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Abstract. Information graphics, such as bar charts and line graphs,
that appear in popular media generally have a message that they are
intended to convey. We have developed a novel plan inference system
that uses evidence in the form of communicative signals from the graphic
to recognize the graphic designer’s intended message. We contend that
plan inference research would benefit from examining how each of its
evidence sources impacts the system’s success. This paper presents such
an evidence analysis for the communicative signals that are captured in
our plan inference system, and the paper shows how the results of this
evidence analysis are informing our research on plan recognition and
application systems.

1 Introduction

Plan recognition systems develop a model of an agent’s plans and goals by an-
alyzing the agent’s actions. We contend that plan recognition research and its
applications would be strengthened by focusing not only on the success of the
overall system but also on the impact of the different evidence sources on the
system’s ability to form a correct hypothesis. This paper describes a novel use of
plan recognition — namely, to hypothesize the intended message of an informa-
tion graphic. The paper presents an analysis of the impact of different commu-
nicative signals on the system’s success, and it discusses how our research has
benefited from this evidence analysis.

Section 2 introduces plan recognition from information graphics. Section 3
presents our Bayesian model of plan recognition, with emphasis on the cues
available to a graphic designer. Section 4 presents an analysis of the various types
of cues on the system’s recognition of a graphic’s message; Section 5 discusses
the impact of this evidence analysis on our work and argues that other plan
recognition research would benefit from evaluating the contributions of their
various evidence sources.

? This material is based upon work supported by the National Science Foundation
under Grant No. IIS-0534948
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Fig. 1. Two Graphics from Business Week

2 Plan Inference and Information Graphics

Our research is concerned with information graphics (non-pictorial graphs such
as bar charts and line graphs). Most information graphics that appear in popular
media such as magazines, newspapers, and formal reports, have a message that
they are intended to convey. Consider for example the information graphics
displayed in Figure 1. The intended message of the left graphic is ostensibly
that CBS ranks fourth in terms of the average price of Ad compared with NBC,
ABC, FOX, and WB, and the intended message of the right graphic is ostensibly
that consumer revolving credit grew in Jan ’99 in contrast with the previously
decreasing trend from July ’97 to July ’98.

We have developed a novel application of plan inference techniques to in-
formation graphics. In the context of our work, the designer of the graphic is
treated as the user whose plan is being modeled, and plan inference hypothe-
sizes this plan that the graphic designer intends for the viewer of the graphic
to infer in recognizing the intended message of the graphic. This correlates with
plan inference in language understanding, where the speaker intends for the lis-
tener to infer the speaker’s plan and thereby recognize the intended meaning
of the speaker’s utterance. And as with language understanding, identifying the
intended message of an information graphic will enable our system to exhibit
behavior appropriate to the recognized message.

3 Bayesian Plan Recognition from Information Graphics

We have designed a Bayesian system for inferring the plan that the graphic
designer intends for the viewer to pursue in recognizing the graphic’s message
which is captured by the plan’s top-level communicative goal. Although we be-
lieve that our methodology is extendible to other kinds of information graphics,
our implemented system currently handles only simple bar charts such as the
ones shown in Figure 1. Input to our plan inference system is an xml represen-
tation of a graphic, produced by a computer vision module[1] that specifies the
graph’s axes, the individual bars (including their heights, labels, color, etc.), and
the graph’s caption. The plan inference system outputs a logical representation
of the intended message of the graphic which is then realized in English.
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3.1 Constructing the Network

The top level of our Bayesian network captures the twelve categories of commu-
nicative goals (or categories of messages) that we identified for simple bar charts,
such as getting the rank of an entity, comparing two entities, contrasting a point
with a trend, etc. As with previous plan recognition work[2], we use operators to
decompose high-level goals into a set of subgoals; since we are working with in-
formation graphics, subgoals eventually decompose into perceptual or cognitive
tasks[3], where a perceptual task is one that can be performed by viewing the
graphic (such as determining which of two bars is taller in a bar chart) and a
cognitive task is one that requires a mental computation (such as interpolating
between two values). The operators determine the structure of the Bayesian net-
work, in that the subgoals in an operator become children of their goal node in
the Bayesian network. Figure 2 displays a plan operator for getting the rank of a
bar given its label and the piece of network structure derived from it. However,
memory limitations restrict the size of the network. Our solution is to start
with only the ten easiest perceptual tasks as identified by our effort estimation
rules[4] (limited to one instantiation per task type) and with perceptual tasks
whose parameters are salient entities (such as a bar that is colored differently
from other bars, as in Figure 1). The network is then built by both 1) chain-
ing backwards from these primitive perceptual tasks to higher-level goals, and
2) chaining forwards from each newly entered node to primitive tasks.

3.2 Evidence Nodes

Bayesian networks need evidence for guiding the construction of a hypothesis.
We have identified eight kinds of communicative signals that can appear in
information graphics: effort, highlighting, annotation, most-recent-date, salient-
height, noun-matching-bar-label, verb, and adjective.

The AutoBrief project was concerned with generating information graph-
ics[3]. We have adopted their hypothesis that the graphic designer constructs a
graphic that makes intended tasks as easy as possible. Thus the relative diffi-
culty of different perceptual tasks serves as a communicative signal about which
tasks the viewer was intended to perform in deciphering the graphic’s intended
message. For example, identifying the taller of two bars in a bar chart will be
much easier if the bars are adjacent and significantly different in height than if
they are widely separated and only slightly different in height. We constructed
a set of effort estimation rules for estimating the effort involved in performing



different perceptual tasks on simple bar charts. These rules have been validated
by eyetracking experiments and are presented in [4].

Coloring one bar differently from other bars in the bar chart, or annotating
it with a special mark, draws attention to the bar and provides highlighting or
annotation evidence. The presence of a bar associated most closely (via its label)
with the date of the publication is used as most-recent-date evidence, since we
hypothesize that it is mutually believed that the viewer will notice events that
are current. A bar that is significantly taller than other bars “stands out” in
the graphic, and provides salient-height evidence. The presence of a noun in the
caption that matches the label of a bar in the graphic is a communicative signal
that the referenced entity is important to the graphic designer’s message.

Nodes capturing these six types of evidence are attached to each primitive
perceptual task in the network, since effort evidence captures the difficulty of a
perceptual task and the other five kinds of evidence capture the presence/absence
of some feature of a bar serving as a parameter of the perceptual task.

The presence of certain verbs (such as lag or rise) and adjectives (such as
more or largest) in the caption can signal the category of the intended message,
such as conveying the rank of an entity or conveying a rising trend. (Adjectives
derived from verbs, such as rising, are treated as verbs.) We use a part-of-speech
tagger and a stemmer to identify the presence of one of our identified verb or
adjective classes in the caption; nodes capturing this evidence are attached to the
top-level node in the network since they suggest a general category of message.

3.3 Implementation

The conditional probability tables in our Bayesian network are obtained from
our corpus of 110 bar charts. To facilitate leave-one-out cross validation of re-
sults (and also re-training under different sets of evidence, as discussed in the
next section), we automated the construction of a spreadsheet containing the
information needed from each graphic to compute the necessary probabilities.
System performance was measured using leave-one-out cross validation. The sys-
tem’s hypothesis for a graphic was viewed as correct if it matched the intended
message assigned to the graphic by the human annotators and the probability
that the system assigned to the hypothesis exceeded 50%. Overall success was
computed as the average success over the 110 graphics in the corpus.

4 Analyzing How Evidence Impacts Plan Recognition

Research in many areas, including dialogue act tagging[6], emotion recogni-
tion[7], and question answering[8], have analyzed their knowledge sources to
identify to what extent each affects the system’s hypothesis. In many cases, this
has consisted of examining the features in the resulting decision tree or com-
paring performance results of decision trees constructed from different sets of
features; in the work on question answering by Moldovan et. al., the system is



prevented from accessing various resources such as WordNet, and system perfor-
mance is compared to a baseline system with all resources accessible. However,
in the domain of plan recognition, evaluation has focused on the overall suc-
cess of the system and has given little attention to how much each evidence
source contributes to recognizing the user’s plans and goals. We contend that an
analysis of the impact of the various sources of evidence can inform subsequent
research directed at improving the system and can be used in the development
of applications utilizing plan inference. This section provides an analysis of the
contribution of each of our evidence sources to recognizing the intended mes-
sage of an information graphic, and Section 5 discusses how this analysis has
impacted our subsequent research.

We wanted to evaluate how each kind of evidence impacted system perfor-
mance by 1) examining system performance with only one kind of evidence, and
2) examining the degradation in system performance when a particular kind of
evidence is disabled. It is important to note that disabling an evidence source
means that we effectively remove this kind of evidence node from the network by
eliminating its ability to contribute to the network probabilities. This is different
from recording that the particular cue, such as highlighting, is absent, since the
absence, as well as the presence, of a cue is evidence.

To provide baselines for our experiments, we ran the system first without any
evidence sources enabled and then with all eight evidence sources enabled. Even
without any evidence sources, the system still has certain basic information,
such as the ten easiest perceptual tasks (limited to one instantiation per task
type) from which the Bayesian net is constructed and whether the independent
axis is ordinal (such as consecutive dates, age groups, etc.). The system without
any evidence sources enabled had a success rate of only 6% at identifying the
intended message of a bar chart, while the system with all evidence sources
enabled had a success rate of 79%.

We then ran eight experiments in which only one kind of evidence (such as the
presence/absence of highlighting in a graphic) was enabled, and compared the
improvement in performance with the baseline system with no evidence sources
enabled. Similarly, we ran eight experiments in which one kind of evidence was
disabled, and analyzed the degradation in performance (if any) that resulted
from omission of this evidence source. We used a one-tailed McNemar test for
the significance of changes in related samples[9, 5]. McNemar is a non-parametric
test that is appropriate when the samples are related. For our experiments, the
samples are related since one sample is obtained from a baseline system and
the other sample is obtained after some perturbation of the system (by adding
or removing an evidence source). The results of these experiments are shown
in Tables 1 and 2. In Table 1, the hypothesis H1 is that adding the particular
evidence source produces better performance than the system with no evidence;
in Table 2, H1 is that removing an evidence source results in worse performance.
The rightmost column of each table gives the p value — that is, the significance
level at which the null hypothesis is rejected and H1 is accepted.



Table 1. Improvement in Performance with Addition of Evidence Source

Baseline: System Without Any Evidence 6% success rate

SUCCESS McNEMAR p
TYPE OF EVIDENCE ADDED RATE STATISTIC VALUE

Only effort evidence 57% 52.155 .0001

Only current-date evidence 49% 45.021 .0001

Only annotation evidence 35% 29.032 .0001

Only verb evidence 24% 17.053 .0001

Only highlighting evidence 21% 14.063 .0001

Only evidence about salient-height 19% 12.071 .0005

Only evidence about noun-matching-bar-label 18% 9.600 .001

Adjective 14% 6.125 .01

Table 1 shows that addition of every evidence source produces improved
performance that is statistically significant at the .01 level or better. The three
evidence sources producing the largest improvement in performance were effort,
current-date, and annotation. On the other hand, Table 2 shows that noun-
matching-bar-label, effort, and current-date are the only evidence sources whose
removal caused degradation in performance that was statistically significant at
the .01 level or better.3 Moreover, the degradation in performance was much
less than the contribution of each of these evidence sources when they are the
only source used. Thus it is clear that the evidence sources compensate for
one another: when one source of evidence is disabled, cues from other sources
generally provide evidence that still enables recognition of the intended message.

We will discuss the effort and noun-matching-bar-label evidence sources since
their removal has the greatest impact on system performance. Effort both has
the greatest impact on system performance when it is the only source of evidence
and results in major degradation in performance when it is removed. Although
we did not expect this, in retrospect it is not surprising since effort evidence
reflects how the organization of data in the graphic facilitates different perceptual
tasks; thus it affects the message of every graphic whereas other signals, such as
highlighting, only occur in some graphs. However, effort by itself is insufficient for
recognizing some kinds of messages, such as that a graph is conveying the rank
of a particular bar. (The rules for estimating effort do not take salience into
account; thus a bar being highlighted does not affect the effort computation,
but the highlighting is captured by the highlighting evidence node.) We also find
that, when effort is the only evidence source, the average probability attached
to the correct hypotheses is 70% whereas the average probability assigned to
hypotheses about these same graphs with all evidence is 98%. Thus we conclude
that although effort has a strong impact on system performance, not only is it
insufficient by itself for recognizing certain categories of intention but it results
in less confidence assigned to the correct hypotheses that it does produce.

3 Note that disabling the adjective evidence source improved performance, although
this change was not statistically significant.



Table 2. Degradation in Performance with Omission of Evidence Source

Baseline: System With All Evidence 79% success rate

SUCCESS McNEMAR p
TYPE OF EVIDENCE OMITTED RATE STATISTIC VALUE

Noun-matching-bar-label evidence 70% 8.100 .005

Effort evidence 71% 5.818 .01

Current-date evidence 72% 6.1254 .01

Highlighting evidence 74% 3.125 .05

Salient-height evidence 74% 3.125 .05

Annotation evidence 75% 2.250 ∗
Verb evidence 78% 0.500 ∗
Adjective evidence 81% 0.500 ∗

* Not statistically significant

Noun-matching-bar-label is another evidence source whose omission results
in large degradation in system performance. We examined the graphs whose
captions contained a noun matching a bar label and whose intended message
was correctly identified using all evidence. Without noun-matching-bar-label ev-
idence, the system failed to identify the correct message when there was no
other evidence that made the bar salient, such as highlighting of the bar or the
bar being significantly taller than other bars. However, in ten graphs, such addi-
tional evidence enabled the system to recognize the intended message even when
noun-matching bar-label evidence was disabled. Thus we see that the absence of
noun-matching-bar-label evidence degrades system performance, but this degra-
dation is sometimes alleviated by the presence of other compensating evidence.

5 Lessons Learned

We contend that research on plan recognition and its use in adaptive systems
would benefit from examining the impact of the individual evidence sources on
the system’s performance. In this section, we support this contention by showing
how our evidence analysis has informed our research.

5.1 Applications of Plan Recognition from Information Graphics

We are applying plan inference from information graphics to several projects.
In the area of digital libraries, the graphic’s intended message will be used as
the basis for the graphic’s summarization, indexing, and retrieval; furthermore,

4 The McNemar statistic is based on 1) the number correct by System-1 and wrong by
System-2, and 2) the number wrong by System-1 and correct by System-2. Thus al-
though a greater difference in success rates usually correlates with greater statistical
significance, this is not always the case.



the graphic’s summary will be integrated into an overall summary of the mul-
timodal document. In the area of assistive technology, we have built a system,
SIGHT, that infers the graphic’s intended message and conveys it via speech
to individuals with sight-impairments. A third project is a graph design assis-
tant that will compare the message inferred for a graphic with the designer’s
intentions and help the designer improve the graphic so that it better conveys
his desired message. And lastly, we are investigating a system for tutoring in-
dividuals with disabilities in the analysis, understanding, and construction of
information graphics.

5.2 Implications of Evidence Analysis for Plan Recognition

Recognizing a graphic’s intended message is an integral part of each of our
projects; consequently, improving our system’s success at plan recognition and
extending our methodology to more complex graphics, such as grouped bar
charts, is important. Effort evidence requires the construction of effort estimation
rules and their validation via eyetracking experiments with human subjects; thus
it requires substantial research, particularly in the case of grouped bar charts
since there is little prior work by cognitive psychologists to draw on. Contrary to
our expectations prior to our evidence analysis, effort evidence has the strongest
overall impact on system performance, (in terms of its contribution when it is
the only evidence source and the degradation in system performance when ef-
fort evidence is disabled). Thus our evidence analysis has caused us to give high
priority to devising very good effort estimates for complex graphics.

Disabling noun-matching-bar-label evidence also had a major impact on sys-
tem performance. This suggested that we examine our graphics to determine
whether any similar forms of evidence were overlooked in our implementation.
We found that mutual beliefs by the graphic designer and the intended viewer
about implicitly salient entities seems to play a role in the intended message of a
graphic. These implicitly salient entities are a function of the intended audience
of a publication. For example, Canadian Business is directed toward Canadi-
ans. Thus, implicitly salient entities are those associated with Canada, such as
Canada, Toronto, any Canadian company, etc. We hypothesize that if only one
bar in a bar chart is labelled with an implicitly salient entity, this salience is sim-
ilar to mentioning the bar’s label in the caption. This conjecture is supported by
an analysis of the accompanying articles of such graphics, where it is clear from
the article that the graphic designer intended that the implicitly salient entity
play a major role in the graphic’s message. Thus we are adding such implicitly
salient entities as a new evidence source.

We expected verb evidence to be a major factor in system success, and had
begun to study WordNet similarity metrics that might improve system perfor-
mance by identifying when new verbs in captions were related to our identified
verb classes. However, our evidence analysis (particularly Table 2) suggests that
additional verb evidence will not have much of an impact on system performance.
Upon reviewing our graphics, we found that there is too much contradictory evi-
dence provided by verbs; for example, the caption on a recent graphic conveying



a rising trend in revenue from water parks was entitled Slip Slidin’ Away — the
verb slide would be most associated with falling trends and thus hamper recog-
nition of the graphic’s intended message. Thus our evidence analysis has led us
to conclude that additional work on verb evidence would not be a productive
use of research resources.

Our evidence analysis also motivated an addition to our system’s message
categories. When we gave our system a new bar chart containing a large number
of bars and with the bar for Canada highlighted, it failed to infer that the graph
was conveying the rank of Canada. Since our evidence analysis indicated that
effort evidence has the strongest impact on system performance, we looked at
the effort estimates for the perceptual tasks involved in the plan for the Get-rank
message, and we found that identifying the exact rank (14th) of Canada required
considerable effort given the large number of bars. Upon further reflection and
discussion with viewers of the graphic, we realized that the graphic was not
conveying the exact rank of Canada, but rather its relative rank (low, middle,
high); estimating relative rank is a much easier perceptual task than computing
exact rank. Thus we are adding Get-relative-rank as a new message category.

5.3 Exploiting Evidence Analysis in Applications

In addition to influencing plan inference research, evidence analysis can guide
application projects by suggesting which sources of evidence will be most useful.
Our graph design assistant will use the results of the evidence analysis to sug-
gest ways in which a graphic might be improved so that it better conveys the
designer’s intended message. Evidence that has the strongest impact on plan
inference, both overall (such as effort evidence) and with respect to the spe-
cific desired message category, will be considered first in deciding how the graph
might be improved.

Our graph retrieval system for digital libraries will respond to requests for
a particular kind of graphic. If the library does not contain a graphic whose
intended message matches the request, we anticipate using the relative contri-
bution of the different evidence sources to rank other graphics from which the
desired information can be inferred. For example, suppose that the system is
unable to satisfy a request for a graphic whose intended message is the rank
of the CBS network in terms of revenue, but the system does have two alter-
native graphs from which the desired information could be inferred: 1) a graph
conveying the rank of the NBC network (with the bar for NBC highlighted and
the bar for CBS not distinguished in any way), and 2) a graph with the bars
for network revenue ordered alphabetically by network rather than ordered by
bar height. Since highlighting a bar has less impact on plan inference than does
perceptual effort, the first alternative would be ranked higher than the second.
Furthermore, the ranking of the different evidence sources will be used to explain
why this graphic was selected.

Our SIGHT system provides blind individuals with access to information
graphics by conveying the graphic’s intended message via speech. The system
should be able to justify its inferred message upon request, rather than forcing a



blind individual to accept without question what the system has produced. The
results of our evidence analysis will affect which evidence sources are considered
first in constructing the justification. And lastly, our system for tutoring indi-
viduals with learning disabilities will use the results of our evidence analysis to
order the kinds of evidence that students are taught to consider in inferring the
graphic’s message and for teaching students to construct graphs that effectively
convey their desired message.

6 Conclusion

This paper presented our implemented system for extending plan recognition
techniques to inferring the intended message of one kind of information graphic,
simple bar charts. Prior work on plan recognition has focused on the success of
the overall system, without considering the impact of different evidence sources.
We have analyzed the individual evidence sources in our system, both in terms
of their contribution to system performance when they are the only enabled
evidence source and in terms of degradation in system performance when they
are disabled. We contend that the results of such evidence analysis should be
taken into account in further research, and we have shown the impact that our
evidence analysis has had (and is having) on our plan inference in the domain
of information graphics and on our application projects.
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