
Feasible Iteration of Feasible Learning
Functionals?

JohnCase1, TimoKötzing2, Todd Paddock3

1 Department of Computer and Information Sciences, University of Delaware,
Newark, DE 19716-2586,USA.

case@cis.udel.edu
2 Department of Computer and Information Sciences, University of Delaware,

Newark, DE 19716-2586,USA.
koetzing@cis.udel.edu

3 Majestic Research,
1270 Avenue of the Americas, Suite 1900, New York, NY 10020

todd@majesticresearch.com

Abstract. For learning functions in the limit, an algorithmic learner
obtains successively more data about a function and calculates trials each
resulting in the output of a corresponding program, where, hopefully,
these programs eventually converge to a correct program for the function.
The authors desired to provide a feasible version of this learning in the
limit — a version where each trial was conducted feasibly and there was
some feasible limit on the number of trials allowed. Employed were basic
feasible functionals which query an input function as to its values and
which provide each trial. An additional tally argument 0i was provided
to the functionals for their execution of the i-th trial. In this way more
time resource was available for each successive trial. The mechanism
employed to feasibly limit the number of trials was to feasibly count
them down from some feasible notation for a constructive ordinal. Since
all processes were feasible, their termination was feasibly detectable, and,
so, it was possible to wait for the trials to terminate and suppress all the
output programs but the last. Hence, although there is still an iteration
of trials, the learning was a special case of what has long been known as
total Fin-learning, i.e., learning the limit, where, on each function, the
learner always outputs exactly one conjectured program. Our general
main results provide for strict learning hierarchies where the trial count
down involves all and only notations for infinite limit ordinals. For our
hierarchies featuring finitely many limit ordinal jumps, we have upper
and lower total run time bounds of our feasible Fin-learners in terms of
finite stacks of exponentials. We provide, though, an example of how to
regain feasibility by a suitable parameterized complexity analysis.

? Case and Paddock were supported in part by NSF grant number NSF CCR-0208616.
We are also grateful to anonymous referees for many helpful suggestions. One such
referee provided hints about the truth and truth and proof, respectively, of what
became, then, Lemmas 6 and 7; hence, these results are joint work with that referee.
This same referee suggested, for the future, team learning as an approach to studying
some probabilistic variants of our learning criteria.

1 Introduction and Motivation

One-shot (algorithmic) learners, on input data about a function, output at most
a single (hopefully correct) conjectured program [JORS99]. Feasible (determin-
istic) one-shot function learning can be modeled by the polytime multi-tape
Oracle Turing machines (OTMs) as used in [IKR01] (see also [KC96, Meh76]).
We call the corresponding functionals basic feasible functionals.

In the context of learning in the limit, i.e., learning with a succession of one-
shots, where only the final shots are hoped to be correct, we are interested, then,
in how one might define feasible for limiting-computable functionals. We next
discuss the concepts we require for such a definition.

Intuitively ordinals [Sie65] are representations of well-orderings. 0 represents
the empty ordering, 1 represents the ordering of 0 by itself, 2 the ordering 0 < 1,
3 the ordering 0 < 1 < 2, The ordinal ω represents the standard ordering
of all of N. ω + 1 represents the ordering of N consisting of the positive integers
in standard order followed by 0. The successor ordinals are those of the form
α + 1 which have a single element laid out after a copy of another ordinal α.
ω + ω can be thought of as two copies of ω laid end to end — much bigger
than ω. ω · 3 represents three copies of ω laid end to end. By contrast, 3 · ω
represents ω copies of 3 — which is just ω. We see, for ordinals, +, · are not
commutative. ω · ω is ω copies of ω laid out end to end. We can iterate this
and define exponentiation for ordinals. Limit ordinals are those, like ω, ω + ω,
ω · ω, and ωω, which are not 0 and are not successor ordinals. All of them are
infinite. Importantly, the constructive ordinals are just those that have a program
(called a notation) in some system which specifies how to build them (lay them
out end to end, so to speak). Everyone knows how to use the natural numbers
for counting, including for counting down. Freivalds and Smith [FS93], as well
as [ACJS04], employed in learning theory notations for constructive ordinals as
devices for algorithmic counting down. Herein we need to count down iterations
of applications of feasible learning functionals. For example, for us, as we will see
more formally in Section 4 below, algorithmic counting down iterations from any
notation u for ω + 1 is roughly equivalent to counting down one iteration and,
then, deciding dynamically how many further but finite number of iterations
will be allowed. Herein, though, we want the counting down process itself to
be feasible. Hence, in Section 3, we introduce feasibly related feasible systems of
ordinal notations, where, basically, the definition of a system of ordinal notations
(as in [Rog67]) is restricted to those systems where all necessary operations and
decision processes are feasibly computable. In Section 3, by Theorem 8, for each
constructive ordinal α, we have such a system containing a notation for α and
all its predecessors.

In Section 4, we present our proposed definition (Definition 11) for feasible it-
eration of feasible learning functionals. Then we present our general main results
providing for strict learning hierarchies at all and only notations for (infinite)
limit ordinals. First, Theorem 14 provides the learning hierarchy collapse be-
tween feasible notations for α and for α + 1. Importantly, Theorem 17, provides

2

a strict learning hierarchy between feasible notations for successive feasible limit
ordinals.

In Section 5, our main results involve upper and lower runtime bounds for
learning hierarchies featuring feasibly counting down from feasible notations for
the successive initial limit ordinals ω · n, n = 1, 2, 3, These runtime bounds
are expressed in terms of exponential polynomials q. In Theorem 20, for learning
featuring feasible counting down from feasible notations for ω · n, the stacking
of exponentials in the upper bound q is no more than n. Theorem 21 says there
are classes learnable featuring feasible counting down from feasible notations for
ω · n, where the stacking of exponentials in the lower bound q is at least n.
In Section 5, we provide, though, an example of how to regain feasibility by a
suitable parameterized complexity analysis [DF98].

Due to space constraints some portions of proofs are omitted. Complete
proofs are in [CPK07].

2 Mathematical Preliminaries

N denotes the set of natural numbers, {0,1,2,. . . }. We do not distinguish be-
tween natural numbers and their dyadic representation.4 card(D) denotes the
cardinality of a set D.

The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, super-
set and proper superset relation between sets.

We sometimes denote a function f of n > 0 arguments x1, . . . , xn in lambda
notation (as in Lisp) as λx1, . . . , xn f(x). For example, with c ∈ N, λx c is the
constantly c function of one argument. From now on, by convention, f and g
with or without decoration range over functions N → N, x, y with or without
decorations range over N, 0i, 0j range over {0}∗.

We use ‘string’ and ‘finite sequence’ synonymously, and, for each sequence s,
we will denote the first element of that sequence by s(0), (or, equivalently, with
s0,) the second with s(1) (or s1) and so on.

Similarly we will consider infinite sequences s as functions with domain N
(or N∪{−1}, as the case may be), and denote them at position a in the domain
by s(a) or sa.

For each string w, define len(w) to be the length of the string. As we iden-
tify each natural number x with its dyadic representation, len(x) denotes the
length of the dyadic representation of x. For all strings w, we define |w| to be
max{1, len(w)}.5

Following [LV97], we define for all x ∈ N: x = 1len(x)0x. Using this notation
we can define a function 〈·〉 coding tuples of natural numbers of arbitrary size
(k ≥ 0) into N such that 〈v1, . . . , vk〉 := v1 . . . vk.

4 The dyadic representation of a natural number x := the x-th finite string over {0, 1}
in lexicographical order, where the counting of strings starts with zero [RC94]. Hence,
unlike with binary representation, lead zeros matter.

5 ε denotes the empty string. This convention about |ε| = 1 helps with runtime con-
siderations.

3

For example the tuple (4, 7, 10)decimal = (01, 000, 011)dyadic would be coded
as 11 0 01 111 0 000 111 0 011 (but without the spaces added for ease of parsing).

Obviously 〈·〉 is 1-1. The time to encode tuples, that is, to compute
λv1, . . . , vk 〈v1, . . . , vk〉 is ∈ O(λv1, . . . , vk

∑k
i=1 |vi|). Therefore the size of the

codeword is also linear in the size of the components: λv1, . . . , vk |〈v1, . . . , vk〉| ∈
O(λv1, . . . , vk

∑k
i=1 |vi|). Decoding is linear in the length of the codeword: For

all k, i ≤ k, we have that λ〈v1, . . . , vk〉 vi is computable in linear time, so is
λ〈v1, . . . , vk〉 k.

A function ψ is partial computable iff there is a Turing machine computing
ψ.

ϕTM is the fixed programming system from [RC94, Chapter 3] for the partial
computable functions. This system is based on deterministic, multi-tape Turing
machines (TMs). In this system the TM-programs are efficiently given numer-
ical names or codes.6 ΦTM denotes the TM step counting complexity measure
also from [RC94, Chapter 3] and associated with ϕTM. In the present paper,
we employ a number of complexity bound results from [RC94, Chapters 3 & 4]
regarding (ϕTM, ΦTM). These results will be clearly referenced as we use them.
For simplicity of notation, hereafter we write (ϕ,Φ) for (ϕTM, ΦTM). ϕp denotes
the partial computable function computed by the TM-program with code num-
ber p in the ϕ-system, and Φp denotes the partial computable runtime function
of the TM-program with code number p in the ϕ-system.

Whenever we consider tuples of natural numbers as input to TMs, it is un-
derstood that the general coding function 〈·〉 is used to code the tuples into
appropriate TM-input. We say that a function from k-tuples of natural numbers
into N is feasibly computable iff, for some p, it is computed by TM p in polytime
in the lengths of its inputs.7

The next definitions provide the formal details re the polytime constraint on
basic feasible functionals.

The length of f : N → N is the function |f | : N → N such that |f | =
λn.max({|f(x)| | |x| ≤ n}).

A second-order polynomial over a type-1 variable g and a type-0 variable y
(in this paper simply referred to as a polynomial) is an expression of one of the
following five forms.

a; y; q1 + q2; q1 · q2; g(q1)

where a ∈ N, and q1 and q2 are second-order polynomials over g and y.

The set of all such second order polynomials is denoted with Q.

6 This numerical coding guarantees that many simple operations involving the coding
run in linear time. This is by contrast with historically more typical codings featuring
prime powers and corresponding at least exponential costs to do simple things.

7 We are mostly not considering herein interesting polytime probablistic or quantum
computing variants of the deterministic feasibility case.

4

A subpolynomial of q is, recursively, any polynomial which is used in the
construction of q, or which is a subpolynomial of a polynomial that is used in
the construction of q.

We understand each such polynomial q as a symbolic object and for a func-
tion f : N→ N and x ∈ N we write q(f, x) as the obvious evaluation of q to an
element in N.

For two functions h1, h2 : N → N we write h1 ≤ h2 :⇔ ∀n ∈ N : h1(x) ≤
h2(x) and we say that h2 majorizes h1. It is easy to see from the definition of a
second-order polynomial q that λf, x q(f, x) is non-decreasing in each argument,
given that all function-arguments are non-decreasing and order on functions is
as defined just above.

An Oracle Turing Machine (OTM) is a multi-tape Turing Machine that also
has a query tape and a reply tape. To query an oracle f , an OTM writes the
dyadic representation of an x ∈ N on the query tape and enters its query state.
The query tape is then erased, and the dyadic representation of f(x) appears
on the reply tape. This model is extended to the case of multiple oracles in
the obvious way. The (time) cost model is the same as for non-oracle Turing
machines, except for the additional cost of a query to the oracle. This is handled
with the length-cost model, where the cost of a query is |f(x)|, where |f(x)| is
the length of the string on the reply tape.

F : (N → N) × N → N is a basic feasible functional iff there is an OTM M
and a second-order polynomial q, such that, for each input (f, x),

(a) M outputs F (f, x), and
(b) M runs within q(|f |, |x|) time steps (we will then say that q majorizes the

runtime of F).

Any unexplained computability-theoretic notions are from [Rog67].

3 Feasible Systems of Ordinal Notations

In this section we begin with some definitions regarding systems of ordinal no-
tations. The first definition is quite technically useful in our proofs in Section 4
below.

Definition 1. For a system of ordinal notations S as, for example, in [Rog67],
a pair (lS , nS) is a decompose pair for S iff lS and nS are functions N→ N and
for all notations u ∈ S for an ordinals α, lS(u) denotes a notation for the biggest
(limit ordinal or 0) λ ≤ α, and nS(u) is such that α = λ + nS(u).

Definition 2. (Feasible System of Ordinal Notations) For an ordinal α, a fea-
sible system of ordinal notations for all and only the ordinals < α is a tuple
(S, νS , limS , +S , ·S , lS , nS) where S ⊆ N, νS maps N onto the set of all ordinals
< α, limS : N × {0}∗ → N, +S and ·S are ordinal sum and multiplication on
notations respectively8 and (lS , nS) is a decompose pair for S.9 Additionally we
8 Therefore, each feasible system of ordinal notations will give notation to an additively

and multiplicatively closed set of ordinals.
9 We will sometime ambiguously refer to (S, νS , limS , +S , ·S , lS , nS) as S.

5

require:
The following predicates over u ∈ S are feasibly decidable.

(a) “u is a notation for 0”,
(b) “u is a notation for a successor ordinal” and
(c) “u is a notation for a limit ordinal”.

And:

(d) There is a feasibly computable function predS such that for all u notations
for a successor ordinal α + 1, predS(u) is a notation for α.

(e) limS is a feasible function and for all limit-ordinals λ < α and notations l
for λ we have that (νS(limS(l, 0i)))i<ω is a strictly increasing sequence of
ordinals with limit λ.

Up to this point in this definition, we have a modification of Rogers’ concept of
system of ordinal notations [Rog67], where, when we require feasible computabil-
ity, Rogers requires only partial computability. Additionally we require

(f) +S is feasibly computable,
(g) ·S is feasibly computable,
(h) from any natural number n, a notation nS for n is feasibly computable and
(i) lS , nS are feasibly computable.

Definition 3. Following Rogers [Rog67], we make the definitions below.

– We say that a system of ordinal notations S is univalent iff νS is 1-1.
– We define the relation ≤S on natural numbers such that: u ≤S v ⇔

[u, v ∈ S ∧ νS(u) ≤ νS(v)].
– A say a system of ordinal notations S is computably related iff ≤S is com-

putably decidable.
– A say a system of ordinal notations S is computably decidable iff the set of

notations S is computably decidable.
– Analogously, we define a system S to be feasibly related iff ≤S is feasibly

decidable, and feasibly decidable iff the set S is feasibly decidable.

Remark 4. The following remarks simplify dealing with feasible systems of
ordinal notations.

– In Definition 2 above we have that feasible relatedness, together with (f),
(h) and (i) implies (a)-(d).

– Every feasibly related feasible system of ordinal notations S is feasibly de-
cidable, as we have: u ∈ S ⇔ u ≤S u.

– Every feasibly related feasible system of ordinal notations is a computably
related system of ordinal notations.10

10 Therefore, all theorems for computably related systems of ordinal notations hold.
For example, there cannot be a feasibly related feasible system of ordinal notations
for all constructive ordinals (see [Rog67]).

6

– For a feasibly related or univalent feasible system of ordinal notations S,
it is feasibly decidable whether two notations are notations for the same
ordinal.11

Lemma 5. Suppose S is a system of ordinal notations in which a notation in
S for the successor ordinal is feasibly computable from a given notation in S.
Let limS : N × {0}∗ → N be a computable function satisfying the analog of (e)
where “feasible” is replaced by “partial computable”. Then there is a feasibly
computable function lim′

S : N× {0}∗ → N satisfying (e).

Proof. Define lim′
S thus. On input (u, 0i), run limS on inputs (u, 0j) for all

j ≤ i, each for up to i steps. If none converges, output i — a notation in S for i.
Otherwise, for some j ≤ i, limS(u, 0j) converges. In this case, for the maximal
such j, compute the i-times successor of limS(u, 0j) and output the result — a
notation for νS(limS(u, 0j)) + i. Importantly, thanks to [RC94, Corollary 3.7],
the algorithm just provided for lim′

S is feasible.
Let u ∈ S be a notation for a limit ordinal.

We have ∀i < j, νS(lim′
S(u, 0i)) <S lim′

S(u, 0i); therefore, the sequence of ordi-
nals corresponding to the outputs for successively larger i is strictly monotonic
increasing.
Also, the limit of (νS(lim′

S(u, 0i)))i∈N is the same as the limit of
(νS(limS(u, 0i)))i∈N.

Lemma 6. Suppose S is a computably related system of ordinal notation for
all and only the ordinals < α for some ordinal α. Then there is a feasibly related
system S′ of ordinal notations for all and only the ordinals < α.

Proof. Define S′ thus. Let e be the numerical name for a program deciding
≤S . Define t : N → N, u 7→ max({Φe(i, j) | i, j ≤ u}). Let S′ be the system
of notations where for all β given a notation u in S, we have that 〈0t(u), 0u〉
is a notation for β. Obviously, ∀m,n, u, v ∈ N : 〈0m, 0u〉 ≤S′ 〈0n, 0v〉 ⇔
[ϕe(u, v) = 1 in ≤ max{n,m} steps and m = t(u) and n = t(v)]. It follows from
[RC94, Lemma 3.2(f) and Corollary 3.7] that λ0m, 0u t(u) = m is feasibly de-
cidable. Therefore, on the resulting notations we have that order is feasibly
decidable.

Lemma 7. Suppose S is a feasibly related system of ordinal notations giving
a notation to all and only the ordinals < α for some ordinal α. Then there is
a feasibly related system of ordinal notations S′ fulfilling (a)-(f) and (h)-(i) as
in Definition 2, giving a notation at least to all ordinals < α. In fact, S′ as
constructed below gives a notation to all and only the ordinals < ωα. If S is
univalent, so is S′.
11 For univalent systems there are of course no two different notations for the same

ordinal. For a feasibly related systems of ordinal notations, u, v ∈ N are notations in
S for the same ordinal iff [u ≤S v and v ≤S u].

7

Proof. Assume without loss of generality that 0 is the only notation for 0 in
S. Let 〈〉 be a notation in S′ for 0. By the Cantor Normal Form theorem, each
ordinal γ, 0 < γ < ωα has exactly one representation such that γ =

∑0
i=k ωδi ×

ni, where α > δk > . . . > δ0 ≥ 0 and nk, . . . , n0 ∈ N\{0} (see [Sie65, Theorem 2,
Chapter XIV.19, page 323]). Define a system S′ by the following assignment
of notations. For each γ with 0 < γ < ωα, the representation as above and
dk, . . . , d0 notations in S for δk, . . . , δ0, respectively, let

〈dk, nk, . . . , d0, n0〉 be a notation in S′ for γ.

For S′, the requirements (a)-(d) of Definition 2 are clear (we use that 0 is the
only notation for 0 in S). It is similarly clear that in S′, the successor of each
notation is feasibly computable from that notation.

To show (e) for S′: Consider, for S′, a modification of (e) as in Definition 2
in which “partial computable” replaces “feasibly computable”. Below we show
that, for S′, this modified version of (e) holds. We already noted above that,
for S′, one can feasibly compute successors of notations. Hence, we can apply
Lemma 5 to S′ to obtain, for S′, a feasibly computable limS′ satisfying the
unmodified version of (e). Here, then, is how to compute the partial computable
function for the modified version of (e). Suppose the input is (u, 0i), where
u = 〈dk, nk, . . . , d0, n0〉 is a notation in S′ for a limit ordinal; therefore, d0 is
not a notation for 0 (we don’t care what happens if u is otherwise). We output
as follows.
If d0 is a notation for a limit ordinal, n0 6= 1, output 〈dk, nk, . . . , d1, n1, d0, n0 −
1, limS(d0, 0i), 1〉.
If d0 is a notation for a limit ordinal, n0 = 1, output
〈dk, nk, . . . , d1, n1, limS(d0, 0i), 1〉.
Otherwise let b be a notation for the predecessor of what d0 is a notation for.
If n0 6= 1, output 〈dk, nk, . . . , d1, n1, d0, n0 − 1, b, i〉.
If n0 = 1, output 〈dk, nk, . . . , d1, n1, b, i〉.

To show (f): We define 〈dk, nk, . . . , d0, n0〉+S′ 〈d′k′ , n′k′ , . . . , d′0, n′0〉 thus.
If there is i such that di and d′k′ denote the same ordinal (this is feasibly decidable
by Remark 4), output 〈dk, nk . . . , di+1, ni+1, di, ni + n′k′ , d

′
k′−1nk′−1, . . . , d

′
0, n

′
0〉.

Otherwise, let i be minimal such that di >S d′k′ (if such an i does not exist,
output is trivial). Output 〈dk, nk . . . , di+1, ni+1, di, ni, d

′
k′ , n

′
k′ , . . . , d

′
0, n

′
0〉.

To show (h): A notation in S′ for 0 is 〈〉. For all n > 0, a notation in S′ for
n is 〈0, n〉.

To show (i): lS′ and nS′ are trivial.
To show feasible relatedness: First check whether all coefficients are not 0

and that the sequence of exponents is strictly decreasing with respect to ≤S .
Then compare component-wise exponents and coefficients. As long as both are
equal, proceed. If one ordinal notation ends, the ending notation is the notation
for the smaller ordinal. If the exponents are not equal, the notation having the
smaller exponent is the notation for the smaller ordinal. If the coefficients are
not equal, the notation with the smaller coefficient is the notation for the smaller
ordinal.

8

Runtime: k times the runtime of the runtime for comparison in S plus runtime
linear in the length of the input to compare the coefficients.

If S is univalent, the uniqueness of the Cantor Normal Form guarantees
univalence of S′.

Theorem 8. Suppose S is a feasibly related system of ordinal notations giving
a notation to all and only the ordinals < α. Then there is a feasibly related
feasible system of ordinal notations S′ giving a notation at least to all ordinals
< α. In fact, S′ as constructed below gives a notation to all and only the ordinals
< ωωα

. If S is univalent, so is S′.

Proofsketch. Apply the construction of the proof of Lemma 7 twice to S. The
resulting system will also allow for feasible multiplication.

Corollary 9. Let α be a constructive ordinal. Then there is a univalent, feasibly
related feasible system of ordinal notations giving a notation to α.

Proof. By [Rog67, Theorem 11.XIX], there is a univalent, computably related
system of ordinal notations giving a notation to α. The result follows now from
first applying Lemma 6 and then Theorem 8.

Assumption 10. For the rest of this paper, fix an arbitrary univalent feasibly
related feasible system of ordinal notations S. We furthermore make the following
assumption.

∀u ∈ S, n ∈ N : |n| ≤ |n| ≤ |u +S n| . (1)

This reasonable assumption holds for all systems constructed in the proof
of Corollary 9. (1) above also shows that for all u ∈ S we have |nS(u)| ≤
|lS(u) + nS(u)| = |u|; therefore, we get

∀u ∈ S : nS(u) ≤ u . (2)

4 Hierarchies at Limit Ordinal Jumps

Next is our proposed definition of feasible iteration of feasible learning function-
als.

Definition 11. Suppose u ∈ S. A set of functions S is ItruBffFin-identifiable
(we write S ∈ ItruBffFin) iff there exist basic feasible functionals H : (N →
N)×{0}∗ → N and F : (N→ N)×{0}∗ → N such that for all f ∈ S there exists
k ∈ N such that

9

(a) F (f, 0t) <S u for all t < k,12

(b) F (f, 0t+1) <S F (f, 0t) for all t < k,
(c) F (f, 0k) = 0 and
(d) ϕH(f,0k) = f .

Lemma 12. Without loss of generality the count down function F in Defini-
tion 11 can be chosen such that for all computable functions f there is a k ∈ N
such that (a) and (b) in Definition 11 hold, as well as ∀t ≥ k : F (f, 0t) = 0.

Proof. Let q be a polynomial upper-bounding the runtime of F . Then there
is F ′ such that F ′ on input (f, 0t) computes for all w ≤ t F (f, 0w) (taking
time in O(

∑t
w=0 q(|f |, w)) ⊆ O(t · q(|f |, t))). If we have F (f, 00) <S u and for

all w < t F (f, 0w+1) <S F (f, 0w) (t comparisons decidable in polytime), then
output F (f, 0t), otherwise output 0.

Assumption 13. From now on, all witnesses for a set to be in ItruBffFin to
have these additional properties as stated in Lemma 12. Witnesses explicitly
constructed might not have this property.

Note that for all u ∈ S, as it is also the case for many other identification
criteria [JORS99], ItruBffFin is closed under taking subsets.

The first theorem shows that there is no difference in learning power for an
ordinal and its successor:

Theorem 14. Suppose u ∈ S. Then

ItruBffFin = Itr(u+S1)BffFin .

Proof. Trivial for u a notation for 0. Otherwise, let S ∈ Itr(u+S1)BffFin as
witnessed by (H, F). We have for all f ∈ S: F (f, 00) <S u ∨ F (f, 01) <S

u. Let P := λf µi < 2 (F (f, 0i) <S u); H ′ := λf, 0i H(f, 0i+P (f)); F ′ :=
λf, 0i F (f, 0i+P (f)). So (H ′, F ′) witnesses S ∈ ItruBffFin.

Recall that in the mathematical preliminaries it has been mentioned that
all polynomials as defined in this paper fulfill several monotonicity constraints.
Furthermore, we can find a single polynomial upper bounding the runtime all
functions of a given, finite set of BFFs (for example by adding all polynomials
for each single BFF up). The next definition gives a desirable property of polyno-
mials. The following remark will imply that we can – for all uses of polynomials
in this paper – suppose without loss of generality that our polynomials have this
property.
12 Earlier papers using count down functions, such as for example [ACJS04], usually

use instead, at this point in the definition, ≤S u. This earlier way of starting count
downs can be recovered in the version presented herein by using <S u +S 1. Our
present version has additional expressibility for u being a notation for a limit ordinal,
which is not available in a version starting with ≤S u. However, it is a theorem in
this paper (Theorem 14 below) that, for our way herein of starting count downs, no
resultant extra learning power class exists.

10

Definition 15. – For q,q′ ∈ Q we say q′ majorizes q iff ∀f ∈ F , i ∈ N :
q(f, i) ≤ q′(f, i).

– For all q ∈ Q define Reqq := {r ∈ Q | g(r) is a subpolynomial of q}
– A polynomial q is called request-bounding iff for all polynomials r ∈ Reqq

we have that q majorizes r.

Remark 16. For all polynomials q there is a request-bounding polynomial ma-
jorizing q.

Proof. Let q ∈ Q be a polynomial. Define R := Reqq and let q′ := q+
∑

r∈R r
(we assume the empty sum of polynomials to be the polynomial 0). Then we have
that q′ majorizes q and also all r ∈ Reqq. Of course we have Reqq = Reqq′ ;
therefore, the claim follows.

Next is the main theorem of this section. It provides a strict learning power
hierarchy.

Theorem 17. Suppose u <S v ∈ S represent non-successor ordinals. Then

ItruBffFin ⊂ ItrvBffFin.

Proofsketch. The inclusion is trivial, so that the separation remains to be
shown. This is done by constructing a suitable set of total computable functions
which belongs to the right set, but not to the left. Let S∗ be the set of all functions
f such that: There is a sequence r of notations for non-successor ordinals, strictly
decreasing (with respect to <S), where r(0) < v. There is a strictly increasing
sequence s of natural numbers of length len(r) + 1 such that:

(a) s(0) = 1,
(b) for all i < len(s)− 1 : s(i + 1) ∈ {2f(s(i)), . . . , 2f(s(i)) + |f(0)| − 1},13
(c) for all i < len(s)− 1 : f(s(i)) ∈ S,
(d) for all i < len(s)− 1 : lS(f(s(i))) = r(i),
(e) r(len(r)− 1) = 0 and
(f) for all i ∈ N: i ∈ (range(s) ∪ {0}) ⇔ f(i) 6= 0.

That our S∗ witnesses the separation of Theorem 17 just above provides the
reason its use in Proposition 22 (in Section 5 below) is interesting.

Define S := {f ∈ S∗ | |f(0)| = 1}. To save space in this proof, we will
actually show instead that S, a proper subset of S∗, witnesses the separation.
Of course, the negative part of the separation trivially applies to supersets.
Claim: S ∈ ItrvBffFin
Proof (of claim). Let e be such that for all finite functions σ (treated as strings
of size len(σ), coded onto the tape by 〈〉), and for all x ∈ N,

ϕe(σ, x) =
{

σ(i) , if i < len(σ) such that x = 2i;
0 , otherwise.

13 This entails, as s is required to be strictly increasing, that f(s(i)) > 0 for all i <
len(s)− 1.

11

Runtime in O
F on (f, 0t):

query f for σ := λi ≤ t f(2i) |f |(t) · t
determine biggest index i ≤ t such that f(2i) > 0 |f |(t) · t
if such an index does not exist, output 0
if two such indices exist, let l < i be the biggest two
if lS(f(2i)) = 0 redefine i := l
output lS(f(2i)) +S (f(2i)− t)

The next functional makes use of a linear time instance of an s-m-n-function.14

H on (f, 0t):
query f for σ := λi ≤ t f(2i) |f |(t) · t
output s-m-n(e, σ) linear time s-m-n

(H, F) shows the claim. (of claim)

Claim: S 6∈ ItrvBffFin.
Proof (of claim). Suppose by way of contradiction otherwise, as witnessed by
(H, F). Let q(g, x) be a polynomial with the following properties. q strictly
majorizes the runtime of F and H; q is request-bounding; and, for technical
reasons, for all c, n ∈ N, q(λx c, n) ≥ c.15

Define now two functions a, b : N × N → N such that ∀x, y : a(x, y) =
q(λz |x|, y), b(x, y) = q(λz |x|, a(x, y)). For all x, y ∈ N, a(x, y) is, then, an
upper runtime-bound for the computation of F on second argument 0y, if the
first argument is never requested at anything yielding something bigger then x.
For all x, y ∈ N, b(x, y) is an upper runtime-bound for the computation of F on
second argument 0a(x,y) with the same restriction on the first argument.

Let w be a notation for ω. We define, by multiply recursive calls, for i ≥ 0,
infinite sequences s, v and a computable function f as follows.

v−1 = 0
s(0) = 1

f(s(0)) = v0 = u +S x,

where x minimal so that v0 > b(v0, v−1) and
|v0| > 2b(v−1,0) + 1

s(i + 1) =
{

2vi , if vi 6= 0
max{s(j) | j ≤ i}+ 1, otherwise

f(s(i + 1)) = vi+1 =

0, if there is j < i− 1 such that lS(vj) = w
1, if lS(vi−1) = w
((vi + 1) + x), if lS(vi) = w

(F (f, 0a(vi,vi−1)) +S w) +S ((vi + 1) + x), otherwise

14 Linear time s-m-n is a function s running in linear time such that ∀e, x, y :
ϕs(e,x)(y) = ϕe(x, y); see [RC94, Theorem 4.7(b)].

15 For each polynomial q′, q′ + g(0) is an example polynomial fulfilling this property.

12

where x minimal so that vi+1 > b(vi+1, vi) and
|vi+1| > 2b(vi,vi−1) + a(vi, vi−1) + 1

Define f on all so far undefined values as 0.
Notes on the construction:

– To show that the condition on v0 is possible: On the one hand, by Assump-
tion 10 in Section 3, λx u +S x grows at least as fast as λx x, and λx x
grows exponentially in the length of its argument, and, on the other hand,
λx b(u+Sx, 0) grows only polynomially in the length of its argument. Similar
reasoning holds for the condition on vi+1.

– As part (f) of the proof of the next subclaim we will show that, in the
computation of F (f, 0a(vi,vi−1)), the value of f at s(i + 1) will never be
requested. This avoids f(s(i + 1)) calling itself.

Let m be maximal such that vm 6= 0. Clearly, from above, for all i such
that 0 ≤ i ≤ m, vi 6= 0. Abbreviate for all i ≤ m: ai := a(vi, vi−1) and
bi := b(vi, vi−1).

Subclaim: f, s, v are well defined.
Proof (of subclaim). We proof this by induction on i < m. We have the following
induction invariants.

(a) if 0 ≤ i, then bi < vi,
(b) if 0 ≤ i, then there are > vi steps required to query f at s(i + 1),
(c) if 0 ≤ i, then f is circle-free defined up through s(i + 1)− 1,
(d) if 0 ≤ i, then ∀t ≤ bi : |f |(t) < vi,
(e) if 0 ≤ i, then bi is an upper runtime bound for F on (f, 0ai),
(f) if 0 ≤ i, then f(s(i + 1)) is not requestable in the computation of F on

(f, 0ai).
(g) vi+1 is well defined

These invariants hold obviously for i = −1. Let now i < m be such that 0 ≤ i
and these induction invariants hold for for all k < i such that −1 ≥ k. We show
now that the invariants hold for i.

To show (a): By construction we have vi > b(vi, vi−1) = bi.
To show (b): We have |s(i + 1)| = |2vi | = vi. Therefore, vi steps are required

to write s(i+1) on the query tape; at least an additional step is used to complete
this query process.

To show (c): Follows from for all k < i, vk+1 well defined (that is, ∀k ≤ i, vk

is well defined).
To show (d): Let t ≤ bi. We have:

|f |(t) ≤ |f |(bi) = max
|x|≤bi

|f(x)| ≤ max
|x|≤vi

|f(x)| ≤ max
x<2vi

|f(x)| = |vi| < vi .

To show (e): By induction on the polynomials q′ such that g(q′) is a sub-
polynomial of q. Using invariant (d) and q being request-bounding it is easy to

13

show that all such polynomials q′ evaluate on (|f |, ai) to something ≤ bi. Then
we can conclude that q(|f |, ai) ≤ bi.

To show (f): (b), (e) and (a) show (f).
To show (g): From (f). (of subclaim)

It is now easy to verify that f ∈ S, and, then, a simple adversary argument
(as, for example, in [DZ01]) shows that either f or f modified at s(m) (so that
the modified version is still in S) is not properly identified by (H,F).

(of claim) (of theorem)

5 Upper and Lower Bounds on Runtime

For this section assume S gives a notation to at least all ordinals < ω2 (the
existence of such an S is guaranteed by Corollary 9). In this section we will
characterize the hierarchy of finitely many limit ordinal jumps in terms of ex-
plicit total runtime bounds. The next definition introduces polynomials with
exponential terms and the exponential nesting depth of such.

Definition 18 (Polynomials with Exponentials). We define recursively
in parallel the set Q[g] of symbolic polynomials with exponentials, as well
as the exponential nesting depth of q ∈ Q[g], rk(q), (read: rank of q):
for all a ∈ N: a ∈ Q[g], rk(a) = 0,
for all q1,q2 ∈ Q[g]: (q1 + q2) ∈ Q[g], rk((q1 + q2)) = max(rk(q1), rk(q2)),
q1,q2 ∈ Q[g]: q1 · q2 ∈ Q[g], rk(q1 · q2) = max(rk(q1), rk(q2)),
for all q ∈ Q[g]: g(q) ∈ Q[g], rk(g(q)) = rk(q),
for all q ∈ Q[g]: 2ˆ(q) ∈ Q[g], rk(2ˆ(q)) = rk(q) + 1.

The following definition will enable us to study the runtime of functionals
beyond the feasible.

Definition 19. Suppose k ≥ 1 and l ≥ 0. Then F : (N → N)k × Nl → N is
a computable functional if and only if there is an OTM M such that, for each
input (f1, . . . , fk, x1, . . . , xl), M outputs F (f1, . . . , fk, x1, . . . , xl).

The two theorems below are our main results of the present section.

Theorem 20 (Learning Time – Upper Bound). Let n > 0. Let S ∈
Itrw·nBffFin. Then there is a computable functional h : (N → N) → N such
that

– ∀f ∈ S : ϕh(f) = f
– the runtime of h is bounded above by some q ∈ Q[g] such that rk(q) ≤ n.

Proof. Let S ∈ Itrw·nBffFin as witnessed by (H, F). Define t, h such that for all
f computable functions: t(f) = µx F (f, 0x) = 0, h(f) = H(f, 0t(f)). Obviously
h fulfills the first requirement.

14

Let p be a polynomial upper-bounding the runtime of H and F . Let q0 = 0.
Define recursively for all i < n: qi+1 = 2p(g,qi) + qi. It is clear that rk(qi) = i.

We have now, for all f ∈ S and i < n, that the calculation of F on (f, 0qi(|f |))
is bounded above by p(|f |,qi(|f |)); therefore, F (f, 0qi(|f |)) < 2p(|f |,qi(|f |)), and,
hence, by (2) from the very end of Section 3:

nS(F (f, 0qi(|f |))) <S 2p(|f |,qi(|f |)) = qi+1(|f |)− qi(|f |) . (3)

(3) is to be read as follows. After qi(|f |) iterations of F , F will output a no-
tation for an ordinal with natural-number part less then qi+1(|f |) − qi(|f |) –
therefore, after no more then qi+1(|f |) − qi(|f |) additional iterations (after a
total of qi+1(|f |) iterations), there has to be a limit ordinal jump in the output
of F . A simple induction shows now that we have, for all f ∈ S and i < n,
F (f, 0qi(|f |)) <S w · n− i, and, therefore, F (f, 0qn(|f |)) = 0 (this makes use of
assumption 13).

Let f ∈ S. The above shows that we have t(f) ≤ qn(|f |); therefore, an
algorithm for computing t could run F on all arguments (f, 0i) in increasing order
for all i ≤ qn(|f |), checking each output for equaling 0. This takes a total time
≤ ∑qn(|f |)

i=0 p(|f |, i) ≤ (qn(|f |)+1)·p(|f |,qn(|f |)). Therefore, h can be computed
in ≤ (qn(|f |)+1) ·p(|f |,qn(|f |))+p(|f |,qn(|f |)) = (qn(|f |)+2) ·p(|f |,qn(|f |))
steps, where rk((qn + 2) · p(g,qn)) = rk(qn) = n.

Theorem 21 (Learning Time – Lower Bound). Let n > 0. Let S be as in
the proof of the limit ordinal jump hierarchy (Theorem 17) for the special case
of Itrw·(n−1)BffFin ⊂ Itrw·nBffFin. Define S ′ := {f ∈ S | card({x > 0 | f(x) >

0}) = n + 1}. Let h be a computable functional such that ∀f ∈ S ′ : ϕh(f) = f
and fix an OTM M computing h. Define q0 := g(1), define for all i < n, qi+1 :=
g(2ˆ(qi)). Then rk(qn) = n and we have, for all f ∈ S ′, qn(|f |) is a lower bound
on the runtime of M on argument f .

Proof. For f ∈ S we have by induction that |max({x > 0 | f(x) > 0})| ≥
qn(|f |), which shows by way of a simple adversary argument (as, for example,
in [DZ01]) the claim.

The following proposition illustrates one possibility to analyze a set in
ItrvBffFin (for any v ∈ S representing a limit ordinal) in terms of parametrized
complexity as in [DF98].

Proposition 22. Let v ∈ S be a notation for a limit ordinal, let S∗ ∈ ItrvBffFin
be as in the proof of Theorem 17. Define for all k ∈ N, S∗k := {f ∈ S∗ | ∀x > 0 :
f(x) < k}. Then we have

(a)
⋃

k∈N S∗k = S∗,
(b) for all k ∈ N, S∗k ∈ Itr0BffFin (that is, S∗k is one-shot learnable by a basic

feasible functional) and
(c) there is a k0 such that for all k > k0, S∗k is infinite.

15

Proofsketch. (a) is trivially true, as all f ∈ S∗ are finite variants of the constant
0 function.

(b) Let k ∈ N. Among the numbers < k there are of course at most k
notations for ordinals. Let f ∈ S∗k . Let C := {x > 0 | f(x) 6= 0} = {s(0) <
s(1) < . . . < s(m)}. We have now, for distinct x, y ∈ C, that f(x) 6= f(y), as
they have to be notations for ordinals with different limit parts. Furthermore, as
f ∈ S∗, for all i < m, we have s(i + 1) < 2f(s(i)) + |f(0)| < 2k + |f(0)|. Now we
have for all x ≥ 2k + |f(0)|, f(x) = 0. Checking all other positions < 2k + |f(0)|
and creating an appropriate output with linear time s-m-n (as it was also done
in the positive part of the proof of Theorem 17) takes therefore O(|f |(0)) time.

(c) Let k0 := 3. We omit the remaining detailed verification.

6 Conclusions and Future Work

In this paper we showed one possible approach to putting feasibilty restrictions
on learning in the limit learning. However, our strict learning hierarchies are at
the price of some infeasibility. Furthermore, our particular scheme of feasibly
iterating basic feasible learning functionals requires the count down function to
bottom out at 0, so one can tell when the iterations are done (and can and do
suppress all the programs output but the last). We were initially surprised that,
for a scheme like ours, we get a learning hierarchy result as in our Theorem 17
(in Section 4 above). We are interested in the future investigation of more ways
for feasibly iterating feasible learning functionals. We’d like variant definitions
and results where one cannot suppress all the output programs but the last. It
seems this may be difficult if we retain strict determinism. In this interest, then,
we would also like to see studied probabilistic variants of feasibly iterated feasi-
ble learners – this toward producing practical generalizations of Valiant’s PAC
learning [KV94] and Reischuk and Zeugmann’s [RZ00] stochastically finite learn-
ing. These latter involve, probabilistic, one-shot learners. [RZ00], intriguingly for
our purposes, compiles the multiple trials of a special case of deterministic limit
learning into a feasible probabilistic one-shot variant.

References

[ACJS04] A. Ambainis, J. Case, S. Jain, and M. Suraj. Parsimony hierarchies for
inductive inference. Journal of Symbolic Logic, 69:287–328, 2004.

[CPK07] J. Case, T. Paddock, and T. Kötzing. Feasible iteration of feasible learning
functionals (expanded version). Technical report, University of Delaware,
2007. At http://www.cis.udel.edu/∼case/papers/FeasibleLearningTR.pdf
and contains complete proofs.

[DF98] R. Downey and M. Fellows. Parameterized Complexity. Springer, 1998.
Monographs in Computer Science.

[DZ01] D. Dor and U. Zwick. Median selection requires (2+ε)n comparisons. SIAM
Journal on Discrete Mathematics, 14(3):312–325, 2001.

16

[FS93] R. Freivalds and C. Smith. On the role of procrastination in machine
learning. Information and Computation, 107(2):237–271, 1993.

[IKR01] R. Irwin, B. Kapron, and J. Royer. On characterizations of the basic feasible
functional, Part I. Journal of Functional Programming, 11:117–153, 2001.

[JORS99] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An
Introduction to Learning Theory. MIT Press, Cambridge, Mass., second
edition, 1999.

[KC96] B. Kapron and S. Cook. A new characterization of type 2 feasibility. SIAM
Journal on Computing, 25:117–132, 1996.

[KV94] M. Kearns and U. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA, 1994.

[LV97] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer Verlag, Heidelberg, second edition, 1997.

[Meh76] K. Mehlhorn. Polynomial and abstract subrecursive classes. Journal of
Computer and System Sciences, 12:147–178, 1976.

[RC94] J. Royer and J. Case. Subrecursive Programming Systems: Complexity and
Succinctness. Research monograph in Progress in Theoretical Computer
Science. Birkhäuser Boston, 1994.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York, 1967. Reprinted, MIT Press, 1987.

[RZ00] R. Reischuk and T. Zeugmann. An average-case optimal one-variable
pattern language learner. Journal of Computer and System Sciences,
60(2):302–335, 2000. Special Issue for COLT’98.

[Sie65] W. Sierpinski. Cardinal and ordinal numbers. PWN –Polish Scientific
Publishers, 1965. Second revised edition.

17

