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Block Arithmetic Coding for Source Compression 
Charles G. Boncelet Jr., Member IEEE 

Abstruct- We introduce “Block Arithmetic Coding” (BAC), a 
technique for entropy coding that combines many of the advan- 
tages of ordinary stream arithmetic coding with the simplicity 
of block codes. The code is variable length in to fixed out (V 
to F), unlike Huffman coding which is fixed in to variable out 
(F to V). We develop two versions of the coder: 1) an optimal 
encoder based on dynamic programming arguments, and 2) a 
suboptimal heuristic based on arithmetic coding. The optimal 
coder is oetimal over all V to F complete and proper block codes. 
We show that the suboptimal coder achieves compression that is 
within a constant of a perfect entropy coder for independent and 
identically distributed inputs. BAC is easily implemented, even 
with large codebooks, because the algorithms for coding and 
decoding are regular. For instance, codebooks with 232 entries 
are feasible. BAC also does not suffer catastrophic failure in the 
presence of channel errors. Decoding emrs  am confined to the 
block in question. The encoding is in practice reasonably efficient. 
With i.i.d. binary inputs with P(1) = 0.95 and 16 bit codes, 
entropy arguments indicate at most 55.8 bits can be encoded; the 
BAC heuristic achieves 53.0 and the optimal BAC achieves 53.5. 
Finally, BAC appears to be much faster than ordinary arithmetic 
coding. 

Index Terms-Arithmetic codes, block codes, variable to fixed 
codes, entropy compression. 

I. INTRODUCTION 

E introduce a method of source coding called Block W Arithmetic Coding (BAC). BAC is a variable in to 
fixed out block coder (V to F) unlike Huffman codes which 
are fixed in to variable out (F to V). BAC is simple to imple- 
ment, efficient, and usable in a wide variety of applications. 
Furthermore, BAC codes do not suffer catastrophic failure in 
the presence of channel errors. Decoding errors are confined 
to the block in question. 

Consider the input, X = 21x2~3 ... to be a sequence of 
independent and identically distributed input symbols taken 
from some input alphabet A = {al, a2,. . . , am}. The symbols 
obey probabilities p3 = Pr(xl = a3) .  Assume that p3 > 0 for 
all j. The entropy of the source is 

m 

H(X) = - CPZ logm. (1) 
z=1 

(We will measure all entropies in bits.) The compression 
efficiency of entropy encoders is bounded below by the 
entropy. For F to V encoders, each input symbol requires on 
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average at least H(X) output bits; for V to F encoders, each 
output bit can on average represent at most ,1/H(X) input 
symbols. 

The most important entropy compressor is Huffman coding 
[9]. Huffman codes are F to V block codes. They block 
the input into strings of q letters and encode these strings 
with variable length output strings. It is well-known that the 
number of output bits of a Huffman code is bounded above 
by q H ( X )  + 1 for all block sizes. In special cases, this bound 
can be tightened [5], [17]. As a result the relative efficiency of 
Huffman codes can be made as high as desired by taking the 
block size to be large enough. In practice, however, large block 
sizes are difficult to implement. Codebooks are usually stored 
and must be searched for each input string. This storage and 
searching limits block sizes to small values. (However, see 
Jakobsson [ 111 .) 

Huffman codes can be implemented adaptively, but it is 
difficult to do so. The process of generating Huffman code 
trees is sufficiently cumbersome that adapting the tree on a 
symbol by symbol basis is rarely computationally efficient. 

In recent years, a class of entropy coders called arithmetic 
coders has been studied and developed [SI, [13], [MI-[21], 
[25]. Arithmetic coders are stream coders. They take in an ar- 
bitrarily long input and output a corresponding output stream. 
Arithmetic coders have many advantages. On average, the 
ratio of output length to input length can be very close to 
the source entropy. The input probabilities can be changed on 
a symbol by symbol basis and can be estimated adaptively. 
However, arithmetic codes have certain disadvantages. In 
some applications, the encoding and decoding steps are too 
complicated to be done in real time. 

The entropy coder most similar to BAC is due to Tunstall 
[23], attributed in [12]. Tunstall’s encoder is a V to F block 
coder that operates as follows: Given a codebook with K - 
m + 1 output symbols, a codebook with K output symbols 
is generated by “splitting” the most probable input sequence 
into m successors, each formed by appending one of the a3. 
Unfortunately, the encoding of input sequences appears to 
require searching a codebook. Thus, large block sizes appear 
to be prohibitive, both in creating the code and in searching 
it. This has the practical effect of limiting block sizes to small 
values. 

Recently, a V to F block arithmetic coder has been proposed 
by Teuhola and Raita [22]. While similar in spirit to this work, 
their coder, named FIXARI, differs in many details from BAC. 
FIXARI parses the input differently from BAC and encodes 
each string differently. The analysis of FIXARI is entirely 
different from the analysis of BAC presented in Section 111. 
FIXARI does appear to be fast. 
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Other V to F entropy coders are runlength [7] and Ziv- 
Lempel [14], [24], [27]. Runlength codes count the runs 
of single symbols and encode the runs by transmitting the 
number in each run. They work well when the probabilities are 
highly skewed or when there is significant positive correlation 
between symbols. Runlength codes are often used for small 
alphabets, especially binary inputs. Then the runlength code is 
particularly simple since, by necessity, the runs alternate be- 
tween l’s and 0’s. Runlength codes are occasionally combined 
with Huffman to form a variable in to variable out (VtoV) 
scheme. For example, consider the CCI’IT facsimile code [lo] 
or the more general VtoV runlength codes of Elias [6]. 

Ziv-Lempel codes work on different principles than BAC 
codes or the other codes considered so far. They find sub- 
strings of input symbols that appear frequently and encode 
each with a fixed length codeword. Ziv-Lempel codes work 
particularly well on English text, as they can discover complex 
dependencies between the symbols. 

One advantage of most fixed output length block coders, 
including BAC, is that the effects of transmission errors 
(symbols received incorrectly) are confined to the block in 
question. The .decoder does not lose synchronism with the 
incoming bit stream. While the corrupted block may be de- 
coded incorrectly, remaining blocks will be decoded correctly. 
However, there may be insertions or deletions in the decoded 
stream. These insertions and deletions can usually be dealt 
with at the application level. In contrast, Huffman codes and 
arithmetic codes can lose synchronism and suffer catastrophic 
failure in the presence of channel errors. (It is often argued 
that Huffman codes are self-synchronizing, but this is not 
guaranteed. Various techniques have been proposed to combat 
this problem. See, e.g., [16].) 

One subtle point is that fixed output length codes can 
still suffer catastrophic failure if implemented in an adaptive 
fashion. If the probability estimates depend on previously 
transmitted symbols, then a single error can affect other blocks. 
In particular, Ziv-Lempel codes are usually implemented in an 
adaptive fashion and are susceptible to catastrophic failure if 
their dictionaries get corrupted. BAC codes will be vulner- 
able to the same catastrophic failure if the probabilities are 
estimated adaptively based on prior symbols. 

Finally, there is a growing recognition that V to F codes can 
outperform F to V codes with strong dependencies between 
symbols [MI, [26]. The idea is that, for a fixed number of 
symbols, V to F codes can match long input strings. For 
example, a runlength coder with K codewords can match a 
run of up to K - 1 symbols. This run can be encoded with 
approximately log K bits, resulting in an exponential gain. In 
contrast, Huffman codes only give arithmetic gains. For K 
large enough, the V to F coder is more efficient. 

This paper is organized as follows: Section I1 develops the 
optimal and heuristic BAC’s. In Section 111, we present the 
principal theoretical result of this paper: that BAC’s are within 
an additive constant of the entropy for all code sizes. Section 
IV presents computations illustrating the efficiency of BAC’s. 
Section V discusses extensions to time varying and Markov 
symbols, Section VI discusses the EOF problem and proposes 
two new solutions, and Section VI1 presents conclusions and 
discussion. 

11. DEVELOPMENT OF BLOCK ARITHMETIC CODING 

The BAC encoder parses the input into variable length 
input strings and encodes each with single fixed length output 
codewords. 

The following definitions are taken from Jelinek and Schnei- 
der [12]: Let W ( K )  = {wi : 1 5 i 5 K }  be a K element 
collection of words, wi, with each word a substring of X. 
W ( K )  is proper if, for any two words, w; and wj with i # j ,  
wi is not a prefix of wj. W ( K )  is complete if every infinite 
length input string has a prefix in W .  The characterization in 
[15] is succinct: a code is complete and proper if every infinite 
length input string has one and only one prefix in W ( K ) .  

It is useful to think of complete and proper from the 
viewpoint of parsing trees. Proper means that the codewords 
are all leafs of the tree; complete means that all the nodes in the 
tree are either leafs or they are internal nodes with m children. 

The number of codewords in complete and proper sets is 
1 + L(m - 1) for L = 1,2 ,  . . . [12]. This result is also easy to 
derive from the viewpoint of trees. The root has m children 
(L = 1). Each time a leaf node is replaced by m children, a 
net gain of m - 1 leafs result. Below, we will allow L = 0 so 
that one codeword can be allowed in appropriate sets. 

We assume that to each output codeword is assigned an 
integer index i with i = 1 , 2 , .  . . , Ks. Let S be the set 
of output codewords. Consider a subset of codewords with 
contiguous indices. Denote the first index by A and the last by 
B. The number of codewords in the subset is K = B - A + 1. 

BAC proceeds by recursively splitting S into disjoint sub- 
sets. With each input symbol, the current subset is split into m 
nonempty, disjoint subsets, one for each possible input letter. 
The new subset corresponding to the actual letter is chosen 
and the process continues recursively. When the subset has 
fewer than m codewords, BAC stops splitting, outputs any 
of the codewords in the subset, reinitializes, and continues. 
The ideal situation is that each final subset contain only 1 
codeword; otherwise, the “extra” codewords are wasted. 

Denote the number of codewords in each of the m disjoint 
subsets by Kl(K),  where K is the number of codewords in 
the current set. Usually, we will suppress the dependence on 
K and. denote the number simply by Kl. 

The question of how the Kl should be selected is central to 
the remainder of this paper. We can identify five criteria that 
are necessary or desirable: 

1) Kl > 0. 
2) C E I K l  L K .  
3) C;”=,Ki = K.  
4) Kl = 1 + Ll(m - 1) for some LI = 0 , 1 , 2 , .  . .. 
5) If p j  > pi, then Kj 2 Ki. 

Criteria Q1 and Q2 are necessary to ensure that the parsing 
is complete and proper and that the encoding can be decoded. 
Each subset must have at least one codeword and the sum of 
all the subsets cannot exceed the total available. 

Criteria Q3, Q4, and Q5 are desirable in that meeting each 
results in a more efficient encoding. In effect, Q3 says that one 
ought to use all the codewords that are available. Q4 assures 
that the number of codewords in each subset is equal to one 
(a leaf) or is the number in a complete and proper set. For 
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/* BAC Encoder */ 
K = Ks; 
A = 1; 

while ( ( I  = getinput()) # EOF) 

{ 
Compute Ifl, Kz,.  . .,If,,,; 

A = A + IC,; 

K = If(; 

if (If < m) 

{ 
Output code(A); 

A =  1; 

If = Ifs; 

I 
I 

doeof(A, I(); 

Fig. 1. Basic BAC Encoder. 

f* BAC Decoder *f 

while ((C = getindexcode()) # EOF) 

I 
If = KS; 
A = 1; 

while (If 1 m) 

t 
Compute ICl, Ifz,. . .,IC,,,; 

Find 1 s.t. A + 
output ai; 

A = A + .E!=; K,; 
If = If1; 

I 

IC; _< C < A + E!=, K,; 

1 
undoeof(A, If); 

Fig. 2. Basic BAC Decoder 

example, consider m = 3 and K = 5. The subsets should 
be divided into some permutation of 1,1,3,  and not 1,2,2.  
In the former case, the set with 3 elements can be divided 
one more time; in the latter case, none of the subsets can. 
Note, Q3 and Q4 can both be satisfied if the initial K satisfies 
K = 1 + L(m - 1) and ELl Ll = L - 1. Q5 merely reflects 
the intuitive goal that more probable letters should get more 
codewords. In theory, Q5 can always be met by sorting the 
Kl’s in the same order as the pl’s. Sometimes in practice, 
e.g., in adaptive models, it may be computationally difficult to 
know the sorted order and meeting Q5 may be problematic. 

The BAC encoding algorithm is given in Fig. 1. The BAC 
decoding algorithm is given in Fig. 2. 

We assume that the various functions behave as follows: 
[getinputo] Returns the index of the next input symbol to 

[code(A)] Returns the codeword corresponding to codeword 

[doeof(A, K)] Handles input end-of-file (EOF). Discussed 

be coded. If a, is the next letter, then it returns r .  

index, A. 

below in Section VI. 

[getindexcodeo] Returns the index of the next codeword 

[undoeofo] Undoes the effect of doeof(). 
As examples of the kinds of parsings available, consider the 

following for binary inputs (a1 = O,a2 = 1): 
Let K1 = K - 1 and K2 = 1. These are runlength codes 
for runs of 0’s. Similarly, if K1 = 1 and K2 = K - 1, 
we get runlength codes for runs of 1’s. The parsing trees 
are as much “left” or “right” as possible. 
Let K1(Ks) = Ks/2 and Kz(K.9) = Ks/2.  If the first 
symbol is a 1, then let K1 = K - 1 and K2 = 1 for 
all other K’s; else, let K1 = 1 and K2 = K - 1. These 
are symmetric runlength codes, useful when the starting 
value is unknown. 
Let K1 = K/2  and K2 = K/2. These codes map the 
input to output in an identity-like fashion. 

With the conditions above, we can state the following theorem: 
Theorem 1 Block Arithmetic Codes are complete and 

proper. Furthermore, all complete and proper parsings can be 
developed as BAC’s. 

Proojl It is easiest to develop this equivalence with 
parsing trees. BAC codes are complete and proper from their 
construction. They are proper because no outputs are generated 
at nonleaf nodes; they are complete because each terminal 
node has m - 1 siblings. For the converse, consider any 
complete and proper parsing as a tree. At each node of the 
tree, a BAC coder can reproduce the same tree by appropriately 
choosing the subset sizes, Kl. For instance, at the root node, 
count the number of leafs in each branch. Use each of these 
numbers for Kl, respectively. The process can clearly continue 
at each node. 0 

In the case considered so far of independent and identically 
distributed input symbols, it is straightforward to derive an 
expression for the efficiency of a code. Let N ( K )  denote the 
expected number of input symbols encoded with K output 
symbols. Due to the recursive decomposition, one obtains the 
following recursive formula: 

taken from the channel. 

The “1” is for the current symbol, zj. The sum follows from 
considering all possible choices for z. With probability p l ,  
the input is a1 and the subset chosen has Kl codewords. The 
expected number of input symbols encoded from here onward 
is N(Kl) .  

Since this equation is crucial to the rest of this development, 
we also present an alternate derivation. N ( K ) ,  as the expected 
number of input symbols encoded with K output symbols, can 
be written as 

where ni is the number of bits in wi. Parse wi = aljw: 
where al,; is the first letter in w;. Then n: = n; - 1 and, by 
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independence, Pr(w;) = Pr(a1,;) Pr(wi). Thus, 

K 

i=l 
K 

i=l 
111 

na 

(3) 
1=1 

(3) follows because Kl codewords start with al. 

The boundary conditions are easy and follow from the 
sjmple requirement that at least m codewords are needed to 
encode a single symbol: 

N ( K ) = O  K = 0 , 1 ,  ..., m-1 .  (4) 

Note, one application of (2) yields N ( m )  = 1. While hard to 
compute N ( K )  in closed form, except in special cases, (2) 
and (4) are easy to program. 

For an example of an easy case, consider ordinary runlength 
coding for binary inputs. Letting N,(K)  refer to the expected 
number of input symbols encoded with K output codewords 
using runlength encoding, then the recursion simplifies to 

N,(K)  = 1 + pN?.(K - 1) + qN,( l )  
= 1 + p N , ( K  - l ) ,  (5) 

where p is the probability of a symbol in the current run and 
q = 1 - p. (5 )  follows since N,(1) = 0. The solution to this 
linear difference equation is 

N,(K) = (1 - pK-1)/(1 - p). (6) 

Interestingly, this solution asymptotically approaches 1/( 1 - 
p). We arrive at the well-known conclusion that V to F 
runlength codes do not work well for large block sizes. 

We propose two specific rules for determining the size of 
each subset. The first is an optimal dynamic programming 
approach, letting N,(K)  be the optimal expected number of 
input symbols encoded using K output codewords: 

m 

subject to the constraints Kl 2 1 and CEIKl = K. This 
optimization is readily solved by dynamic programming since 
all the Kl obey Kl < K. However, if m is large, a full search 
may be computationally prohibitive. The optimal solution can 
be stored in tabular form and implemented with a table lookup. 
Note, the optimal codebook does not have to be stored, only 
the optimal subset sizes. 

The second is a heuristic based on ordinary arithmetic cod- 
ing. In arithmetic coding, an interval is subdivided into disjoint 
subintervals with the size of each subinterval proportional to 
the probability of the corresponding symbol. We propose to 
do the same for BAC. Kl should be chosen as close to plK 

/* Good Heuristic to determine the L’s (Kt = 1 + Ll(m - 1)) */ 
Sort the symbols so that p1 5 p1 5 . 5 pm. 

q = 1.0; 

f,=& 
for ( I  = 1; l 5 m; I++) 

{ 

fi = P1/% 
4 = Ifif, + ((fi(2 - I )  - l)/(m - 1) + 0.5)]; 

if (LI < 0) 

LI = 0; 

f, = i - Lt; 

I 
q = q - p 1 .  

Fig. 3. “Good” probability quantizer. Computes L1 for 1 = 1 , 2 , .  . . , m 
given L. Note, all quantities not involving L can be precomputed. 

as possible. Let Kl = [plK], where [SI is the quantization of 
s, with the proviso that each Kl 2 1. 

One way to do the quantization consistent with Q 1 4 4  
above is described in Fig. 3. The idea is to process the input 
letters from least probable to most probable and, for each letter, 
to keep track of the number of codewords remaining and the 
total probability remaining. The algorithm actually computes 
Ll, not Kl, as the former is somewhat easier. Note, Q5 may 
not be satisfied due to quantization effects. However, our 
computations and simulations indicate that it almost always is. 
Furthermore, Q5 can be satisfied if desired by sorting the Lz’s. 

One drawback of the “Good” quantizer in Fig. 3 is that 
the Ll’s are computed one at a time from the least probable 
letter up to the letter input. Potentially, this loop may execute 
m times for each input symbol. For large m, this may be 
too slow. One way to circumvent this problem is the “Fast” 
quantizer described below. The idea behind the fast quantizer 
is to compute a “cumulative L function”, Rl, or, equivalently, 
a “cumulative K function”, Ql, and form either Ll or Kl = 
1 + (m - 1)Ll by taking a difference. The equations for R 
and L take the form: 

Ro = 0 (8) 

(9) 

(10) 

R1 = [ ( L  - 1) -&I 
j=1 

Ll = RI - Rl-1 

Those for Q and K are as follows: 

Qo = 0 (11) 
Ql = 1 + (m - 1)Rl (12) 
KZ = QI - Qz-1 (13) 

The “Fast” quantizer satisfies Q 1 4 4 ,  though not necessarily 
Q5. For large alphabets it is slightly less efficient than the 
“Good” quantizer, but is much faster because there is no loop 
over all the symbols. 

The algorithmic complexity of BAC can be summarized 
as follows: Using the good heuristic, the encoder can require 
up to m - 1 multiplications per input symbol, and a similar 
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number of additions; using the fast heuristic, it only requires 
two multiplications and a fixed number of additions and 
comparisons per input symbol. The decocler does the same 
computations of Kl (or LI)  as the encoder, but also has to 
search for the proper interval. This searching can be done in 
O(1og m) operations. Thus, the encoder can be implemented 
in 0 (1 )  or O(m)  operations per input symbol and the decoder 
in O(1ogm) or O(m)  operations, depending on whether the 
fast or the good heuristic is used. In the special case of 
binary inputs, there is little difference, both in complexity and 
performance, between the two heuristics. After the Kl’s have 
been computed, the optimal BAC can be implemented with no 
multiplications and a similar number of additions to the fast 
heuristic. However, the one time cost of computing the optimal 
Kl’s may be high (a brute force search requires approximately 
O(mLS) operations if m is large, where KS = l+Ls(m-l)) .  
In some applications, it is convenient to combine the optimal 

and heuristic approaches in one hybrid approach: use the opti- 
mal sizes for small values of K and use the heuristic for large 
values. As we argue in Section IV, both encoders incur their 
greatest inefficiency for small values of K. For instance, an 
encoder can begin with the heuristic until 256-1024 codewords 
are left and then switch to the optimal. 

Letting N h ( K )  represent the expected number of input sym- 
bols encoded with K output codewords under the heuristic, the 
expression for N ( K )  becomes 

m 

Nh(K) = 1 + CPlNh(blK1) .  (14) 
1=1 

For the moment, if we ignore the quantizing above, relax 
the boundary conditions, and consider N ( . )  to be a function 
of a continuous variable, say s, we get the following equation: 

enough. See, e.g., Fig. 3.) In this section, we will take all 
“logs” to be natural logs to the base e. 
Theorem 1 For independent and identically distributed 

inputs, 

logK - H(X)Nh(K) 5 c, (17) 

for all K and some constant C. (C depends on the proba- 
bilities, the quantization, and on the size of the alphabet, but 
not on K.) 

Proofi We will actually show a stronger intermediate 
result, namely that 

D 
K logK - H(X)Nh(K) I G(K) = C - -, (18) 

where D > 0. Clearly C - D/K 5 C. 
The proof is inductive. There are three constants to be 

determined: C and D, and a splitting constant, Kc.  First, 
select any KC such that KC > 2m/pl, where p l  > 0 is the 
minimum of the pl’s. 

The basis is as follows: For all K 5 Kc,  and for any 
D > 0, we can choose C so that 

D c 2 logK - H ( X ) N h ( K )  + 
(19) 

D 
1 

2 log K c  - 0 + -, 
where, clearly, N h ( K )  2 0 and D/K 5 D. At this point, K c  
has been determined and C has been specified in terms of D 
and the proposition holds for all K 5 KC. 

For the inductive step, we now assume that (18) applies for 
all K I K’ for some K‘ 2 Kc.  Then, we find a condition 
on D so that (18) applies for all K. Let K = K’ + 1, then 

logK - H(X)Nh(K) 

where the subscript e refers to “entropy”. The entropy rate for 
V to F codes, 1=1 

- H ( X )  - C P l W ) N h ( b l K l )  

satisfies this equation.’ Thus we see that, in the absence of 
quantization effects, BAC codes are entropy codes. As we 
argued above, for large K the quantization effects are small. 
Furthermore, logK is a slowly varying function of K. We 
might expect the heuristic to perform close to the optimal, 
entropy rate. In fact, we prove in Section I11 below that Nh (K) 
is within an additive constant (which depends on the p’s and 
m) of the entropy rate for all K. 

111. ASYMPT~TIC RESULTS 

Consider the heuristic encoder discussed above. Assume the 
quantization is done so that, for K large enough, blK] = 
prK + 61, where 1611 5 m. Assume further that CZ, 61 = 
0. (Such quantization can always be achieved for K large 

‘We believe this entropy solution uniquely solves (15), but have been unable 
to prove uniqueness. 

1=1 

The inductive hypothesis is used in (20). The last term above 
is easily bounded since G(-) is nondecreasing: 
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If 61 2 0, then 

Similarly, if 61 < 0, 
z 

rpi K 

(By construction, plK + 61 > 0.) 
The first term of (20) can be bounded as follows: 

m 

CPl(log(PlK) - log(b1KI)) 
1=1 

entropy - 
optimal ------- 

heuristic .-.-.... 
- runlength -- 

50 - 

4o  

30 - 

20 - 

0 2 4 6 8 10 12 14 16 
log K 

Fig. 4. Calculated N ( K )  versus log K for binary inputs with p = 0.95. 

Combining (21), (27), and (28) and letting D' = (m - 
1)2" maxj IPjl, we get the following: 

log K - H(X)Nh(K)  I G(K - 1)  + 
I G ( K ) .  

Substituting in for G(.), we need to select 
inequality in (29) is valid: 

D D' D C-- +-<c- -  
K - 1  K 2 -  K '  

or, equivalently, 

D ' K - ~  

(29) 

D so that the 

K - 1  
-DK + D'- < - D K + D ,  (31) f ( 1  + Z a 1 j K - j  K 

which is valid for all D > D'. This completes the proof. 0 

-1 

3=1 

(25) 

where ai3 are coefficients that are polynomial functions Of the 
61's. They do not otherwise depend on K .  Since E;"=, 61 = 0, 

Clearly, the optimal approach is better than the heuristic and 
worse than entropy. So, combining with the theorem above, 
we have the following ordering: 

log K logK-C 
. (32) -- 

H ( X )  
we get the following: H(X) - Ne(K) L No(K) 2 Nh(K) L 

m 

(26) 

Where Pj = E;"=, 6lalj are polynomial functions of the 61's 
and do not otherwise depend on K .  Now we can bound each 
term separately. By construction, 1 + Si/(p;K) > 1/2. Then, 

The second term of (26) can be bounded as follows: 

m-1 

- PjK-j I (m - l)K-'m+x IPjl. (28) 
j=1 3 

IV. COMPUTATIONAL RESULTS 

In this section, we compute BAC efficiencies for the heuris- 
tic and optimal implementations and compare these with 
entropy values. We also compare an implementation of BAC 
and the arithmetic coder of Witten, Neal, and Cleary [25], both 
operating on a binary input, and show that BAC is much faster. 
Source code for the tests presented here can be found in [4]. 

In Fig. 4, we present calculations of N ( K )  for a hypo- 
thetical entropy coder, the optimal BAC, the good heuristic 
BAC, and a simple V to F runlength coder versus log K = 
0 , 1 , .  . . ,16. The input is binary with p = Pr(z  = 1) = 0.95. 
Note that the optimal and heuristic curves closely follow the 
entropy line. The maximum difference between both curves 
and entropy is 4.4 and occurs at log K = 3. In contrast, for 
log K = 16, the optimal is within 2.3 input symbols of the 
entropy and the heuristic within 2.8. This behavior seems to 
be consistent over a wide range of values for p .  The maximum 
difference occurs for a small value of logK. The coders 
improve slightly in an absolute sense as log K grows. At some 
point the daerence seems to level off. The relative efficiency 
increases as the number of codewords grow. At log K = 3, it 
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Entropy Optimal Heuristic Runlength 

N e ( K )  N o ( K )  6 N h ( K )  N R ( K )  
22.2 21.9 0.22 21.9 0.22 5.0 
26.2 25.8 0.24 25.7 0.30 6.7 
34.1 33.2 0.42 33.1 0.47 10.0 
55.9 53.5 0.69 53.1 0.80 20.0 
113.1 103.4 1.37 101.8 1.60 50.0 
198.0 184.9 1.13 181.2 1.36 100.0 

5 -  

4 -  

3 -  

2 -  

1 -  

entropy - 
optimal ------- 

fast 
good ... - 

is 58% for both and, at logK = 16, it is 96% for the optimal 
BAC and 95% for the heuristic BAC. 

In Fig. 5, we present calculations of N ( K )  versus log K 
for a 27 letter English alphabet taken from Blahut [ l ,  p. 211. 
Plotted are N ( K )  for the entropy, optimal, and good and fast 
heuristic BAC’s. On this example, the curves for the optimal 
and the good heuristic are almost indistinguishable. 

In Table I, we present calculated N ( K )  for binary inputs 
and selected p’s with log K = 16, i.e., 16 bit codewords. One 
can see that both the heuristic and optimal BAC’s are efficient 
across the whole range. For instance, with p = 0.80, both 
exceed 98.7% of entropy; with p = 0.95, both exceed 95.0%; 
and with p = 0.99, both exceed 91.5%. 

The computational results support an approximation. For 
all K large enough, H ( X ) N h ( K )  M log K - C. In general, it 
seems to be that < C, where C is taken from Theorem 
2. Also in Table I are computed values of C = logK - 
H ( X ) N h ( K )  for K = 216. 

As another experiment, we implemented BAC and the coder 
of Witten, Neal, and Cleary (referred to as WNC) [25] to assess 
the relative speeds. Source code for WNC appears in their 
paper, so it makes a good comparison. Speed comparisons are 
admittedly tricky. To make the best comparison, both BAC 
and WNC were optimized for a binary input and the encoders 
for both share the same input routine and the decoders the 
same output routine. There are two versions of WNC, a 
straightforward C version, and an optimized C version. We 
implemented both and found that, after optimizing for binary 
inputs, the straightforward version was actually slightly faster 
than the optimized version. Both were tested on the same input 
file, 220 independent and identically distributed bits with a 

TABLE rI 
EXECUTION TIMES FOR BAC AND WNC FOR A 1 MILLION BIT FILE 

Version Time (secs) 
BAC Encoder 4.2 
BAC Decoder 3.7 
WNC Encoder 21.6 
WNC Decoder 29.5 

WNC Decoder (fast) 29.8 

IO Speed (decoder) 1.7 

WNC Encoder (fast) 22.2 

IO Speed (encoder) 2.0 

probability of a 1 equal to 0.95. The execution times on a 
SPARC IPC are listed in Table 11. The times are repeatable 
to within 0.1 seconds. Also listed are the times for input and 
output (IO Speed), i.e., to read in the input one bit at a time 
and write out the appropriate number of bytes, and to read in 
bytes and write out the appropriate number of bits. The IO 
Speed numbers do not reflect any computation, just the input 
and output necessary to both BAC and WNC. 

We see that in this test, the BAC encoder is approximately 5 
times faster than WNC and the BAC decoder is 8 times faster 
than the WNC decoder. Indeed, the BAC times are not much 
longer than the inputloutput operations alone. 

V. EXTENSIONS 
BAC’s can be extended to work in more complicated 

environments than that of i.i.d. symbols considered so far. For 
instance, consider the symbols to be independent, but whose 
probabilities are time varying: 

p ( Z , j )  = Pr(xc, = Q) .  (33) 
Then denote the number of input symbols encoded with K 
output symbols starting at time j by N ( K ,  j ) .  Then, in analogy 
to (2) we get the following: 

m 

N ( K ( j ) , j )  = 1 + Cp(Wvqj.+ l>,j  + I), (34) 
1=1 

where Kl(j)  is the number of codewords assigned to a1 at time 
j .  The heuristic is easy: Choose K l ( j + l )  = b(Z, j )K(j)] .  We 
can also present an optimal dynamic programming solution: 

No(K(j),j) = 1+ 
m 

This problem can be solved backward in time, from a maxi- 
mum j = K - m + 1 to a minimum j = 1. 

As another example consider a time invariant, first order 
Markov source. Let p(ilZ) = Pr(x(j) = ailx(j - 1) = a). 
Then the recursion for N ( K )  splits into two parts. The first 
is for the first input symbol; the second is for all other input 
symbols: 

m 

N ( K )  = 1 + x p i N ( K i ( Z )  (36) 
1=1 
m 

i=l 
(37) 
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where N(KIZ) is the number of input symbols encoded using 
K codewords given that the current input is al. The heuristic 
again is easy: Choose Ki = Ip(ilZ)K]. The optimal solution is 
harder, although it can be done with dynamic programming. 
For every 1, the optimal N,(KIZ) can be found because each 
Ki < K.  In [3], we show a similar optimality result to 
Theorem 2 for a class of first order Markov sources. 

In some applications it is desirable to adaptively estimate the 
probabilities. As with stream arithmetic coding, BAC encodes 
the input in a first-in-first-out fashion. The only requirement is 
that the adaptive formula depends only on previous symbols, 
not on present or future symbols. 

VI. THE EOF PROBLEM 
One practical problem that BAC and other arithmetic coders 

have is denoting the end of the input sequence. In particular, 
the last codeword may be only partially selected. 

The simplest solution to this problem is to count the number 
of symbols to be encoded and to send this count before 
encoding any. It is an easy matter for the decoder to count the 
number of symbols decoded and stop when the appropriate 
number is reached. However, this scheme requires that the 
encoder process the data twice and incurs a transmission 
overhead to send the count. 

The EOF solution proposed in the stream arithmetic coder 
of Witten, Neal, and Cleary [25] and used in FIXARI [22] 
is to create an artificial letter with minimal probability. This 
letter is only transmitted once, denoting the end of the input. 
When the decoder decodes this special letter, it stops. We 
computed BAC’s lost efficiency for binary inputs for a variety 
of probabilities and codebook sizes and found that it averages 
about 7%. For the English text example, the loss averaged 
about 3.5% over a wide range of codebook sizes. 

We propose two alternatives to the simple schemes above 
(see also [2]). The first assumes the channel can tell the 
decoder that no more codewords remain and that the decoder 
is able to “lookahead” a modest number of bits. The idea 
is for the encoder to append to the input sequence as many 
least probable symbols as necessary (possibly zero) to flush 
out the last codeword. After transmitting the last codeword, 
the encoder transmits the number of encoded symbols to the 
decoder. Even with 232 codewords, at most 31 extra input 
symbols are needed. This number can be encoded with 5 bits. 
The decoder looks ahead 5 bits until it detects that no more 
symbols are present. It then discards the appropriate number 
of appended symbols. The overhead caused by this scheme is 
modest: 5 bits at the end and one possibly wasteful codeword. 

The second scheme assumes the channel can not tell the 
decoder that no more codewords remain. We suggest devoting 
one codeword to specify the end of the codeword sequence. 
(Note, we are not suggesting an extra input letter, but one 
of the K codewords.) Then append the extra number of bits 
as above. The inefficiency here includes the 5 bits above and 
the loss due to one less codeword. Using the approximation 
discussed in Section IV above, one computes the relative 

inefficiency as follows: 

M (K(1og K - Cl))-’ (38) 
log K - C’ - log(K - 1) + C’ 

log K - C‘ 
For K large enough, this overhead is negligible. 

WI. CONCLUSIONS AND DISCUSSION 

We believe that BAC represents an interesting alternative in 
entropy coding. BAC is simple to implement, even for large 
block sizes, because the algorithm is top-down and regular. 
In contrast, Huffman’s and Tunstall’s algorithms are not top- 
down and generally require storing and searching a codebook. 

BAC is efficient, though probably slightly less efficient than 
ordinary arithmetic coding. The comparison with Huffman is 
a little more complicated. The asymptotic result for BAC is, 
on the surface, weaker than for Huffman. The BAC bound 
uses C which must be computed on a case by case basis, 
while the Huffman bound is 1. Both coders can be made as 
relatively efficient as desired by selecting the block size large 
enough. However, BAC can use much larger block sizes than 
is practical for Huffman. The BAC asymptotic result is much 
stronger than that for Tunstall’s coder. For BAC, the difference 
between entropy and the heuristic rates is bounded. Tunstall 
shows only that the ratio of rates of entropy and his coder 
approaches 1 as K + 03. 

In the proof for Theorem 2, we have shown that a constant, 
C, exists that bounds the difference between entropy and the 
heuristic BAC for all K. We have made no effort to actually 
evaluate the constant from the conditions given in the proof. 
This is because such an evaluation would be worthless in 
evaluating the performance of BAC. As shown in Section IV, 
the constant in practice is quite small. One important need for 
future research is to provide tight bounds for C and, perhaps, 
to characterize the difference between the entropy rate and 
BAC more accurately. 

One advantage of BAC compared to Huffman and stream 
arithmetic coding is that BAC uses fixed length output code- 
words. In the presence of channel errors, BAC will not suffer 
catastrophic failure. The other two might. 

We have also argued that BAC can accommodate more 
complicated situations. Certainly the heuristic can handle 
time varying and Markov probabilities. It can estimate the 
probabilities adaptively. It remains for future work to prove 
optimality results for these more complicated situations. 
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