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Abstract

While identifying the intention of an utterance has played a major role in natu-
ral language understanding, this work is the first to extend intention recognition
to the domain of information graphics. A tenet of this work is the belief that
information graphics are a form of language. This is supported by the obser-
vation that the overwhelming majority of information graphics from popular
media sources appear to have some underlying goal or intended message. As
Clark noted, language is more than just words. It is any “signal” (or lack of sig-
nal when one is expected), where a signal is a deliberate action that is intended
to convey a message [14].

As a form of language, information graphics contain communicative signals
that can be used in a computational system to identify the message that the
graphic conveys. We identify the communicative signals that appear in sim-
ple bar charts, and present an implemented Bayesian network methodology for
reasoning about these signals and hypothesizing a graphic’s intended message.
Once the message conveyed by an information graphic has been inferred, it
can then be used to facilitate access to this information resource for a variety
of users, including 1) users of digital libraries, 2) visually impaired users, and
3) users of devices where graphics are impractical or inaccessible.
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1. Introduction

Information is the key to knowledge and effective decision-making. As more
and more information becomes available electronically, the population requiring
access to the information has grown and the ways in which we find and obtain
information have expanded. It is crucial that we develop techniques for provid-
ing effective access to the vast electronic resources so that the information is
readily available when needed and so that all individuals can benefit from these
resources.

Information graphics such as bar charts, line graphs and pie charts are an
important component of many documents. As noted by [37, 30], a set of data
can be presented in many different ways, and graphs are often used as a com-
munication medium or rhetorical device for presenting a particular analysis of
the data and enabling the viewer to better understand this analysis.

The rapidly increasing availability of these important resources electroni-
cally poses some interesting challenges in terms of access to the information
contained in information graphics. For example, information graphics pose a
problem when attempting to search the content of mixed-media publications
within digital libraries. The searchable index of such documents should include
not only the important content of the text, but also of the information graph-
ics contained in the document. In addition, individuals with impaired eyesight
have limited access to graphical displays, thus preventing them from fully uti-
lizing the available electronic resources. In order to provide effective access
to information graphics, there is a need for tools that convey their content in
other modalities. This article presents an important first step for such a tool
— namely, an implemented and evaluated system for recognizing the intended
message of simple bar charts.

A tenet of this work is the belief that information graphics are a form of
language, and therefore contain communicative signals that can be used in a
computational system to identify the message that the graphic conveys. Con-
sider the graphic in Figure 1 — despite the lack of accompanying text, it conveys
the message that there has been a sharp increase in local bankruptcies in 2001
compared with the previously decreasing trend. In this article, we identify the
communicative signals that appear in simple bar charts (plus the accompanying
caption, if any), and present an implemented and evaluated Bayesian network
methodology for reasoning about these signals and hypothesizing a graphic’s
intended message. Once the message conveyed by an information graphic has
been inferred, it can then serve as the basis for an effective summary. This sum-
mary could then be used in a variety of ways. For digital libraries, the summary
of the information graphic could be used to appropriately index the graphic and
to enable intelligent retrieval. If there is accompanying text, the summary of the
graphic can be used in conjunction with a summary of the document’s text to
provide a more complete representation of the document’s content. For individ-
uals who are sight-impaired or who are using low bandwidth devices, the core
message of the information graphic can be used as the basis for a summary con-
veyed via speech, thereby providing access to the informational content of the



graphic in an alternative modality. Rather than providing alternative access to
what the graphic looks like or a listing of all of the data points contained in the
graphic, our approach would provide the user with the message and high-level
knowledge that one would gain from viewing the graphic.

In addition to producing a methodology for identifying the intended mes-
sage of a simple bar chart, this paper has the objective of relating information
graphics to more standard forms of language by

e identifying the kinds of communicative goals that are achieved by designers
of simple bar charts and the kind of communicative signals that help
achieve these goals

e computationalizing the extraction of communicative signals from simple
bar charts

e showing how plan recognition techniques, which have been successfully
used to recognize the communicative goals of natural language utterances,
can be extended to the recognition of the intended message of a simple
bar chart.

In doing so, our research not only provides a system that will be usful in summa-
rizing information graphics, but it suggests that other forms of language, such
as advertisements that incorporate both text and illustrations, as well as other
kinds of graphics, may also be amenable to such treatment.
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Figure 1: Graphic from a 2001 Local Newspaper

2. Information Graphics as Language

Although some information graphics are only intended to display data, the
majority of information graphics that appear in popular media such as newspa-
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Figure 2: Graphic from Newsweek Magazine?

pers and magazines are intended to convey a message. Newspapers often contain
information graphics that are stand-alone and constitute the entire document.
Even when an information graphic appears on its own, it can be used to convey
a message to the viewer (see Figure 1, for example). In other cases, information
graphics appear as part of a document. When this occurs, the message conveyed
by the graphic is often not included in the document’s text. The author has
some communicative intention or purpose in constructing the document, and
makes the choice to convey some of the information supporting that intention
in an information graphic. Thus the graphic generally expands on the text and
contributes to the overall discourse purpose [32] of the document. For exam-
ple, Figure 2 illustrates a graphic from an article in Newsweek showing that the
income of black women in the United States has risen dramatically over the last
decade and has reached the level of the income of white women. Although this
information is not conveyed elsewhere in the article, it contributes to the overall
communicative intention of this portion of the article — namely, that there has
been a “monumental shifting of the sands” with regard to the achievements of
black women.

The observation that the overwhelming majority of information graphics
from popular media sources appear to have some underlying goal or intended
message leads us to consider information graphics as a form of language. As
Clark noted, language is more than just words. It is any “signal” (or the lack

2Taken from an article entitled The Black Gender Gap, Newsweek, March 3, 2003



of a signal when one is expected), where a signal is a deliberate action that
is intended to convey a message [14]. Clark’s expanded definition of language
includes forms of communication such as gesture, facial expression, eye gaze,
and so forth. The common factors among these varied forms of expression are
the communicative intention underlying them and the presence of deliberate
signals to aid in recognizing these intentions.

Research on understanding utterances has posited that a speaker or writer
executes a speech act whose intended meaning he expects the listener to be able
to deduce, and that the listener identifies the intended meaning by reasoning
about the observed signals and the mutual beliefs of author and interpreter [31,
14]. Applying Clark’s view of language to information graphics, it is reasonable
to presume that the author of an information graphic similarly expects the
viewer to deduce from the graphic the message that he intended to convey by
virtue of communicative signals that are present in the information graphic.
Furthermore, a poorly designed graphic may convey a different message from
what the graphic designer intended, just as inappropriate words, intonation,
etc. may result in misinterpretation of a speaker’s utterance.

The design choices made by the designer when constructing the informa-
tion graphic provide the communicative signals necessary for understanding the
graphic. The design choices include selection of graphic type (bar chart, line
graph, pie chart, etc.), organization of information in the graphic (for example,
the order of bars in a bar chart), and attention-getting devices that highlight
certain aspects of a graphic (such as coloring one bar of a bar chart differently
from the others, mentioning data elements in the caption, etc.).

3. System Architecture

Figure 3 shows the overall architecture for processing an information graphic.
The Visual Extraction Module (VEM) analyzes the graphic’s image file (cur-
rently a .gif) and produces an XML representation containing information about
the components of the information graphic including the graphic type (bar chart,
pie chart, etc.) and the caption of the graphic. For a bar chart, the represen-
tation includes the number of bars in the graph, the labels of the axes, and
information for each bar such as the label, the height of the bar, the color of
the bar, and so forth [12]. The XML representation is then passed to the Cap-
tion Tagging Module (CTM) which extracts information from the caption and
passes the augmented XML representation to the Intention Recognition Module
(IRM). The IRM is responsible for recognizing the intended message of the in-
formation graphic, which we hypothesize can serve as the basis for an effective
summary of the graphic.

The remainder of this paper focuses on intention recognition from simple bar
charts. By simple bar charts, we mean bar charts that display the values of a
single independent attribute and the corresponding values for a single dependent
attribute. Figure 1 is an example of a simple bar chart. Although simple bar
charts constitute only a subset of the full range of information graphics, we
believe that the concepts, mechanisms and framework of our methodology is



broadly applicable and extensible to other types of graphics. In fact, Section 12
describes work currently underway to extend this basic methodology to line
graphs and grouped bar charts.

Section 4 categorizes the kinds of messages that can be conveyed via simple
bar charts. Section 5 discusses the kinds of communicative signals that appear in
simple bar charts and our mechanisms for extracting them. Section 6 discusses
plan inference in language understanding and its application to information
graphics; Sections 7 and 8 then describe the structure of our Bayesian network
for recognizing the intended message of a simple bar chart and how the network
is built. Section 9 presents two evaluations of our implemented system, and
Section 10 presents several variations of a simple bar chart that illustrate how
the presence of different communicative signals affect the message recognized
by our system. Section 12 describes our current and future work.

Visual Extraction Module Intention Recognition Module
(VEM) (IRM)
¢ - output
/ Analysis of Perceptual Task Effort
Caption Tagging Module (APTE)
(CTM)

Figure 3: System Architecture

4. An Annotated Corpus of Simple Bar Charts

We collected a corpus of 110 simple bar charts from various publications,
including business and news-oriented magazines such as Newsweek, Business-
Week, Time, Fortune and Money, as well as local and national newspapers. We
also constructed a list of high-level message schemas that we believed were likely
to capture the graphic designer’s intended message for simple bar charts. This
list included categories such as conveying trends in the data (increasing, decreas-
ing or stable), presenting the element with the maximum or minimum value in a
data set, and so forth. We also included a category called “Present-Data” which
was meant to capture those cases where there was no apparent message being
conveyed by the bar chart (the bar chart seemed to simply present data with
no underlying message). Two coders then identified 1) the intended message of
each graphic using the provided list of possible message schemas, and 2) the in-
stantiation of the parameters in the schema. For example, if the coder classified
the intended message of the graphic shown in Figure 4 as Change-Trend, the
coder was also asked to identify where the first trend began, its general slope
(increasing, decreasing, or stable), where the change in trend occurred, the end
of the second trend, and the slope of the second trend. The coders were also
given the option of creating a new message schema if they felt it was warranted.

Each coder independently classified the intended message and determined
the instantiation of the parameters for all of the bar charts in the corpus. If there
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Figure 4: Bar Chart Showing the Mean Approval Time for Drugs®

was disagreement between the coders on either the intention or the instantiation
of the parameters, we utilized consensus-based annotation [4], in which the
coders discussed the graphic to try to come to an agreement as to its intention
and the appropriate parameters. As observed by Ang et al. [4], this allowed us
to include the “harder” or less obvious graphics in our study, since the coders
were likely to immediately agree upon the bar charts where the underlying
message was clear, but might only agree on the bar charts where the message
is more subtle after some discussion. Including these less obvious graphics in
our corpus may lower our expected system performance when it comes time for
evaluation, but we will have a richer and more complete set of data included in
those evaluations.

Figure 5 presents the twelve categories of high-level messages that were as-
signed as the intentions of the bar charts in our corpus, as well as their distri-
bution within our corpus (as identified by the coders). Ten of these message
categories appeared in the list of possible messages that was provided to the
coders at the beginning of the tagging process, while two of the categories,
Rank-All and Contrast-Pt-Trend, were added by the coders.

5. Communicative Signals in Simple Bar Charts

As discussed in Section 2, we view information graphics in popular media as
a form of language with communicative signals that help convey the graphic’s
intended message. These signals can appear within the graphic itself as well as in
the graphic’s caption. Section 5.1 discusses the types of communicative signals

3This is based on a bar chart from Money magazine’s April 2003 issue.



Intention

|| Description

|| Distribution |

Get-Rank

Viewer to believe that <parami> is ranked
<rank> among the elements in the graphic

3.6%

Rank-All

Viewer to believe that the elements in the graph
have an ordering <element;...element,, >

9.1%

Increasing-Trend

Viewer to believe that there is an increasing trend
from <parami;> to <params>

23.6%

Decreasing-Trend

Viewer to believe that there is a decreasing trend
from <parami;> to <params>

12.7%

Stable-Trend

Viewer to believe that there is a stable trend
from <parami;> to <paramsz>

0%

Change-Trend

Viewer to believe that there is a <slopei> trend
from <parami> to <params> and a significantly
different <slopes> trend from <paramsz> to
<param3>

6.4%

Contrast-Pt-Trend

Viewer to believe that there is a <slopei> trend
from <parami> to <params> and that the
value of subsequent element <params> contrasts
with this trend

10.9%

Relative-Difference

Viewer to believe that the value of element
<parami> is <comparison> the value of element
<paramsz>, where <comparison> is
greater-than, less-than, or equal-to

0%

Relative-Difference-
Degree

Viewer to believe that the value of element
<parami> is <comparison> the value of element
<paramsz>, where <comparison> is greater-than,
less-than, or equal-to, and the <degree> of that
difference is large, medium, or small

5.5%

Maximum

Viewer to believe that <parami> has the largest
value among the entities in the graphic

22.7%

Minimum

Viewer to believe that <parami> has the smallest
value among the entities in the graphic

3.6%

Present-Data

Graphic simply presents data with no
underlying message

1.8%

Figure 5: Categories of High-Level Intentions



present in the graphic itself (such as highlighting, annotations, and perceptual
task effort), while Section 5.2 discusses the communicative signals present in
captions.

5.1. Communicative Signals in the Graphic Itself

5.1.1. Salience:

Many researchers have examined ways in which graphic designers might
make particular elements of a graphic salient to the viewer; much of this work has
been done for the purpose of improving the design of graphics (for example, [15]
and [43], among others), while [49] considered some of the design decisions that
make elements of the graph salient for the purpose of biasing viewer inferences.
Our contention is that if the graphic designer goes to the effort of employing
attention-getting devices to make certain elements of the graphic particularly
salient, then the salient elements serve as communicative signals — i.e., the
designer probably intends for them to play a prominent role in the intended
message of the graphic. We have identified several of the most common design
techniques that graphic designers employ to increase the salience of an element
or elements in simple bar charts.

In order to draw attention to a particular element (or elements) of a bar
chart, the graphic designer may choose to highlight it. Graphic designers typ-
ically highlight an element or elements of a bar chart by drawing the viewer’s
attention to the bar itself or to an attribute of the bar, such as its label or its
annotated value. For example, the designer could highlight a bar in the graphic
by making it a different color, shade or texture than the other bars. This is a
communicative signal, conveying to the viewer of the graphic that the bar (and
thus the data element that it represents) is of significant import to the graphic’s
message. Consider the graphic in Figure 1 which appeared in a local newspa-
per. The graphic appeared in shades of gray, as it is depicted here, with the
bar representing 2001 in a darker shade than the other bars. The design choice
to highlight this bar by making it a darker shade of gray than the other bars
seems to signal the importance of the bankruptcy rate in 2001 to the message
that the designer is attempting to convey with the graphic — ostensibly, that
there has been a sharp increase in local bankruptcies in 2001 compared with
the previously decreasing trend.

A graphic designer can also convey the significance of an element in an in-
formation graphic by annotating the salient element in some way. The most
common form of annotation in our corpus of information graphics is the anno-
tation of an element with its exact value. Annotating individual elements with
their exact values can signal salience if the annotations are not a general design
feature of the graphic. If all of the elements are displayed with their exact val-
ues, then we consider this to be a general design feature of the graphic since the
annotations do not draw attention to a specific subset of elements. However, if
only a subset of the elements are annotated with their values, the annotations
signal the salience of those elements. This is the case in Figure 6 where only
the first and last elements are annotated with their values. Annotations of bars



in a bar chart are not limited to the exact value represented by the bar — they
can also include content such as dates or other additional notes.

We have also identified several factors that increase the salience of an element
in a graphic without the application of any particular design techniques. Al-
though no specific action is required on the part of the graphic designer to make
these elements salient, we posit that it is mutually believed by both designer
and viewer that such elements will be salient to the viewer. These elements
include any element that is significantly taller than all of the other elements
in the graphic and the most recent date on a time-line, since the viewer will
certainly notice the height of a bar that is much taller than all of the others,
and will naturally be interested in what has occurred most recently.

-0 232,600

200,000

100,000

Communication towers

70 '75 '80 '85 '90 '95 '00 '02

Figure 6: Bar Chart Showing the Number of Communication Towers*

In our architecture, the Visual Extraction Module (VEM) is responsible
for producing an XML representation of a bar chart that includes information
about each bar such as bar height, annotations, color, and so forth. By analyzing
this XML representation, our system is able to identify any particularly salient
elements of the graphic according to the aforementioned criteria for salience.

5.1.2. Perceptual Task Effort:

Given a set of data, the graphic designer has many alternative ways of de-
signing a graphic. In their work on automated graph generation, Fasciano and
LaPalme [22] showed that the writer’s intentions affect the appropriate design
of a good graph. As Larkin and Simon note, information graphics that are
informationally equivalent (all of the information in one graphic can also be in-
ferred from the other) are not necessarily computationally equivalent (enabling
the same inferences to be drawn quickly and easily) [45].

Consider, for example, the two alternative graphs shown in Figure 7, which
have been constructed from the same set of data. The leftmost graphic orders
the bars by consecutive age group. This organization facilitates a comparison of
the number of doctor visits per year by consecutive age classes and thus conveys

4This is based on a bar chart from the newspaper USA Today.
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Figure 7: Two Alternative Graphs from the Same Data on Doctor Visits by Age®

a changing trend in the frequency of doctor visits over the average person’s
lifetime (see Figure 7a). The same data could also be presented in a bar chart
with the bars ordered by height as shown in Figure 7b. This organization does
not facilitate the same comparisons as the graphic in Figure 7a and thus does
not convey the same change-trend message.b

Peebles and Cheng [54] further observe that even in graphics that are in-
formationally equivalent, seemingly small changes in the design of the graphic
can affect viewers’ performance on graph reading tasks. Much of this can be at-
tributed to the fact that design choices made while constructing an information
graphic will facilitate some perceptual tasks more than others. The AutoBrief
project considered the generation of graphics to achieve communicative goals,
and posited that the graph designer chooses a design that best facilitates the
tasks that are most important to conveying his intended message, subject to
the constraints imposed by competing tasks [41, 30]. Thus we contend that
the relative difficulty of different perceptual tasks serves as a communicative
signal about which tasks the viewer was intended to perform in recognizing the
graphic’s intended message — i.e., the greater the effort required for a task, the
less likely the task is to be part of the perceptual tasks needed to identify the

5The data displayed in this graphic is for illustration purposes only and is not based on
factual findings.

6 Although it might seem odd to order bars by height instead of by an ordinal label such
as age, such graphics do occur. For example, a graphic from the U.S. Department of Labor,
posted on the CNN web site and entitled “Worst Annual Job Losses” ordered the bars by
number of jobs lost (bar height) rather than by their labels (year of occurrence). Similarly, a
bar chart in USA Today ordered Steven Spielberg movies by revenue (bar height) rather than
by their label (year of release).

11



graphic’s message.

Computationalizing Perceptual Task Effort. We constructed a set of rules, en-
capsulated as a module called APTE (Analysis of Perceptual Task Effort), that
estimate the relative effort required for different perceptual tasks within a given
information graphic. Each rule consists of a set of condition-computation pairs;
the conditions are examined sequentially, and the computation associated with
the first satisfied condition in the graphic is used to estimate the effort for that
perceptual task. To develop these rules, we applied the results of research from
cognitive psychology.

In order to estimate the relative effort involved in performing a task, we
adopted a GOMS-like approach [10], decomposing each task into a set of com-
ponent tasks. Following other cognitive psychology research (e.g. [46]), we
take the principal measure of the effort involved in performing a task to be the
amount of time that it takes to perform the task, and our effort estimates are
based on time estimates for the component tasks.” Wherever possible, we utilize
existing time estimates (primarily those applied in Lohse’s UCIE system [46])
for the component tasks, otherwise we conducted eye tracking experiments to
acquire the necessary estimates [20, 21].

For example, the rule shown in Figure 8 estimates the effort required to de-
termine the exact value represented by the top of a bar in a bar chart, given that
the viewer is already focused on the top of the bar.® In the case of condition-
computation pair B1-1 (finding the exact value for a bar where the bar is an-
notated with the value), the effort is estimated as 150 units for discriminating
the label (based on work by Lohse [46]) and 300 units for recognizing a 6-letter
word [38]. In the case of B1-2 (finding the exact value for a bar where the top of
the bar is aligned with a tick mark on the dependent axis), the effort estimate
includes scanning over to the dependent axis (measured in terms of distance
in order to estimate the degrees of visual arc scanned [42]) in addition to the
effort of discriminating and recognizing the label. Our eye tracking experiments
showed that when the top of the bar is aligned with a tick mark, participants
frequently repeat the task of scanning to the axis and reading the label (pre-
sumably to ensure accuracy), so our effort estimate also includes 230 units [62]
to perform a saccade back to the top of the bar before repeating the task. Our
set of APTE rules for estimating the effort of tasks in bar charts and our eye
tracking experiments that validated those rules are described in [20, 21].

The evidence provided by perceptual task effort can sometimes be subsumed
(probabilistically) by other communicative signals, such as a bar being high-
lighted or the presence of helpful words in a caption. However, perceptual task
effort is a very important communicative signal in graph understanding since,
in the absence of all other evidence, we always have communicative signals pro-

"The units of effort estimated by our rules roughly equate to milliseconds.

8 Rule-B1 does not estimate the effort required to get the value represented by the top of
a bar in the case where the viewer must scan to the axis and interpolate an estimated value.
This task is represented by a separate rule in our system.

12



Rule-B1:Estimate effort for task
PerceiveValue(<viewer>, <g>, <att>, <t>, <v>)

Graphic-type: bar-chart

Gloss: Compute effort for finding the exact value <v> for attribute <att>
represented by top <t> of a bar <b> in graph <g>

Conditions:
B1-1: IF the top <t> of bar <b> is annotated with a value,
THEN effort=150 + 300
B1-2: IF the top <t> of bar <b> aligns with a labelled tick mark on
the dependent axis, THEN effort=230 + (scan + 150 + 300) x 2

Figure 8: APTE Rule for Estimating Effort for the Perceptual Task Perceive Value

| Category | # |
Category-1: Captures intention (mostly) 34
Category-2: Captures intention (somewhat) || 15
Category-3: Hints at intention 7
Category-4: No contribution to intention 44

Table 1: Analysis of 100 Captions on Bar Charts

vided by perceptual task effort. For example, an information graphic might
not have any salient elements and may be lacking a helpful caption, but it is
still possible to reason about the relative ease or difficulty with which tasks can
be performed on the graphic and to thereby draw useful inferences about the
intended message of the graphic designer.

5.2. Communicative Signals in Captions

One might suggest relying on a graphic’s caption to identify its primary
message. However, Corio and LaPalme [17] conducted a corpus study whose
objective was to categorize the kinds of information contained in captions in or-
der to form rules for generating captions to accompany graphics; they noted that
captions are often missing or very general. We conducted our own corpus study
1) to identify how well the intended message of a bar chart appearing in popular
media was captured by the graphic’s caption and 2) to determine how easily a
general-purpose natural language system could understand such captions [19].
We analyzed the first 100 graphics from our corpus of bar charts, each of which
had previously been annotated with its intended message. We examined the
caption of each graphic and classified it into one of four categories based on the
extent to which the caption captured the graphic’s intended message. Table 1
shows the results. Slightly more than half of the captions (51%) were judged to
convey none of the graphic’s intended message or to only hint at it. An example
was the caption “The Sound of Sales” that appeared on a bar chart conveying
a changing trend in record album sales. Furthermore, for the 49 captions that

13



conveyed at least some of the graphic’s message, we found that almost half were
fragments (for example, “A Growing Biotech Market”) or involved some other
form of ill-formedness (such as the caption “Running tops in sneaker wear in
20027), and that 16% would require extensive domain knowledge or analogical
reasoning to understand (such as the caption “Bad Moon Rising” where bad
moon was a reference to something undesirable, in this case delinquent debts).

Our corpus study indicated that even helpful captions could be difficult to
process and fully understand; moreover, once the caption was understood, we
would still need to relate it to the information extracted from the graphic itself,
which appears to be a difficult problem. Thus we decided to focus on commu-
nicative signals that could be extracted via shallow processing of captions. Our
analysis yielded the following observations:

e Verbs in a caption often suggest the general category of message being
conveyed by the graphic. An example from our corpus is “American Ezx-
press total billings still lag”; the verb lag suggests that the graphic conveys
that some entity (in this case American Express) falls behind some others.

e Adjectives in a caption can also suggest the general category of message
being conveyed by the graphic. An example from our corpus is “Soaring
Demand for Servers” which is the caption on a graphic that conveys the
rapid increase in demand for servers. Here the adjective soaring is derived
from the verb soar, and suggests that the graphic is conveying a strong
increase.

e Words that usually appear as verbs, but are used in the caption as a noun,
may function similarly to verbs. An example is “Cable On The Rise”;
in this caption, rise is used as a noun, but suggests that the graphic is
conveying an increase.

e Nouns in a caption that reference a label on the independent axis of the
graphic serve to highlight the associated bar and make it salient. An
example from our corpusis “Germans miss their marks” where the graphic
displays a bar chart in which Germans correlates with a label in the graphic
and the graphic is intended to convey that Germans are the least happy
with the Euro.

Based on these observations, we compiled a set of helpful verbs and adjectives
(identified through our corpus study, WordNet [67] and a thesaurus [48]) and
manually divided them into similarity classes;” for example, the verbs rise and

9 Although there are several resources that could be used for this task, we chose to use
WordNet since it provides sets of synonyms (synsets) with relations between them; other
resources provide more elaborate lexical resources. For example, FrameNet[61] provides frames
which fully describe situations, objects, or events and which have associated lexical units. Our
verb classes do not necessarily correspond with FrameNet lexical classes. For example, the
lexical units associated with the frame for Change_position_on_a_scale include soar, decline,
and fluctuate; soar and decline are members of different verb classes in our system, and

14



soar were placed in the same class, whereas the verbs lag and trail were placed in
a different class. Adjectives derived from verbs, such as soaring, are treated as
verbs. We then used a part-of-speech tagger and a stemmer to implement a type
of shallow processing of captions to identify 1) the presence of one of our verb
or adjective classes (adjectives and nouns derived from verbs, such as “soaring”,
are reduced to their root form and treated as verbs) and 2) nouns which match
the label of a data element in the bar chart. The Caption Tagging Module
(CTM) is responsible for entering this caption evidence into an augmented XML
representation of a graphic.

6. Plan Inference

Plan inference is the recognition of an agent’s plan from his observed actions.
Pollock [56] distinguishes among scenarios in which 1) the agent is actively un-
cooperative (trying to prevent his plan from being recognized, as in adversarial
situations [26, 25, 59]), 2) passive (unconcerned about whether his plan is rec-
ognized), and 3) actively cooperative (attempting to facilitate the recognition
of his plan). Cohen, Allen, and Perrault [16] refer to the latter two situations
respectively as keyhole plan recognition and intended recognition. Examples of
keyhole plan recognition include identifying an agent’s quest and next action in
an adventure game [1], recognizing the state of individual team members via
their routine communications to one another in order to monitor the team’s
progress on a task [40], and identifying the goals of an elderly or impaired in-
dividual in order to provide helpful advice [57]. Activity recognition is similar
to keyhole plan recognition, in that the agent is unaware that a system is at-
tempting to infer the activity in which he is engaged. However, as pointed out
by Geib and Goldman [27], the objective of activity recognition is to identify a
single activity as opposed to a plan consisting of multiple actions. An example
of activity recognition is the use of information provided by multimodal sen-
sors to identify the physical activity (such as walking) in which an individual is
engaged [13] in order to provide advice and/or support for improving fitness.

Plan recognition for language understanding falls into the category of in-
tended recognition, since the speaker (or writer) intends for the listener (or
reader) to deduce the communicative goal of an utterance (or piece of text).
Beginning with the seminal work of Allen [55] who developed a system for de-
ducing the intended meaning of an indirect speech act, researchers have applied
plan inference techniques to a variety of problems associated with understand-
ing utterances, particularly utterances that are part of a dialogue. Examples of
recent work in intended plan recognition include a dialogue system for obtaining
weather information [47] and speech and typed command understanding in a
role playing game [28, 29]. In addition, research on assistive devices (such as

fluctuate is not a member of any of our verb classes since it does not suggest a kind of
message that typically occurs in a simple bar chart.
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wheelchairs) uses plan recognition to analyze the user’s actions and identify his
plan in order to make the device achieve the user’s goals [36].

Our research takes the ideas and concepts developed for plan inference in
understanding natural language and extends them to recognize communicative
intention in the domain of information graphics. Treating information graphics
as another form of language is appropriate when one considers 1) Clark’s [14]
view of language as any “signal” (or lack of signal when one is expected), where
a signal is a deliberate action that is intended to convey a message, and 2)
the observation that the overwhelming majority of the graphics that we have
examined (taken from newspapers and magazines) appear to have some under-
lying communicative goal. But extending existing plan inference techniques to
the recognition of intentions from bar charts is not a straightforward task and
requires that a number of issues be addressed.

First, the communicative signals present in a bar chart are necessarily dif-
ferent from the communicative signals used to reason about the intention of
an utterance in a dialogue. For example, Allen [55] utilized signals such as
the mood of the utterance and expectations about likely goals of the speaker.
Carberry [8] tracked and utilized the focus of attention in an ongoing dialogue.
Lambert [44] used the surface form of the utterance, along with stereotypical
beliefs, as communicative signals in recognizing complex discourse acts such as
expressions of doubt. Gorniak and Roy [28, 29] take into account the physi-
cal context in identifying the intended meaning of spoken language. If, as we
contend, information graphics are an alternate form of language, it stands to
reason that there will be an analogous (but different) set of communicative sig-
nals present in a bar chart that we can utilize in order to reason about the
graphic designer’s intended message. The previous section discussed the set of
communicative signals that we have identified, including perceptual task effort,
salience techniques, and nouns, verbs, and adjectives extracted from captions.

Other issues that must be addressed in extending plan inference to infor-
mation graphics include modeling the strength of the evidence provided by the
various communicative signals, and determining how to combine evidence and
resolve conflicting evidence. This section addresses these issues, and presents
our probabilistic framework for inferring the communicative message of an in-
formation graphic. We discuss our use of a Bayesian belief network [53], the
plan operators that we developed in order to capture knowledge about how the
graphic designer’s goal of conveying a message can be achieved via the viewer
performing certain perceptual and cognitive tasks, and the way these plan op-
erators are captured in our network structure.

7. A Bayesian Network for Identifying a Bar Chart’s Message

Plan inference involves searching through a space of possible plans to identify
the one most likely to represent the agent’s intentions. Charniak and Goldman
[11] were the first to use a Bayesian belief network to address the uncertainty
inherent in plan recognition. A Bayesian belief network is a probabilistic frame-
work based on Bayes’ rule, and it is also sometimes referred to as a belief network
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or a Bayesian network. In a Bayesian belief network used for plan inference, the
nodes in the network represent propositions and the arcs between the nodes rep-
resent causal dependencies (versus generic probabilistic dependencies). These
dependencies are captured using conditional probability distributions that rep-
resent the probability of a proposition given the various values of its parent
node(s). Bayes’ rule and evidence propagation is used to compute the probabil-
ity of each proposition given causal evidence (from its parents) and diagnostic
evidence (from its children). The root nodes of the network represent vari-
ous high-level hypotheses about an agent’s plan. In recent years, researchers
have often used some form of Bayesian network in modeling plan recognition
[1, 58, 59, 36, 27].

In all plan inference systems, there is some explicit plan structure which de-
fines the relationships among goals, subgoals and primitive actions. In early plan
inference systems, the plan structure (or domain knowledge) was represented in
the form of operators that decomposed goals into a sequence of subgoals and
eventually into primitive actions. The plan inference mechanism then utilized
these plan operators, along with evidence in the form of an observed action
(such as an utterance in Allen’s seminal work [55]), to chain backwards on the
plan operators to deduce one or more high-level goals that might have led the
agent to perform the observed action as part of an overall plan for achieving his
goal(s). In Bayesian networks, the plan structure is captured by the network
itself, rather than by plan operators. Each goal, subgoal, and primitive action
is represented as a piece of a network. If a goal can be decomposed into a par-
ticular set of subgoals or primitive actions, an arc from the goal to each subgoal
(or primitive action) is used to represent this causal relationship. In this way,
plan operators can be “mapped” to a Bayesian network structure — although, of
course, the process can become more complicated than this since the plan struc-
ture might include explicit sequencing of actions, conditionalization, iteration
and context. Huber et al. [35] provide an example of automatically mapping a
general and potentially complex plan structure to a Bayesian network.

One of our claims is that information graphics in popular media are a form of
language with a communicative goal and that plan recognition can be extended
to identifying the intended message of an information graphic. Thus we chose
to use plan operators to describe communicative goals and their decomposition
into lower-level task goals. Note that the plan that is developed by expanding
goals into their constituent subgoals is the plan that the graph designer intends
for the graph viewer to perform in recognizing the intended message of the infor-
mation graphic. We chose to use a Bayesian network since it nicely facilitates
the comparison of different hypotheses based on the evidence present in the
graphic and provides a means of subsequently evaluating the impact of different
evidence sources [9]. Thus we mapped our plan operators to a Bayesian network
structure. Section 7.1 describes our plan operators and Section 7.2 describes the
resulting network structure, including how our identified communicative signals
are used as evidence in the Bayesian network. Section 7.3 then discusses the
construction of the conditional probability tables. In our implementation, we
utilize Netica [52]; this software supports the construction of Bayesian networks
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and, given the probabilities for the conditional probability tables of a network
as well as any evidence or “findings,” calculates the probabilities of each node
in the network.

7.1. Plan Operators

Our plan operators capture knowledge about how the graphic designer’s goal
of conveying a message can be achieved via the viewer performing certain per-
ceptual and cognitive tasks, as well as knowledge about how perceptual and
cognitive tasks decompose into sets of simpler tasks. Fully expanding the sub-
goals of a high-level operator would produce a complete plan for a viewer to
achieve the goal of the high-level operator. Therefore, the operators capture
what the graphic designer wants to ensure can be accomplished via a given
information graphic. Each plan operator consists of the following components:

e Goal: the goal that the operator achieves'’

e Data Requirements: requirements which the data must satisfy in order
for the operator to be applicable in a graphic planning paradigm

e Display Constraints: features that constrain how the information graphic
is eventually constructed if this operator is part of the final plan

e Body: lower-level subgoals or primitive actions that must be accom-
plished in order to achieve the overall goal of the operator

Consider the plan operator shown in Figure 9 which represents the goal of
having the viewer believe that the value corresponding to a particular element
displayed in the graphic has a specific rank among the values of all elements
in the graphic. This plan operator represents the high-level message that our
system recognizes for the graphic shown in Figure 10 — that is, that American
Express ranks fourth among the credit card companies shown in the graphic in
terms of number of U.S. credit cards that it has in circulation.

When the operators are used for plan inference, the display constraints elim-
inate operators from consideration — if the graphic does not satisfy the display
constraints, then the operator could not have been part of a plan that produced
the graphic. The data requirements in our operators are used to instantiate
parameters in the operator. That is, the data must have had certain character-
istics for the operator to have been included in the designer’s plan, and these
limit how the operator’s arguments can be instantiated. The data requirements
for the RankFromBar operator (Figure 9) guide the instantiation of the primary
key and dependent attribute of the graphic, specify that the values of the de-
pendent attribute must have a natural ordering along a quantitative scale, and

10Note that we have shortened the names of our goals and subgoals, so that they will fit
into our network diagrams; for example, the goal RankFromBar in Figure 9 refers to the goal
of recognizing the rank of a particular bar in a bar chart.
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Goal: RankFromBar(<viewer>, <ds>, <g>, <by>, <vy>, <rank>)

Gloss: Viewer to believe from graphic <g> that the element of dataset <ds> depicted
as bar <b,> with the value <v,> for primary key <att;> has a value for
<attz> that is <rank> among the values of <att2> for elements of
dataset <ds>

Data Requirements:

1. <att1> is the primary key attribute for dataset <ds>
2. The values of <atta> have a natural ordering along a quantitative scale
3. The value of <atty> for <b,> has rank <rank> among the elements of <ds>
Display Constraints:
1. Graph <g> is of type bar-chart
2. For each value of <att;> in dataset <ds>, the value of <att;> and associated
value of <atto> is displayed via a bar on graph <g>

Body:

1. PerceivelfSorted: Viewer can perform the perceptual task of determining
whether the values of <att2> for successive values of <att1> occur along
the independent axis in <sorted> (ascending or descending) order

2. PerceiveRank: Viewer can perform the perceptual task of finding the <rank>
relative to <atte> of bar <b,> in graph <g>

3. GetLabel: Viewer can perform the perceptual task of finding the value <v,> for
<att1> where <v,;> corresponds with the bar <b,> on graph <g>

Figure 9: Operator for Finding the Rank of an Element

ensure that parameters representing the element (the particular bar), the rank,
and the dataset are properly instantiated.

The body of our plan operators specifies a set of subgoals or primitive actions
that can be carried out in order to accomplish the goal of the operator. For
example, the goal of determining the rank of a particular bar in a bar chart
(Figure 9) can be accomplished by perceiving whether or not the bars are sorted
according to height within the graphic, perceiving the rank of the particular bar
within the graphic (the estimated effort for this task is affected by whether the
bars were in sorted order), and determining the label of that bar. This would
be the most natural set of tasks to carry out if the bar was salient, as is the case
in Figure 10. Alternatively, the plan operator in Figure 11 shows a different
task decomposition for the same goal — the differences between Figure 9 and
Figure 11 can be seen in the bodies of the two operators. The body of the
RankFromLabel operator (Figure 11) states that the goal of determining the
rank of a particular bar in a bar chart can be accomplished by finding the bar
in the graphic that corresponds to a particular label, perceiving whether or not
the bars are sorted according to height within the graphic, and determining
the rank of the bar. This would be a more natural set of tasks to carry out if
the label of the bar was mentioned in the caption. Notice that although the
subtasks in the body of our operators are numbered, the ordering of the steps
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Figure 10: Bar Chart Showing Credit Card Circulation Data'

does not impact our plan inference process, and the steps do not always have
to be performed in the order of their appearance.

Our library of plan operators includes Data Presentation operators, Support-
ing Goal operators, and Perceptual and Cognitive Primitives. Data Presentation
operators describe methods for conveying via bar charts the kinds of messages
described in Section 4; Figures 9 and 11 are examples of Data Presentation oper-
ators. Supporting Goal operators decompose subgoals of the Data Presentation
operators; for example, Figures 12 and 13 show two alternative Supporting Goal
operators that can be used to achieve the goal of enabling the viewer to find
the value of the dependent attribute represented by the top of a bar. The body
of the EzactValuePercep operator in Figure 12 consists of the primitive percep-
tual task PerceiveValue, in which the viewer simply perceives the value (the
bar could be annotated with the exact value or the top of the bar could align
with a labelled tick mark). On the other hand, the EzactValuelnterp opera-
tor in Figure 13 specifies how the same goal can be achieved, admittedly with
more effort, using a combination of perceptual and cognitive tasks. The first
subgoal, PerceivelnfoTolnterpolate, is a primitive perceptual task in which the
viewer perceives the values <v;> and <v;> immediately below and above the
location on axis <a> corresponding to the top of the bar <b> of graph <g>
and the fraction < f> of the distance that this location lies between <wv;> and

HThis is based on a bar chart from an article in the September 13, 2004 issue of Business-
‘Week.
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Goal: RankFromLabel(<viewer>, <ds>, <g>, <by>, <v;>, <rank>)

Gloss: Viewer to believe from graphic <g> that the element of dataset <ds> depicted
as bar <b,> with the value <v,> for primary key <att;> has a value for
<attz> that is <rank> among the values of <att2> for elements of
dataset <ds>

Data Requirements:

1. <att1> is the primary key attribute for dataset <ds>
2. The values of <atta> have a natural ordering along a quantitative scale
3. The value of <atty> for <b,> has rank <rank> among the elements of <ds>
Display Constraints:
1. Graph <g> is of type bar-chart
2. For each value of <att;> in dataset <ds>, the value of <att;> and associated
value of <atto> is displayed via a bar on graph <g>

Body:

1. PerceiveBar: Viewer can perform the perceptual task of finding the bar <b,>
on graph <g> that corresponds to the element whose value for <att;> is <v,>

2. PerceivelfSorted: Viewer can perform the perceptual task of determining
whether the values of <atta> for successive values of <atti> occur along
the independent axis in <sorted> (ascending or descending) order

3. PerceiveRank: Viewer can perform the perceptual task of finding the <rank>
relative to <atte> of bar <b,> in graph <g>

Figure 11: Alternative Operator for Finding the Rank of an Element

<w;>. The second subgoal, Interpolate, is a primitive cognitive task in which the
viewer computes (via interpolation) the value <v> of attribute <att> for bar
<b> based on <v;>, <v;> and <[>. Each Perceptual Primitive is associated
with a perceptual task rule in APTE (Section 5.1.2).

7.2. Network Structure

In our domain, we utilize a Bayesian network which causally links the graphic
designer’s possible communicative intentions to perceptual and cognitive goals
which the graphic designer wants the viewer to achieve, rather than reasoning
about utterances or observed actions [11] [35] [2] [34]. Our network structure
captures the plan operators described in the previous section. The top-level
node (or root node) in the network captures the probability of all of the possi-
ble categories of high-level messages underlying a graphic. The possible values
for this node are the twelve categories of high-level messages detailed in Sec-
tion 4. Each node in a Bayesian network has a conditional probability table.
The probabilities in the root node’s table (IntendedMessage in our network)
represent the prior probabilities of each message category — the probability
that a message category will occur without taking any additional evidence into
account. The prior probabilities in the table of the IntendedMessage node are
based on the distribution of the categories of high-level messages in our corpus.
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Goal: ExactValuePercep(<viewer>, <ds>, <g>, <b>, <v>)

Gloss: Given a bar <b> depicted in graph <g>, viewer can perform the task
of finding the exact value <v> of attribute <att> in dataset <ds> that
corresponds to <b>

Data Requirements:

1. <att> is not the primary key attribute for dataset <ds>
2. The values of <att> have a natural ordering along a quantitative scale

Subgoals:

1. PerceiveValue: Viewer can perform the perceptual task of finding the exact
value <v> of attribute <att> that corresponds to the top of bar <b>
depicted in graph <g>

Figure 12: Supporting Goal Operator for Finding the Exact Value Perceptually

After completing the inference process, the entry with the highest probability in
this node represents the category most likely to represent the graphic designer’s
primary intention or communicative goal for the graph. However, our Bayesian
network must recognize not only the high-level category of a graphic’s message
but also the instantiation of the message’s parameters.

Each individual category of high-level message is represented (again) as a
child of the top-level node, as is shown in Figure 14; Figure 14 also shows the
conditional probability table associated with the Get-Rank child node. This
additional level does not affect the inference process or the computation of
the probabilities in the network. Its presence merely simplifies the conditional
probability tables in the network by limiting the size of the tables that would
typically occur just below the top-level node.

7.2.1. Alternative Instantiations

We refer to the process of replacing one or more of the parameters of a
goal or perceptual task with specific elements or entities of the graphic as in-
stantiating that goal or task. The network nodes in the top two levels are not
instantiated — they represent the general categories of high-level messages in
bar charts. Specific instantiations appear in the network as children of the
nodes representing the high-level intentions. For example, the Get-Rank node
is shown with several children in Figure 15, illustrating several of its possible
instantiations — namely, finding the rank of the first, second, or third bar in
the graphic. (For readability, only the instantiation of the bar parameter <b, >
in each Get-Rank node is shown in Figure 15.) The children of Get-Rank rep-
resent alternative instantiations. Our corpus analysis indicates that simple bar
charts have a single primary message that they are intended to convey. For ex-
ample, if two bars are highlighted in a bar chart where the bars are ordered by
height, the primary message seems to be a comparison of the bar’s values (either
our Relative-Difference or our Relative-Difference-Degree category of message),
not two Get-Rank messages. Thus inhibitory links [35] are used to capture the
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Goal: ExactValuelnterp(<viewer>, <ds>, <g>, <att>, <b>, <v>)
Gloss: Given a bar <b> depicted in graph <g>, viewer can perform the task
of finding the exact value <v> of attribute <att> in dataset <ds> that
corresponds to <b>
Data Requirements:
1. The values for <att> have a natural ordering along a quantitative
or chronological scale
2. <att> is not the primary key attribute for dataset <ds>
Subgoals:
1. PerceivelnfoTolnterpolate: Viewer can perform the perceptual task of finding the
location <loc>, the values <v;> and <v;> on the axis <a> that
displays <att>, and the fraction < f> such that <loc> corresponds to the top
of the bar <b> depicted in graph <g>, the values <v;> and <wv;> surround
<loc> on axis <a>, and <f> represents the distance between <loc> and <wv;>
relative to the distance between <v;> and <v;>
2. Interpolate: Viewer can perform the cognitive task of interpolating between <v;>
and <v;> using fraction <f> to find the value <v> of attribute <att>
that corresponds to <loc> on the axis <a>

Figure 13: Supporting Goal Operator for Finding the Exact Value Cognitively

mutual exclusivity of the instantiated messages. The inhibitory links between
the various instantiations of Get-Rank in Figure 15 are shown as dashed lines.
The effect of the inhibitory links is that the positive belief that one of the in-
stantiations is part of the intended message (InPlan) will inhibit belief in the
other possible instantiations being part of the intended message. Thus the child
node of Get-Rank with the highest probability represents the instantiation of
that goal most likely to be part of the graphic designer’s intended message.
Therefore, if after the inference process, the entry for Get-Rank has the highest
probability in the IntendedMessage root node, our system selects the instan-
tiated child node of Get-Rank with the highest probability, and produces the
instantiated version of Get-Rank as its hypothesis about the intended message
of the graphic.

7.2.2. Alternative Subgoal Decompositions

If there are multiple ways for a goal to be achieved, these are captured as
children of the instantiated goal node. It is at this level that our plan operators
are mapped into the structure of the Bayesian network. For example, the Rank-
FromBar and RankFromLabel operators shown in Figures 9 and 11 represent
alternative ways of achieving the high-level Get-Rank message. These alterna-
tives are captured as children of the instantiated Get-Rank node, as shown in
Figure 16.

Notice that there are no inhibitory links — no dashed lines — between
the nodes representing the alternative ways of achieving the same goal. This is
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Figure 14: Top Levels of the Bayesian Network

because the graphic designer may have enabled or facilitated multiple tasks that
would allow the viewer to recognize the intended message, and the support for
those individual tasks should combine to strengthen the belief in the high-level
message rather than inhibiting each other. For example, the graph designer
might have both colored the bar differently from other bars in the graphic and
mentioned its label as part of the caption.

Each node representing an instantiated Data Presentation operator will have
child nodes that represent their instantiated subgoals or perceptual or cognitive
primitives. Any subgoal which corresponds to a non-primitive operator will
in turn have children representing its instantiated subgoals. Continuing this
expansion until the lowest node in each branch of the network corresponds to a
perceptual or cognitive primitive produces a full Bayesian network with nodes
representing all possible plans for achieving the intended message of the graphic.
The subnetwork for Get-Rank(BAR1), including the alternative decompositions
of RankFromBar(BAR1) and RankFromLabel(BAR1), is shown in Figure 17.
Notice that a node corresponding to a specific instantiation of a plan operator
or primitive may be part of the subgoal decomposition of several plan operators,
and so nodes may have multiple parents. This is the case for PerceivelfSorted
and PerceiveRank in Figure 17 since they are part of the instantiated body
of both RankFromBar(BAR1) and RankFromLabel(BAR1). Each subgoal or
primitive task has a conditional probability table that captures the probability
that the subgoal or primitive task is part of the plan for recognizing the graphic’s
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Figure 16: Alternative Ways to Achieve the Get-Rank Message

message given that any one (or more) of its parent nodes is believed to be part
of that plan.

7.2.3. Buvidence Nodes

In addition to encoding the plan structure, our Bayesian network also needs
to explicitly represent evidence that should influence the credibility of differ-
ent hypotheses. The evidence represented in our network corresponds to the
communicative signals that we have identified for information graphics, namely
perceptual task effort, salience evidence, and evidence extracted from the cap-
tion.

Most of the signals, such as perceptual task effort or whether a particular
bar in a bar chart is highlighted, provide evidence regarding the probability that
a particular perceptual task (or primitive) is part of the plan for achieving the
overall intended message of a graphic. Therefore, evidence nodes representing
these communicative signals are added to the network as children of the nodes
representing perceptual tasks. There are six different types of evidence nodes
that are attached to perceptual tasks:

e Effort: captures the relative effort required for the perceptual task that is
its parent

25



GetLabel(BAR1)

Get-Rank(BAR1)
RankFromBar(BAR1) RankFromLabel(BAR1)

PerceivelfSorted PerceiveRank(BAR1) PerceiveBar(BAR1)

PerceiveLabel(BAR1)

Figure 17: Get-Rank(BAR1) Subnetwork!?

Highlighting: captures whether a parameter in the perceptual task is in-
stantiated with a highlighted element in the graphic

Annotation: captures whether a parameter in the perceptual task is in-
stantiated with an element that has a special annotation in the graphic (a
special annotation occurs when only a subset of the bars in a bar chart is
annotated)

MostRecentDate: captures whether a parameter in the perceptual task is
instantiated with an element that is associated with the most recent date
in the graphic

SalientHeight: captures whether a parameter in the perceptual task is
instantiated with an element whose height makes it salient in the graphic'®

NounlInCaption: captures whether a parameter in the perceptual task is
instantiated with an element whose label matches a noun in the caption

Each instantiated perceptual task in the network will have a unique set of
evidence nodes as its children. An example of a perceptual task, PerceiveR-
ank(BAR1), with its associated evidence nodes is shown in Figure 18. In our
diagrams, nodes shown with dashed outlines represent evidence nodes.

With the exception of the Effort evidence node where the possible values are
easy, medium, hard, or impossible, the possible values of the evidence nodes vary
depending on how many bars are involved in the particular task. For example,

12The graph is not intended to imply an order to the subtasks.

13 Currently, only bars which are significantly taller than the other bars are considered to be
visually salient. Additional testing would need to be conducted to determine if significantly
shorter bars are also visually salient.
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Figure 18: Perceptual Task Node with Evidence Nodes

| Annotation || InPlan || NotInPlan |
Only <bar> annotated 24.99 2.3
<bar> and others annotated 0.01 0.9
only others annotated 0.01 19.5
no bars annotated 74.99 77.3

Table 2: A Sample Conditional Probability Table for an Evidence Node. The columns rep-
resent the possible values of the parent node, while the rows represent the combinations
regarding the presence or absence of annotations involving a bar instantiated in the parent
node.

PerceiveRank involves finding the rank of just one bar. The possible values for
the Annotation node attached to PerceiveRank(BAR1) capture the following
conditions: 1) only the first bar is annotated, 2) the first bar and some other
bars are annotated, 3) only other bars are annotated, or 4) no bars are anno-
tated. Note that the possible values for the evidence nodes capture not just
positive evidence (such as the bar involved in the task being annotated), but
also negative evidence (such as other bars being annotated or no bars being an-
notated). In this way, the lack of an explicit signal can also convey information
about the likelihood of a task being part of the intended plan. Table 2 displays
the conditional probability table for the Annotation evidence node attached to
the PerceiveRank(BAR1) task node. It shows that if PerceiveRank(BAR1) is
part of the plan for the viewer to recognize the graphic’s message, then the prob-
ability that just BAR1 is annotated is 24.99%, whereas the probability that only
other bars are annotated is .01%. On the other hand, if PerceiveRank(BAR1)
is not part of the plan, then the probability that just BAR1 is annotated is only
2.3% whereas the probability that only other bars are annotated is 19.5%. The
acquisition of the probabilities for the conditional probability tables is discussed
in Section 7.3.

As discussed in Section 5.2, certain verbs and adjectives in the caption are
communicative signals that provide evidence about the general category of mes-
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sage conveyed by the graphic.!* For example, in the caption “More Commu-
nication Towers”, the adjective “more” suggests that the viewer is intended to
recognize an increasing trend in the number of communication towers, and in
the caption “South Africa Tops in Gold Production”, “tops” suggests that the
viewer is intended to recognize the element with the maximum gold production
in the graphic. In order to reflect the fact that verbs and adjectives provide
evidence regarding the high-level message category, the evidence nodes repre-
senting verb and adjective evidence are children of the top-level node as shown
in Figure 19.

” AdjectiveEvidence )

" VerbEvidence \:) IntendedMessage

Figure 19: Verb and Adjective Evidence Nodes

7.3. Constructing the Conditional Probability Tables

A critical component in building a Bayesian network is obtaining the prob-
abilities that are required for the conditional probability tables in the network.
As Druzdzel and van der Gaag [18] note, “Where do the numbers come from?”
is a commonly asked question. And, unfortunately, it is sometimes unclear that
the necessary numbers can be reasonably or accurately obtained. In contrast to
many other probabilistic plan recognition models where it is difficult to empir-
ically determine the probabilities, the probabilities used in our belief network
have been obtained through a corpus analysis.

In order to calculate the necessary probabilities, each graphic in the corpus
was analyzed to determine for each possible instantiation of each perceptual
task:

e the relative effort (categorized as easy, medium, hard, or impossible) as
estimated by our effort estimation rules implemented in the APTE com-
ponent

e which parameters referred to elements that were salient in the graphic and
the kind of salience (highlighted bars, annotated bars, bars with labels that
appear as nouns in the caption, etc.)

4 Note that nouns and adjectives derived from verbs are treated as the root form of the
verb.

28



e whether elements in the graphic other than those referred to by param-
eters in the task were salient and the kind of salience (highlighted bars,
annotated bars, bars with labels that appear as nouns in the caption, etc.)

In addition, we noted the occurrence in the caption of one of our identified verb
or adjective classes.

As described in Section 4, two coders identified the intention of each graphic
in the corpus. We applied our plan operators to manually construct a plan (con-
strained by what appeared in the graphic) for achieving the posited intention
of each graphic. The fully expanded plans, including the goal-subgoal relation-
ships and the low-level perceptual and cognitive tasks, were recorded. We then
had all of the information necessary to calculate the probability of a particular
Data Presentation operator being part of the plan given the high-level intention
of the graphic. For example, given that the high-level intention of the graphic
was Get-Rank, we could now calculate how probable it was that RankFromBar
or RankFromLabel was part of the plan.

This data also provided the information necessary to calculate the condi-
tional probability tables for the evidence nodes. This was fairly straightforward
for the verb and adjective evidence nodes. We simply needed to calculate the
likelihood of the presence in the caption of a verb or adjective from each of the
various classes given the high-level intention of the graphic. For the evidence
nodes that appear as children of the perceptual tasks (such as highlighting, an-
notations, and perceptual task effort), the calculations were a bit more complex.
However, formulas were constructed to compute all of the required conditional
probability tables. Examples of the needed conditional probability tables in-
clude: 1) the conditional probability of a particular perceptual task being easy,
medium, hard or impossible given that the perceptual task is (or is not) part
of the plan, 2) the conditional probability of a bar’s height being salient given
that recognizing the intended message entails (or does not entail) performing a
particular perceptual task involving that bar, and 3) the conditional probability
of a bar being annotated given that recognizing the intended message entails
(or does not entail) performing a particular perceptual task involving that bar.
Table 2 shows an example of this latter conditional probability table for the
perceptual task PerceiveRank.

Since the structure of the conditional probability tables includes values for
the likelihood of tasks being both in plan and not in plan, data from each
graph in the corpus is utilized in each conditional probability table. Consider,
for example, a graphic in our corpus whose message has been coded as Get-
Rank(BAR4) where BAR4 is the only bar in the graphic annotated with its
value. The plan for achieving the Get-Rank message will include the perceptual
task PerceiveRank(BAR4). This graphic will contribute to the calculation of
the probabilities shown in Table 2. On the other hand, a graphic whose coded
message category is Rising-Trend and in which no bars are annotated also con-
tributes to the calculation of the probabilities shown in Table 2 even though
PerceiveRank is not part of the plan for achieving the message of this particular
graphic.
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It is time-consuming to collect a corpora of bar charts, manually construct a
plan for each bar chart that achieves its high-level goal and is consistent with the
features of the graphic, and then extract the needed probabilities from the gen-
erated plans and the evidence in the graphics. Blaylock and Allen investigated
the automatic generation of plan corpora [6]. They modified an AI planner so
that it stochastically generates plans in the domain, with every plan (not just
optimal ones) being a possible result. They note that the planner would need to
be given the a priori probability of each top-level goal. However, for our work,
the graphic that results from the final plan must represent the typical occur-
rence of such graphics in actual documents. Thus when there are alternative
ways of achieving a subgoal, we would also need to provide the planner with the
likilihood of each alternative being chosen for that subgoal. But these are the
probabilities that we are trying to compute from the corpus. However, it would
be interesting to consider modifying a planner so that, given a graphic and its
intended message, the planner would produce a plan that achieves the message
and is consistent with the graphic; we could then extract our probabilities from
the set of such automatically generated plans.

8. The Inference Process

8.1. A Starting Point for Plan Inference

One of the characteristics that make intention recognition in information
graphics unique is that the communication between the graphic designer and
the viewer of the graphic is not incremental. In dialogue, written communica-
tion, and in domains where the user is completing a task through interaction
with the system, there is an incremental nature to the interaction between the
user and the system. For example, as each utterance is made in a dialogue,
the plan inference system can assume that it is relevant and attempt to fit the
utterance into the overall plan. However, when recognizing intentions in infor-
mation graphics, the system is presented with a complete information graphic.
Upon first consideration, this complete knowledge about the information graphic
might seem to simplify the inference process for information graphics. Given
the graphic and the network structure, the system could potentially build a net-
work containing every possible instantiation of every possible task and record
the evidence for all of the candidate tasks. However, automatically adding to the
network all of the possible instantiations of all possible perceptual tasks rapidly
becomes infeasible due to the overwhelming size of the resultant network and
practical constraints on memory.  There are two basic factors that impact
the size of the network, and the subsequent memory burden: 1) the number of
nodes in the network, and 2) the size of the conditional probability tables. In
practice, it is the size of the conditional probability tables that results in the
primary drain on memory resources. This is not surprising when you consider
the size of some of the conditional probability tables that would result from a
network containing every possible instantiation of every possible task. If, for
example, a bar chart contains 10 bars, there will be 45 different instantiations
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of the Relative-Difference-Degree goal (45 different combinations of bars that
could be compared). Because of the inhibitory links that connect the different
instantiations, the largest conditional probability table for one of the instanti-
ated Relative-Difference-Degree nodes would need to contain entries for all of
the possible combinations of values for the other 44 nodes as well as the possi-
ble values of its uninstantiated high-level parent node. Since each node has two
possible values (InPlan or NotInPlan), this results in 24 (or 35,184,372,088,832)
rows in this single conditional probability table. In order to address this prob-
lem, when the plan inference process is begun, we limit the size of the network
by only adding nodes representing tasks that the communicative signals in the
graphic suggest might be part of the inferred plan. These communicative sig-
nals include salience techniques, naturally salient items, nouns in the caption
which correspond to labels of bars, and perceptual task effort. The need to limit
the number of nodes in the network is a problem that was also encountered by
Charniak and Goldman [11], who used marker passing to limit the size of the
network under consideration. The next sections discuss the process of identi-
fying tasks for inclusion in the network by reasoning about the communicative
signals in the graphic.

8.1.1. Perceptual Task Effort

As discussed in Section 5.1.2; the design choices made by the graphic de-
signer facilitate some perceptual tasks more than others. Thus the relative effort
required for a perceptual task serves as a communicative signal about what tasks
the designer expects the viewer to perform. Following this reasoning, we use a
set of ten low effort perceptual tasks that can be performed on a given bar chart
as a starting point for the plan inference process and add nodes representing
these tasks to the Bayesian network.

To identify the set of low effort perceptual tasks, we begin by estimating the
perceptual effort required to perform each instantiated perceptual task on the
given graphic, using our APTE rules (Section 5.1.2) to generate the estimates.
In order to ensure that the set of ten tasks represents a fairly broad range
of the possible perceptual tasks that can be performed on a graphic, we limit
the set to containing a single instantiation of each particular task. We would
not, for example, want the set to contain ten different instantiations of the
PerceiveLabel task. If several instantiations of the same task require the same
estimated perceptual effort, we choose just the first (or leftmost) instantiation
— for example, if all of the instantiations of PerceiveLabel have an estimated
cost of 680, PerceiveLabel(BAR1) will be included in the set. It is important
to note that, as described in Section 8.1.2, if there is any evidence that another
bar is salient (and therefore likely to be important to the intended message),
nodes representing the instantiations of perceptual tasks involving this bar will
be added to the network in a separate step.

Consider the graphic in Figure 20 which shows the number of communication

15This is based on a bar chart from the newspaper USA Today.
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Figure 20: Bar Chart Showing the Number of Communication Towers'®

towers from 1970 to 2002. The set of ten low effort perceptual tasks for which
nodes will be added to the Bayesian network, along with the estimated effort for
each task, is shown in Figure 21. Note that the effort estimates were generated
for the original version of the information graphic as it appears in our corpus,
and so some of the estimates will not be accurate for the graphic as it appears
here because it has been enlarged.

PerceivelfSorted () 12

PerceiveMaximum(BARS) 162
PerceivelsMaximum(BARS) 242
PerceivelsMinimum(BAR1) 242
PerceiveRank(BARI1) 381
PerceiveMinimum(BAR1) 392
PerceiveValue(BAR1) 450
PerceiveRelativeDifference(BAR1, BAR2) 472
PerceiveLabel(BAR1) 680
PerceiveBar(BAR1) 681

Figure 21: Set of Ten Lowest Effort Perceptual Tasks from the Bar Chart in Figure 20

8.1.2. Salience

The communicative signals that increase the salience of a particular element
in the graphic include the highlighting of a bar, the special annotation of a bar,
the salient height of a bar, the salient recency of a bar, and the use of the bar’s
label as a noun in the caption. Our contention is that if the graphic designer goes
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to the effort of employing attention-getting devices to make certain elements of
the graphic particularly salient, or if the graphic designer believes that certain
elements will naturally be salient to the viewer, then the salient elements serve
as communicative signals — i.e., the designer probably intends for them to be
part of the intended message of the graphic. We do not, however, know anything
about the particular task that the designer intends the viewer to perform with
the salient element. Therefore, for each salient element, we add nodes to the
Bayesian network that represent the possible perceptual tasks in which it could
play a role.

Consider, again, the graphic in Figure 20 which shows the number of com-
munication towers from 1970 to 2002. The first and last bars are specially
annotated — that is, those bars have annotations that are not a general design
feature of the graphic. It is also the case that the last bar in the graphic (cor-
responding to the year 2002) is the most recent data in the graphic. Therefore,
the first and last bars (the first and eighth bars of the graphic) are considered
likely to be salient to the message of the graphic and nodes representing instan-
tiations of perceptual tasks involving these bars will be added to the Bayesian
network.

The list of perceptual tasks for which nodes will be added to the network
due to the salience of the first and eighth bars is shown in Figure 22. For most
of the perceptual tasks, the process of instantiating the tasks with salient bars
is very straightforward. For example, PerceiveLabel is instantiated once with
each salient bar and nodes representing these instantiations are added to the
network. For tasks involving two bars, such as PerceiveRelativeDifference, if
two or more bars are salient, any possible instantiations involving two of the
salient bars are added — hence, PerceiveRelativeDifference(BAR1, BARS) is
added to the network. The salient bars are then considered individually. For
PerceiveRelativeDifference, we initially considered adding each possible instan-
tiation involving a salient bar. For example, since the first bar is salient in Fig-
ure 20, we would add a node for PerceiveRelativeDifference(BAR1, BAR2), Per-
ceiveRelativeDifference(BAR1, BAR3), and so forth. However, we were again
limited by the practical memory constraints of the system. We hypothesize that
it is extremely unlikely (without additional signals) that the intended message
of a bar chart containing a large number of bars will be Relative-Difference
or Relative-Difference-Degree because there are many possible combinations of
two bars which could be compared, and with so many choices, it is unlikely that
the intention is for the viewer to pick out one of them.'® Therefore, if a bar
chart has four or fewer bars, all of the possible instantiations of PerceiveRel-
ativeDifference involving a salient bar are added as nodes in the network. If
a bar chart contains more than four bars, only the lowest effort instantiation
is added. This accounts for the inclusion of PerceiveRelativeDifference(BARI,
BAR2) and PerceiveRelativeDifference(BAR7, BARS) in the list in Figure 22.

16 This observation is similar to the forking heuristic used by Allen [3] where candidate plans
had their ratings downgraded if they were produced by mutually exclusive inferences.
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PerceiveLabel(BAR1) PerceiveMaximum(BARS)

PerceiveLabel(BARS) PerceiveBar(BAR1)
PerceivelnfoTolnterpolate(BAR1) PerceiveBar(BARS)
PerceivelnfoTolnterpolate(BARS) PerceiveRank(BAR1)
PerceiveRelativeDifference(BAR1,BAR2) PerceiveRank(BARS)
PerceiveRelativeDifference(BAR7,BARR) PerceivelsMaximum(BARS)
PerceiveRelativeDifference(BAR1,BARS) PerceivelsMinimum(BAR1)
PerceivelncreasingTrend(BAR1, BARS) PerceiveValue(BAR1)
PerceivelncreasingTrend(BAR1, BAR4) PerceiveValue(BARS)
PerceivelncreasingTrend(BAR4, BARS) PerceiveMinimum(BART1)

Figure 22: Perceptual Tasks Involving Salient Bars from the Bar Chart in Figure 20

The other tasks in Figure 22 that warrant some special attention are the three
instantiated PerceivelncreasingTrend tasks. The following section discusses the
detection of possible trends in our system.

8.1.3. Detecting Trends

In order to detect and reason about the trends that may be present in a
bar chart, we have devised an algorithm for identifying the various ways that a
bar chart might be divided into segments or “chunks” that convey trends. We
define a division as consisting of one or more segments of bars such that these
segments encompass the entire bar chart, from the first bar to the last bar. For
example, a division of the bar chart in Figure 20 might consist of two segments
— one encompassing the first bar to the fourth bar and the second encompassing
the fourth bar to the eighth bar. The algorithm utilizes the calculated slope of
different possible segments, the weighted error of the bars in terms of variance
from the slope, and a preference for the fewest possible number of segments.
The plausible candidate divisions are identified before we construct the Bayesian
network, and the XML representation of the graphic taken as input to our plan
inference process is augmented to include the candidate divisions.'”

Candidate divisions are only calculated for bar charts in which a trend is
possible — that is, the primary key attribute must be either a time-line or
an ordinal attribute. The basic algorithm for identifying the divisions to be
included in the augmented XML is the following:

e Calculate the maximum number of allowed segments (or chunks) in the
divisions as the truncation (or floor) of the number of bars in the bar chart
divided by two, with an upper limit of four segments per division. '8

17The implementation of this process was completed by Seniz Demir.

I8For example, a bar chart with five bars will be allowed to have a maximum of two segments
per division. We impose this restriction on the upper limit on the number of segments because
we are only attempting to identify visually apparent trends, and also to ensure the feasibility
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e For n =1 to the maximum number of segments, consider all possible ways
of dividing the graphic into n segments:

— For each segment of each possible division, calculate the weighted
error per bar as

zj: distance(by, line(b;, b;))

j—t+1 (1)

k=1

where b; and b; are the first and last bars in the segment, line(b;,
b;) is an imaginary line connecting the tops of the bars b; and b,
distance(bg, line(b;, b;)) is the distance from the top of bar by, to the
imaginary line in centimeters, and j — i + 1 is the number of bars in
the segment.

— If the weighted error per bar of every segment in the division is <
0.07, then the division is deemed acceptable and is included in the
augmented XML, otherwise it is excluded. The threshold of 0.07 was
chosen based on an examination of a sampling of graphics in our
corpus.

After all of the candidate divisions have been identified, we attempt to choose
what would be the most visually apparent division if a viewer was asked to
identify a trend (or trends) in the graphic. Our identification of this “best”
division is important because this is the only division that we consider when
generating the set of the ten lowest effort perceptual tasks for addition to the
network. Our guiding principle in identifying the best division is loosely based
on Ockham’s Razor; we want to identify the simplest division that is consistent
with the data. Therefore, we prefer divisions with fewer segments. The process
for identifying the best candidate division is the following:

e Sort the acceptable line divisions by number of segments (primary sort)
and weighted error per bar (secondary sort).

e If the single segment division of the graphic is acceptable, this will be
selected as the best division, unless the weighted error per bar of the
two-segment division which includes a two-bar segment at the end of the
division is lower than the weighted error per bar of the single segment
division. This allows for the natural tendency of a viewer to detect changes
in the most recent data compared to a previous trend.

e If the single segment division of the graphic was initially deemed unac-
ceptable, but the slope difference between the segments of the best two-
segment division is <.25, we select the single segment division as the best

of calculating all possible divisions.
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division because we believe that the small change in slope would not be
visually apparent.

e If the previous steps do not result in a selected division, consider the
multiple segment divisions. For n = 2 to the maximum number of segments
or until a division is selected:

— If there is an acceptable division with n segments which does not
have a two-bar segment, this division is selected as the best division.
Preference is given to those divisions which do not include two-bar
segments, since segments consisting of only two data points do not
actually represent a trend.

— If there is more than one such division, the one with the lowest
weighted error per bar will be selected.

— Otherwise, any acceptable divisions containing a two-bar segment
will be considered for selection (again, preference goes to the divisions
with the lowest weighted error per bar).

The selected “best” division will be recorded as the first division in the aug-
mented XML representation of the bar chart. Next in the XML representation
will be any salient divisions — i.e. divisions where an endpoint of a segment or
segments in the division is salient in the graphic. The motivation for this is that
one of the roles that the salient elements might play in the intended message is
as endpoints of a trend.

This algorithm captures rough heuristics for identifying visually apparent
trends in a bar chart. As discussed in Section 12, we are currently working on
using machine learning techniques to produce a learned model for dividing a
line graph into visually distinguishable trends [68].

Our algorithm for detecting trends results in the inclusion of the three Per-
ceivelncreasingTrend instantiations in the list of salient tasks in Figure 22. The
best, or most preferred, division for the graphic in Figure 20 is one with two
segments. The first segment, from the first bar to the fourth bar, has a slope
of .1 and a weighted error per bar of .00273. The second segment, from the
fourth bar to the eighth bar, has a slope of 0.475 and a weighted error per bar
of .00675. This two segment division causes the addition of two perceptual task
nodes into the network, one for each segment: PerceivelncreasingTrend(BARI,
BARA4) and PerceivelncreasingTrend(BAR4, BARS). In addition, because we
have two salient bars, the single segment division in which the two endpoints
are annotated (and therefore salient) causes a node representing the perceptual
task PerceivelncreasingTrend(BAR1, BARS) to be added to the network.

8.2. Building the Network

The nodes in the top two levels of the network, representing the high-level
intentions (Figure 14), exist in every network and are added at the beginning
of the network construction process. As discussed in Section 8.1, we use
perceptual task effort and salience to identify the low-level perceptual tasks
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that are initially inserted into the network. Omce these perceptual tasks are
added to the network, we perform upward chaining via the plan operators to
add higher level goal nodes until a link is established to one of the top-level goal
nodes. Whenever a node representing a goal is added to the network, links are
added from that node to nodes representing all of its subgoals — if a node does
not already exist to represent the subgoal, the node is added to the network.
Thus the resulting network contains all nodes that are in some way related to
the perceptual task nodes that were initially added to the network.

For example, when we add the node PerceivelncreasingTrend(BAR1, BARS)
to the network, the higher-level goal node IncreasingTrend(BAR1, BARS) will
also be added because PerceivelncreasingTrend(BAR1, BARS) fulfills a sub-
goal of IncreasingTrend. IncreasingTrend(BAR1, BARS) also has the sub-
goals GetLabel(BAR1) and GetLabel(BARS), and so nodes representing these
tasks are added to the network. GetLabel has PerceiveLabel as a subgoal and
so two instantiations of PerceiveLabel, (PerceiveLabel(BAR1) and PerceiveLa-
bel(BARS)), are also added to the network. IncreasingTrend(BAR1, BARS) will
be linked to the high-level IncreasingTrend node since it is a specific instantiation
of this high-level goal. An instantiation of IncreasingTrend may also fulfill a sub-
goal of ChangeTrend, and so this possibility is investigated. However, there are
no possible instantiations of ChangeTrend with IncreasingTrend(BAR1, BARS)
as a subgoal (which makes sense, since IncreasingTrend(BAR1, BAR8) encom-
passes the entire graph), and so no instantiation of ChangeTrend is added to
the network at this point. The entire subnetwork resulting from the addition
of a node representing PerceivelncreasingTrend(BARI1, BARS) can be seen in
Figure 23.

8.3. Recording the Fvidence

After all of the task nodes have been added to the network, the final phase in
the plan inference process is the recording of the evidence. First, the evidence
nodes are added to the network. The adjective and verb evidence nodes are
linked to the top-level IntendedMessage node, and the specific low-level salience
and perceptual effort nodes are added for each perceptual task, as discussed in
Section 7. The appropriate findings are then recorded for each evidence node.

For example, consider the graph in Figure 20 and the addition of evidence
nodes to its network of goal nodes (which is partially shown in Figure 23).
The value of the annotation evidence node that will be attached to Perceiveln-
creasingTrend(BAR1, BARS) will reflect the fact that both of the bars that
are parameters of this task, and no other bars in the graphic, have salient an-
notations. In contrast, the value of the annotation evidence node that will be
attached to PerceivelncreasingTrend(BAR1, BAR4)' will reflect the fact that
one of the bars in the task as well as other bars in the graphic have salient an-
notations. The adjective evidence node will record the presence of the adjective

9For readability, this node is not shown in Figure 23, but it is included in the complete
network.
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IntendedMessage

Increasing—Trend

IncreasingTrend(BAR1,BARS8)

PerceivelncreasingTrend(BAR1,BARS) GetlLabel(BAR1) GetlLabel(BARS)
PerceiveLabel(BARL)

Figure 23: Result of Upward Chaining from PerceivelncreasingTrend(BAR1, BARS) to In-
creasingTrend

Change-Trend

class containing “more”, since the caption of the graphic is “More Communica-
tion Towers”. Figure 24 shows the subnetwork from Figure 23 along with the
evidence nodes that will be attached to the nodes in the subnetwork.

The effort evidence nodes will record the estimated perceptual task effort as
easy if the estimated effort is less than or equal to 750, medium if the estimated
effort is less than or equal to 1350, hard if the estimated effort is greater than
1350 or impossible if the perceptual task cannot be performed on the given bar
chart.?® For example, PerceiveLabel(BAR1) has an estimated effort of 680, so
the effort node attached to this task will have a value of easy.

Each time new evidence is added to the network, the evidence is propagated
through the network by recomputing the probabilities at each node. After all
of the evidence is recorded, the high-level message inferred by the graphic is the
value of the IntendedMessage node with the highest probability. In the case of
the network constructed for the graphic shown in Figure 20, the intended mes-
sage is inferred to be IncreasingTrend. The inferred instantiation of the message
is the child node of the IncreasingTrend node with the highest probability — in
this case, it is IncreasingTrend(BAR1, BARS), with a probability of 99.6%.

20The thresholds for effort were assigned based on naturally occurring breaks within the
collected eyetracking data.
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Figure 24: Subnetwork with Evidence Nodes

9. Evaluation

In order to evaluate the performance of our intention recognition module,
we performed two different types of evaluations. The goal of the first evaluation
was to measure the system’s ability to match the results of the coders who
tagged our corpus of bar charts with the intended message of each bar chart.
The goal of the second evaluation was to gauge the level of acceptance that users
of the system might have for the responses produced by the system. The next
section discusses the methods employed in these evaluations and the results of
the evaluations.

9.1. Leave-One-Out Cross Validation

The first evaluation of our methodology for intention recognition for bar
charts involved measuring the system’s output against that of human coders.
We used leave-one-out cross validation to evaluate our system. We performed
a series of experiments in which each graphic in our corpus was selected once
as the test graphic. The data pertaining to the test graphic was removed from
calculation of the probabilities used in the conditional probability tables. The
XML representation of the test graphic was augmented by the Caption Tag-
ging Module and then presented to our Intention Recognition Module, and the
Bayesian network was constructed with probability tables acquired from the
remaining graphics. The system was judged to fail if either its top-rated hy-
pothesis did not match the intended message that was assigned to the graphic
by the coders or the probability rating of the system’s top-rated hypothesis did
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not exceed 50%. This is a more stringent requirement than simply choosing
the highest rated intention, but because our planned applications include sum-
marizing graphics for users who could not access the content themselves (for
example, blind users), we only wanted to utilize hypotheses in which the system
had a high degree of confidence.

We computed the system’s overall performance as the percentage of exper-
iments in which the system’s top-rated hypothesis matched that of the coders.
Our overall accuracy was 79.1% — that is, the system’s hypothesis matched
the coders for 87 out of 110 bar charts. As a baseline, the most commonly
occurring message category (at 23.6%) was IncreasingTrend. However, note
that the baseline of 23.6% indicates the message category only — in the eval-
uation, the system’s hypothesis had to match not only the high-level message
category tagged by the coders but also the instantiation of all of the parameters
of the message (for example, if the coders tagged a Rising-Trend from BARI1 to
BARS, and the system recognized a Rising-Trend from BAR1 to BAR7, this was
counted as an error). We believe that our success rate provides strong evidence
of the success of our methodology.

800
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Figure 25: Bar Chart Showing Net Income Data?!

Some of the errors in our system’s performance arise from what we view as
special cases or “design quirks,” and may be fairly hard to correct. Consider,
for example, the bar chart shown in Figure 25 which shows net income data for
Levi Strauss. The eighth bar (representing 1999) is annotated with its value.
Our system considers this to be evidence of its salience. However, it appears
that the designer annotated the bar (which cannot be seen in the graphic) with
its value because its extremely low value made it appear as if there was no
value recorded for that year. The system attempts to come up with hypotheses
involving this bar as a salient parameter, rather than inferring the ChangeTrend
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message that the coders recognized.

However, the majority of the errors made by our system are caused by sparse-
ness of the data used for training the system; for example, if we only have a
single graphic using a verb from the class containing verbs like “recover” to
indicate a changing trend, then once the leave-one-out validation excludes the
data pertaining to this graphic, we will not have any evidence linking the verb
class to the change trend category of intention, and we may get an incorrect
result when evaluating the graphic.

9.2. Ewvaluation by Human Subjects

In our second evaluation, we performed an experiment in which human sub-
jects were asked to examine a set of bar charts and rate a posited primary
intention for each bar chart. This type of evaluation is less demanding for the
subjects than asking them to code the intentions of many bar charts, and allows
us to broaden the participation in our evaluation. It also poses a slightly differ-
ent question than the previous evaluation — rather than asking the subjects to
identify the intention, the participants were asked whether they were satisfied
with a provided intention. Thus, the goal of this experiment was to determine
whether the intentions being inferred by our system would meet the approval
of users. Seventeen undergraduate students took part in the experiment, which
contained twenty-seven bar charts. For each bar chart, the participants were
asked to answer a set of questions, including their level of agreement with the
stated primary intended message of the graphic (strongly agree, agree, not sure,
disagree, strongly disagree), and follow-up questions for cases where they did
not agree with the stated message.

To produce the statements describing the proposed intended messages of
the bar charts, we wrote a template for each category of high-level message
and manually inserted information from the bar chart into the template. For
twenty of the twenty-seven bar charts, the statement matched the intention
hypothesized by our system. For the remaining seven bar charts, we proposed
messages that did not match the hypotheses of our system. These were included
to ensure that the participants did not become accustomed to automatically
agreeing with the proposed messages, and to demonstrate that the participants
were actively engaged in evaluating the system’s hypothesized message.

When calculating the results of the experiment, we assigned numeric values
to the scale in the first question. An answer of “strongly agree” was counted as a
four, “agree” a three, “not sure” a two, “disagree” a one, and “strongly disagree”
a zero. The answers of each of the seventeen participants were then averaged
to come up with an overall assessment of the participants’ level of agreement
with the proposed message for a particular bar chart. For the twenty graphs
where the proposed message matched the output of our system, we expected the
majority of participants to agree with the proposed message. This was, indeed,

21This is based on a bar chart from a local newspaper (the Lancaster Intelligencer Journal
on April 9, 2002).
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the case, given that the average agreement rate for the twenty graphs was 3.33
(a value between “agree” and “strongly agree” on our scale) with a standard
deviation of 1.02 and a 95% confidence interval of .108. The agreement rate for
the individual bar charts ranged from 2.59 to 3.94.

For the seven bar charts where the proposed message did not match the
output of our system, we expected the majority of participants to disagree
with the proposed message. And, for the most part, this was the case. The
average agreement rate for the seven graphs was 1.19 (a value between “not
sure” and “disagree” on our scale) with a standard deviation of 1.46 and a 95%
confidence interval of .261. The agreement rate for the individual bar charts
ranged from 0.18 to 1.53. While the numbers certainly show that the majority
of the participants disagreed with the erroneous messages, the strength of their
disagreement is not quite as strong as expected. Given the nature of some
of the responses, we feel that a small number of the participants may have
either hurried through the experiment or agreed with any statements that were
accurate given the data being displayed.

The results of our experiment, particularly the average level of agreement
with the intended messages recognized by our system, demonstrate the success
of our system in inferring the intended message of a bar chart. Utilizing these
recognized intentions as the basis of a summary of a graphic should, therefore,
produce summaries which would be satisfactory to a majority of users.

10. Examples

This section presents several examples which illustrate how different kinds
of evidence impact our system’s hypothesis as to the intended message of a bar
chart. In order to clearly show the impact of the choices made by a graphic
designer when constructing a bar chart, we will consider multiple variations of
bar charts displaying the same underlying data.?? In each case, the Visual Ex-
traction Module (VEM) shown in the system architecture diagram in Figure 3,
was given the gif representation of the graphic and produced an XML repre-
sentation that was passed to the Caption Tagging Module which augmented it
with communicative signals extracted from the caption (if any). The Intention
Recognition Module then took this augmented XML as input and produced its
hypothesis about the graphic’s intended message.

10.1. A Bar Chart Without Salient Elements

As our first example, consider the bar chart shown in Figure 26, which dis-
plays the gross domestic product per capita for a number of countries. Note
that there are no communicative signals within the graphic other than percep-
tual task effort, and so the Bayesian network is constructed beginning with the
addition of nodes representing the ten low effort perceptual tasks.

22The data displayed in the example graphics is based on a bar chart that appeared in the
June 28, 2004 issue of U.S. News & World Report magazine.
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Figure 26: Information Graphic Example

Given the bar chart as it appears in Figure 26, our system hypothesizes that
the graphic is intended to convey the relative rank in GDP of the various coun-
tries displayed in the bar chart and assigns this intention a probability of 87%.
Other possibilities also have some probability assigned to them. For example,
the intention of conveying that Luxembourg has the highest GDP is assigned a
probability of 12.4% because the bars are in sorted order according to height,
thus making it relatively easy for the viewer to recognize the maximum, and
because finding the entity in the graphic with the maximum value is a fairly
common intention (occurring approximately 22.7% of the time in our corpus).
However, there is no other evidence suggesting that the bar representing the
maximum value is salient (such as that bar being highlighted, or “Luxembourg”
being mentioned in the caption). Note that trends are not considered as possi-
bilities for this graph since the values on the independent axis are not ordinal,
and so a trend cannot be detected.

10.2. A Bar Chart with a Single Salient Element

The bar chart shown in Figure 26 had no salient elements, and so the starting
point for the plan inference process was solely based on perceptual task effort.
Suppose, however, that the bar representing the U.S. was darker than the other
bars (as shown in Figure 27), thus making this element salient and thereby
providing strong evidence that it plays a role in the intended message of the
graphic. The set of tasks used to begin the inference process for this bar chart
will include not only the set of ten low effort perceptual tasks but also any
perceptual tasks involving the salient element (the bar representing the U.S.).

The resultant Bayesian network hypothesizes that the intended message of
the graphic shown in Figure 27 is to convey that the U.S. ranks third among
the countries shown in the bar chart with respect to GDP per capita. This
hypothesis is believed to be extremely probable, given its calculated probability
of 99.5%.

43



8

w
o

N
o

=
o

GDP Per Capita, 2001 (in thousands)

o

Luxembourg Norway U.S. Switzerland Japan Denmark Britain

Figure 27: Information Graphic Example with a Single Salient Element

10.3. A Bar Chart with Two Salient Elements

Elements of the graphic could also be made salient in other ways, such as
through annotations. Suppose that the bar representing the U.S. was still darker
than the other bars, but that the bars representing the U.S. and Japan (and only
those bars) were annotated with their exact values, as shown in Figure 28. Here
the evidence still suggests the salience of the U.S., as in the previous example,
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Figure 28: Information Graphic Example with Two Salient Elements

but also suggests that Japan is salient.

The fact that two bars are now salient provides evidence against intentions
involving only the U.S. and will favor hypotheses involving both bars. Thus it is
not surprising that the system hypothesizes the graphic’s intended message to
be the relative difference (and the degree of that difference) between the GDP
of the U.S. and Japan and assigns it a probability of 87.3%.
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10.4. A Bar Chart with a Helpful Caption

So far, none of our examples have included a caption. Suppose, however,
that the caption of our previous example was “U.S. Beats Japan” (as shown in
Figure 29). In this case, the XML produced by the Visual Extraction Module
is augmented by the Caption Tagging Module to include evidence extracted

U.S. Beats Japan

S

— $35

w
o

N
o

=
(@)

GDP Per Capita, 2001 (in thousands)

0
Luxembourg Norway U.S. Switzerland Japan Denmark Britain

Figure 29: Information Graphic Example with a Helpful Caption

from the caption. The verb “beat” (the root form of “beats”) is a member of
one of our identified verb classes, and therefore the presence of this verb class
is included in the augmented XML representation of the graphic. The nouns
“U.S.” and “Japan” match the labels of bars in the bar chart, so they are also
included in the augmented XML.

Because the bars representing the U.S. and Japan were already salient in
the previous example, the appearance of their labels in the caption does not
cause any additional tasks to be included in the set of tasks used to begin the
plan inference process. However, the inclusion of “U.S.” and “Japan” in the
caption does provide additional evidence of the importance of these elements
to the intended message of the graphic. The additional communicative signal
provided by the verb “beats”, as well as having both labels appear in the caption,
strengthens the system’s belief in its hypothesis of the relative difference and
degree message, and it now assigns it a probability of 99.6% (as opposed to
87.3% without the caption).

10.5. The Impact of Perceptual Task Effort

Now consider a significant variation of the graphic design. Suppose, again,
that the bar representing the U.S. was darker than the other bars. But now sup-
pose that the bars were sorted by the alphabetical order of their labels, rather
than by descending order of their height. This variation is shown in Figure 30.
The perceptual task of determining the rank of the U.S. is now estimated as
being hard (or difficult) to perform. This new evidence results in the system
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assigning a probability of only 9.1% to the GetRank message. The system hy-
pothesizes the most likely message to be a comparison of relative difference and
degree involving the bar representing the U.S.; however, this top-rated instan-
tiation is only assigned a probability of 47.7%, and we only accept hypotheses
that are assigned a probability greater than 50%. Therefore, we conclude that
the system has been unable to come up with a hypothesis regarding the graphic
designer’s intended message for this bar chart. This is probably reasonable
given the conflicting communicative signals regarding salience and perceptual
task effort present in this graphic — that is, 1) the salience of the bar for U.S.
suggests that U.S. plays a prominent role in the graphic’s message, 2) but the
difficulty of the perceptual task of determining the rank of the US makes it un-
likely that the graphic conveys a Get-Rank message, 3) and no other bars being
salient (besides the bar for U.S.) makes it unlikely that the graphic is conveying
a comparison message.
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Figure 30: Information Graphic Example with Different Perceptual Task Effort

11. Related Work

The communicative intentionality of graphics is demonstrated by work on
multimodal document generation and by work on multimodal dialogue systems.
Research has addressed the generation of multimodal documents that contain
images or graphics as well as text[66, 22, 64, 5, 30]. The early work of [66]
treated the generation of a multimodal document as an incremental planning
process in which the text and graphics are planned to work together to achieve
a communicative goal. Other work, such as the AutoBrief project[30] has fol-
lowed this paradigm and influenced our research. AutoBrief proposed extending
speech act theory to the generation of multimodal presentations. Their system
used high-level planning to transform a high-level goal into communicative acts,
which then were assigned to a particular media (text or graphics) using media
allocation rules. If a communicative goal was to be expressed as an informa-
tion graphic, then it was translated into perceptual and cognitive tasks which
the graph design must enable for the viewer. Our research inverts this process.
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Given an information graphic, we use plan inference to recognize the graph
designer’s plan for the viewer and thereby recognize the graphic’s high-level
communicative goal. In the case of multimodal dialogue systems, presentation
planning divides the system’s response into a coordinated set of goals that are
achieved via speech, graphics, or facial expressions[65, 51, 39, 7]. This work has
generally focused on navigation systems that display maps and/or landmarks
as part of their output, although [51] considers a wider variety of graphical
elements.

The graph comprehension work that has influenced our research was dis-
cussed in Section 5.1.2. Cognitive psychologists have continued to study graph
comprehension, with an emphasis on how humans perceive and interpret graph-
ical information and the factors that impact graph comprehension; examples of
recent work include [63] which contends that spatial cognition is essential in a
model of complex graph comprehension, [60] which explores visual and cogni-
tive integration, and [33] which investigates the affect on information processing
of the layout of graphics with respect to related text. These research efforts
are influencing our ongoing work on understanding more complex information
graphics.

However, there has been little work on automating the summarization of in-
formation graphics. Futrelle and Nikolakis [24] developed a constraint grammar
for parsing vector-based visual displays, and Futrelle has considered the prob-
lem of constructing a graphic that is a simpler form of one or more graphics in
a document [23]. However, the end result is itself a graphic, not a representa-
tion of the graphic’s intended message. Yu, Hunter, Reiter, and Sripada [69]
used pattern recognition techniques to summarize interesting features of time
series data from a gas turbine engine. However, the graphs were automatically
generated displays of the data points and did not have any intended message.
Our work is the first to address the understanding of an information graphic by
identifying its high-level communicative message.

Multimodal document generation has also addressed the problem of con-
structing captions for graphics in a multimodal document. Mittal et. al. [50]
employed a planner that applied discourse strategies captured in plan operators
to generate captions for complex graphical displays; the purpose of the captions
was to enable the viewer to understand how the graphic elements mapped to
data and thus be able to extract information and make deductions from the
graph. Fasciano and LaPalme [22] classified intentions for information graphics
into five broad categories: reading, comparison, evolution, correlation, and dis-
tribution. In their work on caption generation, Corio and LaPalme [17] identified
seven kinds of information provided by captions (such as focusing on particular
raw data or drawing a conclusion from the graphic) and estimated how often
each of the five broad categories of graphic intentions were associated with each
of the seven kinds of captions. For example, a focusing caption was most often
associated with a graphic whose intention fell into the comparison category. In
our work, a focusing caption would most likely give the labels of one or two
bars, thereby making them salient and thus leading to an intended message in
which the bar or bars played a role (such as a Get-Rank or Relative-Difference-
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Degree message). Corio and LaPalme then developed empirically derived rules
for generating captions. However, caption generation differs from our research
in that the caption generator has access to the data that was used to generate
the graphic and to the intention underlying the graphic, whereas our work is
concerned with using the communicative signals in the graphic to identify the
graphic’s communicative goal.

12. Current and Future Work

We are currently extending our intention recognition methodology to pie
charts as well as more complex information graphics such as line graphs and
grouped bar charts. These graphics pose additional problems that must be
addressed. For example, a line graph can consist of many short segments con-
necting individual data points; to reason about the graphic’s message, we must
first transform it into a sequence of visually distinguishable trends. We are
using machine learning on attributes of the line graph to develop a model for
performing such segmentation [68]. In the case of grouped bar charts, the possi-
ble messages and perceptual tasks are more complex than in the case of simple
bar charts, and a richer model of perceptual task effort is required. Moreover,
while simple bar charts appear to have a single intended message, grouped bar
charts often strongly convey more than one message, although one of the mes-
sages typically stands out and is more important to the context than the other.
Thus our future work will address the recognition of both primary and secondary
messages in grouped bar charts.

We are also pursuing two applications of our message recognition system.
Our digital libraries project will utilize the recognized message to store graph-
ics and facilitate their retrieval. We will also investigate how to integrate the
intended message of a graphic with a summary of the article’s text in order to
produce a more complete summary of a multimodal document. Our assistive
technology project is using our message recognition system to provide individ-
uals with sight impairments with a brief summary of a graphic encountered in
a multimodal document and with the capability for requesting more in-depth
information about the graphic. Mittal [49] has noted that information graphics
can be intentionally deceptive; for example, the graph designer might truncate
the y-axis in order to make the relative differences in bar height appear greater.
Thus our work on conveying information graphics to sight-impaired individuals
may need to take such considerations into account.

13. Conclusion

While identifying the intention of an utterance has played a major role in
natural language understanding, this work is the first to extend intention recog-
nition to the domain of information graphics. As Clark noted, language is more
than just words. It is any “signal” (or lack of signal when one is expected),
where a signal is a deliberate action that is intended to convey a message [14],
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and a tenet of this work is the belief that information graphics are a form of
language.

This paper has shown the relation between simple bar charts in popular
media and more traditional forms of language such as natural language utter-
ances. It has identified the kinds of communicative goals that are achieved by
bar charts, identified the kinds of communicative signals in bar charts that help
achieve these goals, shown how these signals can be extracted and computa-
tionalized, and shown how plan inference techniques that have been used for
understanding natural language utterances can also be used for recognizing the
communicative message of a simple bar chart. The paper has provided an imple-
mented Bayesian network methodology for reasoning about the communicative
signals in a bar chart and hypothesizing its intended message. We have demon-
strated the success of our methodology through evaluations of our implemented
system. The intended message of a bar chart that is inferred by our system can
be used to facilitate access to this information resource for a variety of users,
including 1) users of digital libraries, 2) visually impaired users, and 3) users of
devices where graphics are impractical or inaccessible.
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