterative learning power. The
strongest learning advantage is given by having a full counter, but a strictly monotone one is
also sufficient. Indeed, the proofs (again for Iterative Learning) show that the such a learner only
needs to count the number of (not necessarily distinct) elements seen since it’s last mind-change
(i.e., change of conjecture) — or overestimate that number (however badly) to attain maximal
learning power of using full counters. Dropping the monotonicity requirement already results
in a loss of learning power (for Iterative Learning). The same learning power of an iterative
learner using a not necessarily strict monotone but unbounded counter is achieved by dropping
the monotonicity requirement or by using a counter that eventually enumerates all natural
numbers but with no constraint on the order of the enumeration. More work needs to done
on the learning advantages of various humanly plausible types of counters for learning criteria
more humanly plausible than the very restrictive Iterative Learning.

Even the question of whether U-shaped learning is necessary for iterative learners with
counters is an interesting still open problem for future research. In [28] the authors conjectured
that U-shaped learning should be unnecessary if the learner has access to a full counter.20 The
conjecture is still open. [55] contains preliminary results on the interplay between counters and
U-shaped learning in the context of a toy model of learning vastly weaker than even Iterative
Learning: Transductive Learning is learning with no memory at all. A transductive learner
outputs its new conjecture based on the current datum only. It is shown in [55] that in the
context of Transductive Learning its six counter types give rise to four distinct extensions of
Transductive Learning. For Transductive Learning, U-shaped learning exhibits a sensitivity to
the counter being ordered: it makes a difference whether the learner has access to a monotone

20 Interestingly, the conjecture is based on the observation that in the case of Iterative Learning, the dispensability
of U-shapes in learning classes consisting of infinite language only could be much more easily proved than in
the case of mixed classes. By analogy, perhaps the access to some form of infinity — as given e.g., by an
unbounded counter — could make U-shapes unnecessary.
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and unbounded counter rather than just to an unbounded counter (while it made no difference
for Iterative Learning).

Here is a collection of master open questions (so far) regarding the necessity of U-shaped
learning for humanly plausible criteria with memory limitations.

Suppose m+n > 0. Are U-shapes necessary for full learning power for the learning criterion
where the learner knows its prior conjecture and its current input datum, can remember m prior
data items and can (feedback or recall) query in each round n computed items and has access
to one of several humanly plausible counters? We conjecture that, at least for m + n beyond
the first few values and for some reasonable such counters, U-shapes are necessary!

5 On the Proof Techniques

Do the proofs of the above results give us any insights into the human case of necessity/indispensability
of U-shaped behaviour? In this Section we discuss some features of some the proofs of results
from previous sections that might be of interest from the Cognitive Science perspective.

5.1 Self-Reference, Self-Description and Self-Learning

Self-reference is a powerful technique in Computability Theory and figures prominently in
Computability-theoretic Learning Theory as a whole. Many theorems proving the necessity
of U-shaped learning make use of self-referential algorithms and language classes. The classes of
languages witnessing many of the separations between a learning criterion and its non-U-shaped
variant are self-describing classes. A self-describing class of languages is such that information
about the grammars for the languages in the class is directly present in some elements of the
languages themselves. For each b ≥ 2, the classes Lb used in Section 3 to separate Vacillatory
Learning with bound b from its non-U-shaped variant are self-describing classes: each language
in Lb contains information about its own (coded) grammar within its first b + 1 elements.

There has been a trend from [30,26,31,17] to [18] to [21] for the self-describing classes em-
ployed to go from obvious choices to very difficult choices, yet the original reason for their
employment was to make the positive half of proofs (that one criterion has more power than
another) immediate.

Recently, the use of self-describing classes has been generalized, in many cases improved (as
regards immediacy of such positive halves of proofs), and systematized by Case and Kötzing
[23,24,25,55]. For a given learning criterion C, the self-learning class of languages for C is that
class that is C-learned by merely treating the data elements as (codes for) programs to be run
on inputs relevant to C-learning. This may seem irrational, and, of course, many numbers so
run as programs will produce no output (conjectures). Such numbers will, then, not be data
elements of languages in the self-learning class for C! Surprisingly it has been shown very
generally (including for criteria as above) that the self-learning class for C witnesses that C
is more powerful than another criterion C′ if and only if this is indeed the case! In particular,
then, the self-learning class for C will witness C-learning is more powerful than the variant of C
in which U-shapes are forbidden if and only if U-shapes are necessary for full C-learning power!

The technical counterparts of the use of self-describing and self-learnable classes are the so-
called Recursion Theorems of Computability Theory. The first such theorem is due to Kleene
(see e.g., [83, page 214]) and can be stated as follows. Let p be an arbitrary algorithmic task.
Then there exists an program e (depending on p) that acts as follows. When run on an input
x, the program e creates a copy of its own code (a self-copy) and performs the task p on the
combined input consisting of the self-copy and the external input x. That is, e performs the
preassigned algorithmic task p on its own code combined with the external input x. In some
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important sense e exhibits a form of usable self-knowledge (in this case the ability to produce
and manipulate a low-level self-description). Actually, the self-knowing program e can be found
algorithmically from p — and quite efficiently so [86]. A number of extensions of Kleene’s
Recursion Theorem are known. One of the most far-reaching is Case’s Operator Recursion
Theorem [16]. This theorem features infinitary self- and other- reference, and it is important
for the employment of self-learning classes.

Even though (imperfect) self-knowledge and self-description might be powerful resources in
the case of human learning, some may be dissatisfied by the fact that the classes of languages
separating a learning criterion from its non-U-shaped variant are self-referential classes (or self-
describing, or self-learning), rather than more natural classes of languages.

An analogy can be drawn between the self-referential witnesses of separations in Learn-
ing Theory and the original self-referential witnesses of Gödel’s Incompleteness phenomenon
[39] in formal systems of mathematics. The relevance of Gödel’s First Incompleteness Theorem
for classical mathematics was questioned on the basis of the fact that his unprovable and ir-
refutable sentences witnessing the incompleteness of formal systems (such as Peano Arithmetic
and Zermelo-Fraenkel Set Theory) were self-referential sentences — sentences whose mathe-
matical content was devoid of interest for non-logician mathematicians. It took more than forty
years to find ‘natural’ examples of Gödel sentences. The first such example is the famous ‘Large
Ramsey Theorem’ of Paris and Harrington [43]. Later, perfectly natural mathematical theorems
such as Kruskal’s Tree Theorem and the famous Robertson’s and Seymour’s Graph Minor The-
orem were proved to require unexpectedly strong axioms. Partly based on this analogy, Case
[18] proposed the following Informal Thesis.21

Informal Thesis [18]: If a self-referential example witnesses the existence of a phe-
nomenon, there are natural examples witnessing the same!

The other basis for the just above Informal Thesis is that self-reference arguments lay bare an
underlying simplest reason for the theorems they prove [83,17,18,25]; if a theorem is true for
such a simple reason, the “space” of reasons for its truth may be broad enough to admit natural
examples.

We consider it nonetheless a difficult and interesting challenge for future research to find
humanly natural examples of classes requiring U-shaped learning. This is in part because much
of human cognition is hidden in brains too complicated for current experimental techniques.

5.2 The Problem of Generalization: Rules and Exceptions

According to a classical explanation of U-shaped learning, U-shapes occur because of the learner
adopting two learning strategies: memorization of a finite table and production of a general rule
[74,75,60]. This explanation has been most notably challenged by connectionists, who posit a
single learning mechanism.

It is interesting to note how advocates of opponent theories agree in describing the learning
situations in which U-shaped learning occurs as critically featuring an interplay between a small
set of exceptions and a general rule or common case.
21 Johnson [52] makes a similar analogy between Gold’s Theorem (providing the unlearnability of the class of

regular languages) and Gödel’s Theorem: “In general, the relation of Gold’s Theorem to normal child language
acquisition is analogous to the relation between Gödel’s first incompleteness theorem and the production of
calculators. Gödels’ theorem show that no accurate calculator can compute every arithmetic truth. But actual
calculators don’t experience difficulties from this fact, since the unprovable statements are far enough away
from normal operations that they don’t appear in real life situations.” From this analogy Johnson concludes
that Gold’s Theorem is irrelevant to cognitive science, just as Gödel’s Theorem is to concrete mathematics,
apparently disregarding forty years of mathematical research on natural incompletenesses (see [37]).
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Melissa Bowerman [9] thus points out that U-shaped learning curves “[. . . ] occur in situations
where there is a general rule that applies to most cases, but in which there are also a limited
number of irregular instances that violate the rule,” and goes on concluding that “[. . . ] the
solution involves a general adherence to the rule plus memorization of the exceptions.” In the
paper [84] of the connectionist school, the emergence of U-shaped behaviour is linked to learning
tasks consisting of regularities (statistical ones in this case) and exceptions: “Specifically, we
suggest that U-shaped curves can arise within a domain-general learning mechanism as it slowly
masters a domain characterized by statistical regularities and exceptions.”

An interplay between finite tables and infinite languages subsuming them is intriguingly
featured in some of our proofs, e.g., by the proofs of Theorems 3 and 6 (see [14] for details).

The idea of these proofs is the following. Take a machine M, and consider the behaviour of
M on finite amounts of data. Consider the case of a finite sequence of data σ such that, when
M receives σ as input, M outputs a grammar g such that the language generated by g is a
proper superset of the elements of σ (i.e., it contains all the elements of σ and some more).
Now suppose that M is required to learn both the finite language consisting of the elements of
the sequence σ (call this language Lσ) and the language Lg generated by g. Consider now the
behaviour of M on the following text. M is first fed σ. At this point, by choice of σ, M outputs
grammar g for Lg. After that, M is presented with the elements of σ in any order. Since M
must learn Lσ, at some point M will output a grammar generating the language Lσ, which is
different from  Lg. But since Lg contains Lσ, we can go on by presenting M with elements from
Lg. Since M learns Lg by assumption, at some point M will output a correct grammar for Lg.
But then M has committed a U-shape in learning Lg: it has first output a conjecture for Lg

after reading σ, then it has abandoned it for a conjecture generating the language Lσ 6= Lg,
and finally it has returned to a correct conjecture for Lg. This shows that M is in fact forced to
have a U-shaped behaviour on any class containing at least Lσ and Lg. The other ingredients
of the proofs are needed to ensure learnability and will be disregarded in this discussion. Now
σ is a finite sequence, and Lσ is a finite language, which can be thought of as a finite table
of exceptions. Instead, the language Lg containing Lσ is, at least in principle (and we have no
way to decide it) an infinite set. Such an infinite set can be described, and learned, only by
conjecturing a general rule.

It would be far-fetched to draw definitive conclusions about human learning from the features
of the above proof. Note that the order in which finite tables and general rules come into play in
the argument sketched above to enforce U-shapedness is different from the classical, empirical
account for humans. The finite table σ is so chosen that the learner in the first phase commits
apparent overgeneralization in the sense of conjecturing a grammar for a larger language, in the
second phase correctly learns the finite table σ, and finally is forced to return to a conjecture
for the target language containing the finite table σ and something more.

Still, the above proof exemplifies how U-shaped behaviour may be caused by the learner
having to deal with two categories of objects: a finite table (of ‘exceptions’) contained in a
larger language which is possibly infinite. The relations between finite and infinite members of
the target class is also critical in other results discussed above. E.g., in the context of Memo-
ryless Feedback Learning, U-shapes become unnecessary when classes containing only infinite
languages are considered. Furthermore, showing that U-shapes are unnecessary for iterative
learning of classes consisting of infinite languages turned out to be significantly easier than
obtaining the result for arbitrary classes. In the context of Explanatory Learning, if a class does
not contain an extension of every finite set, then that class can be learned by a decisive learner
[15]!

It should be noted that the same interplay is at the very heart of many fundamental results
in Gold-style learning theory — including unrelated to U-shaped learning — most notably the
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seminal result showing that the class of regular languages is not learnable in the limit in the
explanatory sense. In this sense the learnability of mixed classes of finite and infinite languages
might be more widely relevant to the understanding of ‘the problem of generalization’ as a
central problem of learning [45]. Note that these matters, in some cases, are also embedded
in just infinite languages, where one may have some special finite parts and the other not, so
these kinds of considerations may not go away in all cases if we confine ourselves to infinite
languages.22

6 Other Forms of Non-Monotonic Learning

U-shapes are but an instance of non-monotonic learning. Other non-monotonic patterns have
been experimentally documented and studied in a variety of cognitive-developmental situations
[32,33].

In [15] a number of variants of non-monotonic learning criteria have been investigated in
the context of Gold’s model. In particular, the following restrictions on the learner’s behaviour
have been studied. (1) No return to previously abandoned wrong hypotheses, (2) No return
to overinclusive hypotheses, (3) No return to overgeneralizing hypotheses and (4) No inverted
U-shapes. In each case ‘no return’ means no semantical return to a previously abandoned
conjecture of the specified kind. An overinclusive conjecture is a conjecture for a language that
contains non-elements of the target language. An overgeneralizing conjecture is a conjecture for
a language that properly includes the target language as a strict subset. An inverted U-shape
means returning to a wrong conjecture while making a correct guess in-between.

A fairly complete picture has been obtained of the impact of the above constraints on
Explanatory Learning, Vacillatory Learning and Behaviourally Correct Learning.

The general picture that emerged is the following. Forbidding return to previously aban-
doned wrong conjectures turns out to be a very restrictive requirement in all models. For
explanatory and vacillatory learners, this amounts to imposing the strongest form of mono-
tonicity, i.e., decisiveness (no return to any previously abandoned conjecture). In the case of
Behaviourally Correct Learning, the requirement turns out to be incomparable with non-U-
shapedness. Sometimes non-U-shaped behaviourally correct learners can do better than those
not returning to wrong conjectures, but sometimes it’s the other way round. The results about
the other forms of non-monotonic learning confirm the extreme sensitivity of the Vacillation
Hierarchy to this kind of constraint. Forbidding return to overinclusive hypotheses or forbid-
ding inverted U-shapes causes the hierarchy to collapse to plain Explanatory learning, just as
in Theorem 4 for U-shaped learning. Forbidding return to overgeneralizing hypotheses does not
cause collapse but does restrict learning power at each level of the hierarchy. By contrast, the
variants (2), (3) and (4) are useless for Explanatory and Behaviourally Correct Learning!

It is an interesting direction for future research to investigate the impact of the above variants
of non-monotonic learning in models with memory limitations.

7 Discussion and Conclusion

Gold’s model has been widely discussed in the Cognitive Science literature. Most commentators,
however, have focused on a fundamental negative result of Gold’s [40] rather than on the model
as a whole and its extensions in subsequent research [50]. The theorem in question (usually

22 And it has long been argued (except by finitists) that each natural language is infinite.
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referred to as Gold’s Theorem tout court) shows that no superfinite language class is learnable
in the limit from positive data.23

Gold’s Theorem is often invoked as evidence for the nativist approach to cognition (for
recent examples see the influential [44,68]). If not to show that Universal Grammar is a “log-
ical necessity” [68], Gold’s Theorem is sometimes invoked in a less drastic way as indicating
that domain-general knowledge is impossible, and that constraints on the learning process are
necessary for learning — be they innate or acquired (see, e.g., [93]). As nicely observed and
documented in [45], commentators usually disregard the fact that Gold himself proved in his
original paper [40] that constraints on the learning process do enhance learning power (the
result is that the class of c.e. languages is learnable in the limit from positive data if the learner
is only required to converge on primitive recursive texts).24 In this respect inductive learning
in the limit is on a par with connectionist, statistical or Bayesian models of learning and cogni-
tion: some language classes become learnable at the cost of extra assumptions on the input or
hypothesis spaces. The plausibility of the extra assumptions made in models other than Gold’s
can itself be questioned. As Heinz [45] puts it,

With respect to the claim that identification in the limit makes unrealistic assumptions, I
believe it is fair to debate the assumptions underlying any learning framework. However,
the arguments put forward by the authors below are not convincing, usually because
they say very little about what the problematic assumptions are and how their proposed
framework overcomes them without introducing unrealistic assumptions of their own.

The recent debate between connectionist/emergentist and structured probabilistic inference
models offers a good example of advocates of competing models mutually accusing each other
of making unrealistic assumptions.25

The connection with linguistic nativism and the comparison with statistical models has
certainly contributed to exacerbate the critiques to Gold’s model from adversaries of the nativist
tradition. It is not necessary to downplay Gold’s model as a whole in order to defeat the
argument that goes from Gold’s Theorem to nativism. It is enough to observe (as both [35] and
[45] do) that the class of natural languages need not be a superfinite class. This is in addition
to the fact that — as nowadays widely recognized — natural languages need not coincide with
a class of the Chomsky Hierarchy. Early results [1,2] show that – even if regular languages are
not learnable in Gold’s model – interesting and rich classes that run orthogonal to classes in the
Chomsky Hierarchy are so learnable. Recent research has shown that many more interesting and
rich classes orthogonal to the Chomsky Hierarchy classes and providing some natural language
patterns are learnable in the limit from positive data, and, in some cases, even efficiently so
[7,69,34,6,98].

Even advocates of the nativist tradition sometimes emphasize the limits of Gold’s model,
mostly in favour of statistical models of learning. Heinz [45] presents a very detailed analysis
of the most common critiques to Gold’s model and a convincing rebuttal of most of them. The
following list of “somewhat problematic assumptions” of Gold’s model can be found in the influ-
ential [68], which favours probabilistic extensions of Gold’s model. (1) the learner has to identify
23 A superfinite class of languages is a language class that contains some infinite language and all its finite

sublanguages. Since the class of regular languages is superfinite, Gold’s Theorem implies that regular languages
are not learnable, and that the same is true of all larger classes of the Chomsky Hierarchy.

24 A similarly proved positive result re a related kind of stochastic learning is found in [3].
25 E.g., McClelland et al. [61] write, “We view the entities that serve as the basis for structured probabilistic

approaches as abstractions that are occasionally useful but often misleading; they have no real basis in the
actual processes that give rise to linguistic and cognitive abilities or to the development of these abilities,”
to which Griffiths et al. [41] reply “By contrast, we believe that greater danger lies in committing to the
particular incorrect low-level mechanisms — a real possibility because most connectionist networks are vastly
oversimplified when compared with actual neurons.”
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the target language exactly, (2) the learner receives only positive examples, (3) the learner has
access to an arbitrarily large number of examples, and (4) the learner is not limited by any
consideration of computational complexity. As these points are not all explicitly addressed in
[45], we briefly comment on them. Note that points (1-3) apply to a family of learning criteria
within Gold’s setting and not to Gold-style learning theory as a whole. Concerning (1) we point
out that forms of approximate learning can be and have been investigated within Gold’s model
[30,26,31,18]. Concerning (2) we remark that the necessity of negative information for language
learning is a controversial and debated issue [11,59,92,36]. Interestingly, the fact that some form
of possibly implicit negative information could be available to children learning languages was
also suggested by Gold himself [40] commenting on his results on unlearnability from posi-
tive data only. For attempts at modeling partial negative information in Gold’s framework see
[66,4,48]. Point (3) is addressed by models with bounded memory as those mentioned in Section
4 of the present paper. The issue of computational complexity (point (4)) is in general a serious
one. The difficulty of imposing a fair feasibility restriction on the computational complexity of
the learners is indeed a serious drawback of the model. See [22] where a rigorous investigation
of how some proposed solutions fail to solve the fairness problem.26 On the other hand, fair
and feasible algorithms are known for interesting classes orthogonal to the Chomsky Hierarchy
and providing some natural language patterns (see, e.g., [69,34,6,98]).27 The investigation of the
important open mathematical questions, about the necessity of U-shapes, mentioned in prior
sections, but where the learner is required to be both fair and feasible, has barely begun. For the
humanly important memory-bounded cases, the fairness problem is apparently only difficult to
sort out for the case of non-zero bounded feedback and recall queries.

To some of the points further above Clark and Lappin [35] add the requirement of conver-
gence on all texts as an unrealistic assumption of Gold’s model.28 Oddly enough, they motivate
their claim by referring to the case of feral children, who suffer from an “Impairment of learning
due to an absence of data.” But no text in Gold’s model — however adversarial — features
absence of data.29 One might also argue that the excessively restrictive (convergence on all
texts) and the excessively liberal aspects of the model (no complexity bounds) tend to even-out
to some extent. As noted in [45], the restrictive aspects of Gold’s learning criteria make the
known positive results stronger rather than weaker.

One the most prominent (and usually disregarded) shortcomings of Gold’s model is in our
opinion its inability to model semantic information. Empirical evidence suggesting that seman-
tics (denotation and social reinforcers) in addition to positive information might be crucial for
language acquisition is presented re denotation in [64,65]. The recent and influential [63] also
makes a strong case about the critical importance of social reinforcers.

Overall, we believe that some of the drawbacks of Gold’s model are not unique to it and that
those that are are compensated by other benefits of the model. A trade-off between applicability
and predictive power on the one hand, and generality and categorical rigour on the other has
to be expected at the present time. In particular — and critically for the topic of the present

26 The fairness issue, first noted in [78], is the problem that, for learning in the limit, an imposition of requiring
each conjecture to appear in polynomial time (in the length of the data on which it to be based) is really no
useful restriction at all — since hard computations can be unfairly put off until a longer data sequence appears
which would allow more time to compute.

27 Considered in [20] is the possibility that human cognition is feasibly computable with massive brain parallelism
providing very large coefficients for nonetheless polynomial time complexity bounds; whereas, the rest of the
universe can have infeasibly computable phenomena.

28 “Children are not generally subjected to adversarial data conditions, and if they are, learning can be seriously
impaired. Therefore, there is no reason to demand learning under every presentation” [35].

29 An adversarial text might feature absence of data up to any given finite time-bound (developmental stage)
but the model has no pretension of mimicking children development to that level of detail.

20



paper — Gold’s model is a unique setting for posing and answering with mathematical rigour
questions about the logical necessity of learning strategies.

In general, the state of the art of Gold-style learning theory can be compared to the status of
“ancient” Physics. Modeling human learning in Gold’s model is weakly analogous to modeling
the thermodynamics of gases without taking into account van der Waal’s forces. This kind of
idealization still allows some understanding of the modeled reality. Also, many other parts of
Cognitive Science do not allow for precise quantitative predictions in their present form.

We thus believe that the results obtained in Gold’s model can give some insights into human
learning. As suggested in [19,45], formal results in Gold’s model might guide the design of mean-
ingful experiments. We would like to see more interaction between this branch of Computability
Theory, experimental Psychology, and Cognitive Science.

As said above, the general picture that emerges from the so far known results presented
in this paper is that U-shaped behaviour is unavoidable for full learning power in the context
of a number of parametrized models of learning featuring a number of cognitively-motivated
constraints. These results might be taken as suggestive of the fact that humans might exhibit
U-shaped and other non-monotonic learning patterns because otherwise it would be impossible
for them to learn what they need to learn to be competitive in the evolutionary marketplace. U-
shaped learning could really turn out to be a “hallmark of development” [58]. Also, the results
presented do illuminate from a novel perspective the critical issue of how U-shaped learning
relates to the general ‘problem of generalization’ and to the structure of the language classes.
In a number of interesting cases, the necessity of U-shaped learning disappears when learning is
restricted to classes consisting of infinite languages only. These preliminary insights should be
verified in two directions. (1) Empirical: by designing insightful experiments to assess measurable
advantages of using a U-shaped learning strategy, and (2) Mathematical: by investigating the
necessity of U-shapes in the context of more and more cognitively relevant criteria. For the
second purpose, we believe that future research should focus on models of learning obtained
by combining the following features: (a) vacillatory identification, (b) bounded memory, (c)
queries, (d) counters, (e) fair feasibility. and also (f) stochastic elements. Re the latter, in [20]
Case argues that we live in a quantum mechanical universe for which the expected behaviors
are nonetheless algorithmic; hence, there is value in modeling the expected behavior of humans
as non-stochastic but algorithmic.

We believe that each of these features is relevant for the purpose of modeling human cognition
and expect that the study of U-shaped learning in models obtained by combining these features
would give new insights in this interesting phenomenon.
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