
1546 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 5, SEPTEMBER 1993

Block Arithmetic Coding for Source Compression
Charles G. Boncelet Jr., Member IEEE

Abstruct- We introduce “Block Arithmetic Coding” (BAC), a
technique for entropy coding that combines many of the advan-
tages of ordinary stream arithmetic coding with the simplicity
of block codes. The code is variable length in to fixed out (V
to F), unlike Huffman coding which is fixed in to variable out
(F to V). We develop two versions of the coder: 1) an optimal
encoder based on dynamic programming arguments, and 2) a
suboptimal heuristic based on arithmetic coding. The optimal
coder is oetimal over all V to F complete and proper block codes.
We show that the suboptimal coder achieves compression that is
within a constant of a perfect entropy coder for independent and
identically distributed inputs. BAC is easily implemented, even
with large codebooks, because the algorithms for coding and
decoding are regular. For instance, codebooks with 232 entries
are feasible. BAC also does not suffer catastrophic failure in the
presence of channel errors. Decoding emrs am confined to the
block in question. The encoding is in practice reasonably efficient.
With i.i.d. binary inputs with P(1) = 0.95 and 16 bit codes,
entropy arguments indicate at most 55.8 bits can be encoded; the
BAC heuristic achieves 53.0 and the optimal BAC achieves 53.5.
Finally, BAC appears to be much faster than ordinary arithmetic
coding.

Index Terms-Arithmetic codes, block codes, variable to fixed
codes, entropy compression.

I. INTRODUCTION

E introduce a method of source coding called Block W Arithmetic Coding (BAC). BAC is a variable in to
fixed out block coder (V to F) unlike Huffman codes which
are fixed in to variable out (F to V). BAC is simple to imple-
ment, efficient, and usable in a wide variety of applications.
Furthermore, BAC codes do not suffer catastrophic failure in
the presence of channel errors. Decoding errors are confined
to the block in question.

Consider the input, X = 21x2~3 ... to be a sequence of
independent and identically distributed input symbols taken
from some input alphabet A = {al, a2,. . . , am}. The symbols
obey probabilities p3 = Pr(xl = a3) . Assume that p3 > 0 for
all j. The entropy of the source is

m

H(X) = - CPZ logm. (1)
z=1

(We will measure all entropies in bits.) The compression
efficiency of entropy encoders is bounded below by the
entropy. For F to V encoders, each input symbol requires on

Manuscript received September 9, 1991; revised February 15, 1993. This
paper was presented in part in The 1992 Conference on Information Sciences
and Systems, Princeton, NJ, March 1992. This work was performed in part
while the author was visiting at the University of Michigan.

The author is with the Department of Electrical Engineering, University of
Delaware, Newark, DE 19716.

IEEE Log Number 9211435.

average at least H(X) output bits; for V to F encoders, each
output bit can on average represent at most ,1/H(X) input
symbols.

The most important entropy compressor is Huffman coding
[9]. Huffman codes are F to V block codes. They block
the input into strings of q letters and encode these strings
with variable length output strings. It is well-known that the
number of output bits of a Huffman code is bounded above
by q H (X) + 1 for all block sizes. In special cases, this bound
can be tightened [5], [17]. As a result the relative efficiency of
Huffman codes can be made as high as desired by taking the
block size to be large enough. In practice, however, large block
sizes are difficult to implement. Codebooks are usually stored
and must be searched for each input string. This storage and
searching limits block sizes to small values. (However, see
Jakobsson [111 .)

Huffman codes can be implemented adaptively, but it is
difficult to do so. The process of generating Huffman code
trees is sufficiently cumbersome that adapting the tree on a
symbol by symbol basis is rarely computationally efficient.

In recent years, a class of entropy coders called arithmetic
coders has been studied and developed [SI, [13], [MI-[21],
[25]. Arithmetic coders are stream coders. They take in an ar-
bitrarily long input and output a corresponding output stream.
Arithmetic coders have many advantages. On average, the
ratio of output length to input length can be very close to
the source entropy. The input probabilities can be changed on
a symbol by symbol basis and can be estimated adaptively.
However, arithmetic codes have certain disadvantages. In
some applications, the encoding and decoding steps are too
complicated to be done in real time.

The entropy coder most similar to BAC is due to Tunstall
[23], attributed in [12]. Tunstall’s encoder is a V to F block
coder that operates as follows: Given a codebook with K -
m + 1 output symbols, a codebook with K output symbols
is generated by “splitting” the most probable input sequence
into m successors, each formed by appending one of the a3.
Unfortunately, the encoding of input sequences appears to
require searching a codebook. Thus, large block sizes appear
to be prohibitive, both in creating the code and in searching
it. This has the practical effect of limiting block sizes to small
values.

Recently, a V to F block arithmetic coder has been proposed
by Teuhola and Raita [22]. While similar in spirit to this work,
their coder, named FIXARI, differs in many details from BAC.
FIXARI parses the input differently from BAC and encodes
each string differently. The analysis of FIXARI is entirely
different from the analysis of BAC presented in Section 111.
FIXARI does appear to be fast.

0018-9448/93$03.00 0 1993 IEEE

BONOCELET BLOCK ARiTHMETIC CODING FOR SOURCE COMPRESSION 1547

Other V to F entropy coders are runlength [7] and Ziv-
Lempel [14], [24], [27]. Runlength codes count the runs
of single symbols and encode the runs by transmitting the
number in each run. They work well when the probabilities are
highly skewed or when there is significant positive correlation
between symbols. Runlength codes are often used for small
alphabets, especially binary inputs. Then the runlength code is
particularly simple since, by necessity, the runs alternate be-
tween l’s and 0’s. Runlength codes are occasionally combined
with Huffman to form a variable in to variable out (VtoV)
scheme. For example, consider the CCI’IT facsimile code [lo]
or the more general VtoV runlength codes of Elias [6].

Ziv-Lempel codes work on different principles than BAC
codes or the other codes considered so far. They find sub-
strings of input symbols that appear frequently and encode
each with a fixed length codeword. Ziv-Lempel codes work
particularly well on English text, as they can discover complex
dependencies between the symbols.

One advantage of most fixed output length block coders,
including BAC, is that the effects of transmission errors
(symbols received incorrectly) are confined to the block in
question. The .decoder does not lose synchronism with the
incoming bit stream. While the corrupted block may be de-
coded incorrectly, remaining blocks will be decoded correctly.
However, there may be insertions or deletions in the decoded
stream. These insertions and deletions can usually be dealt
with at the application level. In contrast, Huffman codes and
arithmetic codes can lose synchronism and suffer catastrophic
failure in the presence of channel errors. (It is often argued
that Huffman codes are self-synchronizing, but this is not
guaranteed. Various techniques have been proposed to combat
this problem. See, e.g., [16].)

One subtle point is that fixed output length codes can
still suffer catastrophic failure if implemented in an adaptive
fashion. If the probability estimates depend on previously
transmitted symbols, then a single error can affect other blocks.
In particular, Ziv-Lempel codes are usually implemented in an
adaptive fashion and are susceptible to catastrophic failure if
their dictionaries get corrupted. BAC codes will be vulner-
able to the same catastrophic failure if the probabilities are
estimated adaptively based on prior symbols.

Finally, there is a growing recognition that V to F codes can
outperform F to V codes with strong dependencies between
symbols [MI, [26]. The idea is that, for a fixed number of
symbols, V to F codes can match long input strings. For
example, a runlength coder with K codewords can match a
run of up to K - 1 symbols. This run can be encoded with
approximately log K bits, resulting in an exponential gain. In
contrast, Huffman codes only give arithmetic gains. For K
large enough, the V to F coder is more efficient.

This paper is organized as follows: Section I1 develops the
optimal and heuristic BAC’s. In Section 111, we present the
principal theoretical result of this paper: that BAC’s are within
an additive constant of the entropy for all code sizes. Section
IV presents computations illustrating the efficiency of BAC’s.
Section V discusses extensions to time varying and Markov
symbols, Section VI discusses the EOF problem and proposes
two new solutions, and Section VI1 presents conclusions and
discussion.

11. DEVELOPMENT OF BLOCK ARITHMETIC CODING

The BAC encoder parses the input into variable length
input strings and encodes each with single fixed length output
codewords.

The following definitions are taken from Jelinek and Schnei-
der [12]: Let W (K) = {wi : 1 5 i 5 K } be a K element
collection of words, wi, with each word a substring of X.
W (K) is proper if, for any two words, w; and wj with i # j ,
wi is not a prefix of wj. W (K) is complete if every infinite
length input string has a prefix in W . The characterization in
[15] is succinct: a code is complete and proper if every infinite
length input string has one and only one prefix in W (K) .

It is useful to think of complete and proper from the
viewpoint of parsing trees. Proper means that the codewords
are all leafs of the tree; complete means that all the nodes in the
tree are either leafs or they are internal nodes with m children.

The number of codewords in complete and proper sets is
1 + L(m - 1) for L = 1,2 , . . . [12]. This result is also easy to
derive from the viewpoint of trees. The root has m children
(L = 1). Each time a leaf node is replaced by m children, a
net gain of m - 1 leafs result. Below, we will allow L = 0 so
that one codeword can be allowed in appropriate sets.

We assume that to each output codeword is assigned an
integer index i with i = 1 , 2 , . . . , Ks. Let S be the set
of output codewords. Consider a subset of codewords with
contiguous indices. Denote the first index by A and the last by
B. The number of codewords in the subset is K = B - A + 1.

BAC proceeds by recursively splitting S into disjoint sub-
sets. With each input symbol, the current subset is split into m
nonempty, disjoint subsets, one for each possible input letter.
The new subset corresponding to the actual letter is chosen
and the process continues recursively. When the subset has
fewer than m codewords, BAC stops splitting, outputs any
of the codewords in the subset, reinitializes, and continues.
The ideal situation is that each final subset contain only 1
codeword; otherwise, the “extra” codewords are wasted.

Denote the number of codewords in each of the m disjoint
subsets by Kl(K), where K is the number of codewords in
the current set. Usually, we will suppress the dependence on
K and. denote the number simply by Kl.

The question of how the Kl should be selected is central to
the remainder of this paper. We can identify five criteria that
are necessary or desirable:

1) Kl > 0.
2) C E I K l L K .
3) C;”=,Ki = K.
4) Kl = 1 + Ll(m - 1) for some LI = 0 , 1 , 2 ,
5) If p j > pi, then Kj 2 Ki.

Criteria Q1 and Q2 are necessary to ensure that the parsing
is complete and proper and that the encoding can be decoded.
Each subset must have at least one codeword and the sum of
all the subsets cannot exceed the total available.

Criteria Q3, Q4, and Q5 are desirable in that meeting each
results in a more efficient encoding. In effect, Q3 says that one
ought to use all the codewords that are available. Q4 assures
that the number of codewords in each subset is equal to one
(a leaf) or is the number in a complete and proper set. For

1548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 5, SEPTEMBER 1993

/* BAC Encoder */
K = Ks;
A = 1;

while ((I = getinput()) # EOF)

{
Compute Ifl, Kz,. . .,If,,,;

A = A + IC,;

K = If(;

if (If < m)

{
Output code(A);

A = 1;

If = Ifs;

I
I

doeof(A, I();

Fig. 1. Basic BAC Encoder.

f* BAC Decoder *f

while ((C = getindexcode()) # EOF)

I
If = KS;
A = 1;

while (If 1 m)

t
Compute ICl, Ifz,. . .,IC,,,;

Find 1 s.t. A +
output ai;

A = A + .E!=; K,;
If = If1;

I

IC; _< C < A + E!=, K,;

1
undoeof(A, If);

Fig. 2. Basic BAC Decoder

example, consider m = 3 and K = 5. The subsets should
be divided into some permutation of 1,1,3, and not 1,2,2.
In the former case, the set with 3 elements can be divided
one more time; in the latter case, none of the subsets can.
Note, Q3 and Q4 can both be satisfied if the initial K satisfies
K = 1 + L(m - 1) and ELl Ll = L - 1. Q5 merely reflects
the intuitive goal that more probable letters should get more
codewords. In theory, Q5 can always be met by sorting the
Kl’s in the same order as the pl’s. Sometimes in practice,
e.g., in adaptive models, it may be computationally difficult to
know the sorted order and meeting Q5 may be problematic.

The BAC encoding algorithm is given in Fig. 1. The BAC
decoding algorithm is given in Fig. 2.

We assume that the various functions behave as follows:
[getinputo] Returns the index of the next input symbol to

[code(A)] Returns the codeword corresponding to codeword

[doeof(A, K)] Handles input end-of-file (EOF). Discussed

be coded. If a, is the next letter, then it returns r .

index, A.

below in Section VI.

[getindexcodeo] Returns the index of the next codeword

[undoeofo] Undoes the effect of doeof().
As examples of the kinds of parsings available, consider the

following for binary inputs (a1 = O,a2 = 1):
Let K1 = K - 1 and K2 = 1. These are runlength codes
for runs of 0’s. Similarly, if K1 = 1 and K2 = K - 1,
we get runlength codes for runs of 1’s. The parsing trees
are as much “left” or “right” as possible.
Let K1(Ks) = Ks/2 and Kz(K.9) = Ks/2. If the first
symbol is a 1, then let K1 = K - 1 and K2 = 1 for
all other K’s; else, let K1 = 1 and K2 = K - 1. These
are symmetric runlength codes, useful when the starting
value is unknown.
Let K1 = K/2 and K2 = K/2. These codes map the
input to output in an identity-like fashion.

With the conditions above, we can state the following theorem:
Theorem 1 Block Arithmetic Codes are complete and

proper. Furthermore, all complete and proper parsings can be
developed as BAC’s.

Proojl It is easiest to develop this equivalence with
parsing trees. BAC codes are complete and proper from their
construction. They are proper because no outputs are generated
at nonleaf nodes; they are complete because each terminal
node has m - 1 siblings. For the converse, consider any
complete and proper parsing as a tree. At each node of the
tree, a BAC coder can reproduce the same tree by appropriately
choosing the subset sizes, Kl. For instance, at the root node,
count the number of leafs in each branch. Use each of these
numbers for Kl, respectively. The process can clearly continue
at each node. 0

In the case considered so far of independent and identically
distributed input symbols, it is straightforward to derive an
expression for the efficiency of a code. Let N (K) denote the
expected number of input symbols encoded with K output
symbols. Due to the recursive decomposition, one obtains the
following recursive formula:

taken from the channel.

The “1” is for the current symbol, zj. The sum follows from
considering all possible choices for z. With probability p l ,
the input is a1 and the subset chosen has Kl codewords. The
expected number of input symbols encoded from here onward
is N(Kl) .

Since this equation is crucial to the rest of this development,
we also present an alternate derivation. N (K) , as the expected
number of input symbols encoded with K output symbols, can
be written as

where ni is the number of bits in wi. Parse wi = aljw:
where al,; is the first letter in w;. Then n: = n; - 1 and, by

BONOCELET BLOCK ARITHMETIC CODING FOR SOURCE COMPRESSION 1549

independence, Pr(w;) = Pr(a1,;) Pr(wi). Thus,

K

i=l
K

i=l
111

na

(3)
1=1

(3) follows because Kl codewords start with al.

The boundary conditions are easy and follow from the
sjmple requirement that at least m codewords are needed to
encode a single symbol:

N (K) = O K = 0 , 1 , ..., m-1 . (4)

Note, one application of (2) yields N (m) = 1. While hard to
compute N (K) in closed form, except in special cases, (2)
and (4) are easy to program.

For an example of an easy case, consider ordinary runlength
coding for binary inputs. Letting N,(K) refer to the expected
number of input symbols encoded with K output codewords
using runlength encoding, then the recursion simplifies to

N,(K) = 1 + pN?.(K - 1) + qN,(l)
= 1 + p N , (K - l) , (5)

where p is the probability of a symbol in the current run and
q = 1 - p. (5) follows since N,(1) = 0. The solution to this
linear difference equation is

N,(K) = (1 - pK-1)/(1 - p). (6)

Interestingly, this solution asymptotically approaches 1/(1 -
p). We arrive at the well-known conclusion that V to F
runlength codes do not work well for large block sizes.

We propose two specific rules for determining the size of
each subset. The first is an optimal dynamic programming
approach, letting N,(K) be the optimal expected number of
input symbols encoded using K output codewords:

m

subject to the constraints Kl 2 1 and CEIKl = K. This
optimization is readily solved by dynamic programming since
all the Kl obey Kl < K. However, if m is large, a full search
may be computationally prohibitive. The optimal solution can
be stored in tabular form and implemented with a table lookup.
Note, the optimal codebook does not have to be stored, only
the optimal subset sizes.

The second is a heuristic based on ordinary arithmetic cod-
ing. In arithmetic coding, an interval is subdivided into disjoint
subintervals with the size of each subinterval proportional to
the probability of the corresponding symbol. We propose to
do the same for BAC. Kl should be chosen as close to plK

/* Good Heuristic to determine the L’s (Kt = 1 + Ll(m - 1)) */
Sort the symbols so that p1 5 p1 5 . 5 pm.

q = 1.0;

f,=&
for (I = 1; l 5 m; I++)

{

fi = P1/%
4 = Ifif, + ((fi(2 - I) - l)/(m - 1) + 0.5)];

if (LI < 0)

LI = 0;

f, = i - Lt;

I
q = q - p 1 .

Fig. 3. “Good” probability quantizer. Computes L1 for 1 = 1 , 2 , . . . , m
given L. Note, all quantities not involving L can be precomputed.

as possible. Let Kl = [plK], where [SI is the quantization of
s, with the proviso that each Kl 2 1.

One way to do the quantization consistent with Q 1 4 4
above is described in Fig. 3. The idea is to process the input
letters from least probable to most probable and, for each letter,
to keep track of the number of codewords remaining and the
total probability remaining. The algorithm actually computes
Ll, not Kl, as the former is somewhat easier. Note, Q5 may
not be satisfied due to quantization effects. However, our
computations and simulations indicate that it almost always is.
Furthermore, Q5 can be satisfied if desired by sorting the Lz’s.

One drawback of the “Good” quantizer in Fig. 3 is that
the Ll’s are computed one at a time from the least probable
letter up to the letter input. Potentially, this loop may execute
m times for each input symbol. For large m, this may be
too slow. One way to circumvent this problem is the “Fast”
quantizer described below. The idea behind the fast quantizer
is to compute a “cumulative L function”, Rl, or, equivalently,
a “cumulative K function”, Ql, and form either Ll or Kl =
1 + (m - 1)Ll by taking a difference. The equations for R
and L take the form:

Ro = 0 (8)

(9)

(10)

R1 = [(L - 1) -&I
j=1

Ll = RI - Rl-1

Those for Q and K are as follows:

Qo = 0 (11)
Ql = 1 + (m - 1)Rl (12)
KZ = QI - Qz-1 (13)

The “Fast” quantizer satisfies Q 1 4 4 , though not necessarily
Q5. For large alphabets it is slightly less efficient than the
“Good” quantizer, but is much faster because there is no loop
over all the symbols.

The algorithmic complexity of BAC can be summarized
as follows: Using the good heuristic, the encoder can require
up to m - 1 multiplications per input symbol, and a similar

1550 IEEE TRANSACTIONS ON INFORh4tWION THEORY, VOL. 39, NO. 5, SEPTEMBER 1993

number of additions; using the fast heuristic, it only requires
two multiplications and a fixed number of additions and
comparisons per input symbol. The decocler does the same
computations of Kl (or LI) as the encoder, but also has to
search for the proper interval. This searching can be done in
O(1og m) operations. Thus, the encoder can be implemented
in 0 (1) or O(m) operations per input symbol and the decoder
in O(1ogm) or O(m) operations, depending on whether the
fast or the good heuristic is used. In the special case of
binary inputs, there is little difference, both in complexity and
performance, between the two heuristics. After the Kl’s have
been computed, the optimal BAC can be implemented with no
multiplications and a similar number of additions to the fast
heuristic. However, the one time cost of computing the optimal
Kl’s may be high (a brute force search requires approximately
O(mLS) operations if m is large, where KS = l+Ls(m-l)) .
In some applications, it is convenient to combine the optimal

and heuristic approaches in one hybrid approach: use the opti-
mal sizes for small values of K and use the heuristic for large
values. As we argue in Section IV, both encoders incur their
greatest inefficiency for small values of K. For instance, an
encoder can begin with the heuristic until 256-1024 codewords
are left and then switch to the optimal.

Letting N h (K) represent the expected number of input sym-
bols encoded with K output codewords under the heuristic, the
expression for N (K) becomes

m

Nh(K) = 1 + CPlNh(blK1) . (14)
1=1

For the moment, if we ignore the quantizing above, relax
the boundary conditions, and consider N (.) to be a function
of a continuous variable, say s, we get the following equation:

enough. See, e.g., Fig. 3.) In this section, we will take all
“logs” to be natural logs to the base e.
Theorem 1 For independent and identically distributed

inputs,

logK - H(X)Nh(K) 5 c, (17)

for all K and some constant C. (C depends on the proba-
bilities, the quantization, and on the size of the alphabet, but
not on K.)

Proofi We will actually show a stronger intermediate
result, namely that

D
K logK - H(X)Nh(K) I G(K) = C - -, (18)

where D > 0. Clearly C - D/K 5 C.
The proof is inductive. There are three constants to be

determined: C and D, and a splitting constant, Kc. First,
select any KC such that KC > 2m/pl, where p l > 0 is the
minimum of the pl’s.

The basis is as follows: For all K 5 Kc, and for any
D > 0, we can choose C so that

D c 2 logK - H (X) N h (K) +
(19)

D
1

2 log K c - 0 + -,
where, clearly, N h (K) 2 0 and D/K 5 D. At this point, K c
has been determined and C has been specified in terms of D
and the proposition holds for all K 5 KC.

For the inductive step, we now assume that (18) applies for
all K I K’ for some K‘ 2 Kc. Then, we find a condition
on D so that (18) applies for all K. Let K = K’ + 1, then

logK - H(X)Nh(K)

where the subscript e refers to “entropy”. The entropy rate for
V to F codes, 1=1

- H (X) - C P l W) N h (b l K l)

satisfies this equation.’ Thus we see that, in the absence of
quantization effects, BAC codes are entropy codes. As we
argued above, for large K the quantization effects are small.
Furthermore, logK is a slowly varying function of K. We
might expect the heuristic to perform close to the optimal,
entropy rate. In fact, we prove in Section I11 below that Nh (K)
is within an additive constant (which depends on the p’s and
m) of the entropy rate for all K.

111. ASYMPT~TIC RESULTS

Consider the heuristic encoder discussed above. Assume the
quantization is done so that, for K large enough, blK] =
prK + 61, where 1611 5 m. Assume further that CZ, 61 =
0. (Such quantization can always be achieved for K large

‘We believe this entropy solution uniquely solves (15), but have been unable
to prove uniqueness.

1=1

The inductive hypothesis is used in (20). The last term above
is easily bounded since G(-) is nondecreasing:

BONOCELET BLOCK ARITHMETIC CODING FOR SOURCE COMPRESSION 1551

If 61 2 0, then

Similarly, if 61 < 0,
z

rpi K

(By construction, plK + 61 > 0.)
The first term of (20) can be bounded as follows:

m

CPl(log(PlK) - log(b1KI))
1=1

entropy -
optimal -------

heuristic .-.-....
- runlength --

50 -

4o

30 -

20 -

0 2 4 6 8 10 12 14 16
log K

Fig. 4. Calculated N (K) versus log K for binary inputs with p = 0.95.

Combining (21), (27), and (28) and letting D' = (m -
1)2" maxj IPjl, we get the following:

log K - H(X)Nh(K) I G(K - 1) +
I G (K) .

Substituting in for G(.), we need to select
inequality in (29) is valid:

D D' D C-- +-<c- -
K - 1 K 2 - K '

or, equivalently,

D ' K - ~

(29)

D so that the

K - 1
-DK + D'- < - D K + D , (31) f (1 + Z a 1 j K - j K

which is valid for all D > D'. This completes the proof. 0

-1

3=1

(25)

where ai3 are coefficients that are polynomial functions Of the
61's. They do not otherwise depend on K . Since E;"=, 61 = 0,

Clearly, the optimal approach is better than the heuristic and
worse than entropy. So, combining with the theorem above,
we have the following ordering:

log K logK-C
. (32) --

H (X)
we get the following: H(X) - Ne(K) L No(K) 2 Nh(K) L

m

(26)

Where Pj = E;"=, 6lalj are polynomial functions of the 61's
and do not otherwise depend on K . Now we can bound each
term separately. By construction, 1 + Si/(p;K) > 1/2. Then,

The second term of (26) can be bounded as follows:

m-1

- PjK-j I (m - l)K-'m+x IPjl. (28)
j=1 3

IV. COMPUTATIONAL RESULTS

In this section, we compute BAC efficiencies for the heuris-
tic and optimal implementations and compare these with
entropy values. We also compare an implementation of BAC
and the arithmetic coder of Witten, Neal, and Cleary [25], both
operating on a binary input, and show that BAC is much faster.
Source code for the tests presented here can be found in [4].

In Fig. 4, we present calculations of N (K) for a hypo-
thetical entropy coder, the optimal BAC, the good heuristic
BAC, and a simple V to F runlength coder versus log K =
0 , 1 , . . . ,16. The input is binary with p = Pr(z = 1) = 0.95.
Note that the optimal and heuristic curves closely follow the
entropy line. The maximum difference between both curves
and entropy is 4.4 and occurs at log K = 3. In contrast, for
log K = 16, the optimal is within 2.3 input symbols of the
entropy and the heuristic within 2.8. This behavior seems to
be consistent over a wide range of values for p . The maximum
difference occurs for a small value of logK. The coders
improve slightly in an absolute sense as log K grows. At some
point the daerence seems to level off. The relative efficiency
increases as the number of codewords grow. At log K = 3, it

1552

P
0.80
0.85
0.90
0.95
0.98
0.99

IEEE TRANSACTIONS ON I N F O W O N THEORY, VOL. 39, NO. 5, SEITEMBER 1993

Entropy Optimal Heuristic Runlength

N e (K) N o (K) 6 N h (K) N R (K)
22.2 21.9 0.22 21.9 0.22 5.0
26.2 25.8 0.24 25.7 0.30 6.7
34.1 33.2 0.42 33.1 0.47 10.0
55.9 53.5 0.69 53.1 0.80 20.0
113.1 103.4 1.37 101.8 1.60 50.0
198.0 184.9 1.13 181.2 1.36 100.0

5 -

4 -

3 -

2 -

1 -

entropy -
optimal -------

fast
good ... -

is 58% for both and, at logK = 16, it is 96% for the optimal
BAC and 95% for the heuristic BAC.

In Fig. 5, we present calculations of N (K) versus log K
for a 27 letter English alphabet taken from Blahut [l , p. 211.
Plotted are N (K) for the entropy, optimal, and good and fast
heuristic BAC’s. On this example, the curves for the optimal
and the good heuristic are almost indistinguishable.

In Table I, we present calculated N (K) for binary inputs
and selected p’s with log K = 16, i.e., 16 bit codewords. One
can see that both the heuristic and optimal BAC’s are efficient
across the whole range. For instance, with p = 0.80, both
exceed 98.7% of entropy; with p = 0.95, both exceed 95.0%;
and with p = 0.99, both exceed 91.5%.

The computational results support an approximation. For
all K large enough, H (X) N h (K) M log K - C. In general, it
seems to be that < C, where C is taken from Theorem
2. Also in Table I are computed values of C = logK -
H (X) N h (K) for K = 216.

As another experiment, we implemented BAC and the coder
of Witten, Neal, and Cleary (referred to as WNC) [25] to assess
the relative speeds. Source code for WNC appears in their
paper, so it makes a good comparison. Speed comparisons are
admittedly tricky. To make the best comparison, both BAC
and WNC were optimized for a binary input and the encoders
for both share the same input routine and the decoders the
same output routine. There are two versions of WNC, a
straightforward C version, and an optimized C version. We
implemented both and found that, after optimizing for binary
inputs, the straightforward version was actually slightly faster
than the optimized version. Both were tested on the same input
file, 220 independent and identically distributed bits with a

TABLE rI
EXECUTION TIMES FOR BAC AND WNC FOR A 1 MILLION BIT FILE

Version Time (secs)
BAC Encoder 4.2
BAC Decoder 3.7
WNC Encoder 21.6
WNC Decoder 29.5

WNC Decoder (fast) 29.8

IO Speed (decoder) 1.7

WNC Encoder (fast) 22.2

IO Speed (encoder) 2.0

probability of a 1 equal to 0.95. The execution times on a
SPARC IPC are listed in Table 11. The times are repeatable
to within 0.1 seconds. Also listed are the times for input and
output (IO Speed), i.e., to read in the input one bit at a time
and write out the appropriate number of bytes, and to read in
bytes and write out the appropriate number of bits. The IO
Speed numbers do not reflect any computation, just the input
and output necessary to both BAC and WNC.

We see that in this test, the BAC encoder is approximately 5
times faster than WNC and the BAC decoder is 8 times faster
than the WNC decoder. Indeed, the BAC times are not much
longer than the inputloutput operations alone.

V. EXTENSIONS
BAC’s can be extended to work in more complicated

environments than that of i.i.d. symbols considered so far. For
instance, consider the symbols to be independent, but whose
probabilities are time varying:

p (Z , j) = Pr(xc, = Q) . (33)
Then denote the number of input symbols encoded with K
output symbols starting at time j by N (K , j) . Then, in analogy
to (2) we get the following:

m

N (K (j) , j) = 1 + Cp(Wvqj.+ l>,j + I), (34)
1=1

where Kl(j) is the number of codewords assigned to a1 at time
j . The heuristic is easy: Choose K l (j + l) = b(Z, j)K(j)] . We
can also present an optimal dynamic programming solution:

No(K(j),j) = 1+
m

This problem can be solved backward in time, from a maxi-
mum j = K - m + 1 to a minimum j = 1.

As another example consider a time invariant, first order
Markov source. Let p(ilZ) = Pr(x(j) = ailx(j - 1) = a).
Then the recursion for N (K) splits into two parts. The first
is for the first input symbol; the second is for all other input
symbols:

m

N (K) = 1 + x p i N (K i (Z) (36)
1=1
m

i=l
(37)

BONOCELET BLOCK ARITHMETIC CODING FOR SOURCE COMPRESSION 1553

where N(KIZ) is the number of input symbols encoded using
K codewords given that the current input is al. The heuristic
again is easy: Choose Ki = Ip(ilZ)K]. The optimal solution is
harder, although it can be done with dynamic programming.
For every 1, the optimal N,(KIZ) can be found because each
Ki < K. In [3], we show a similar optimality result to
Theorem 2 for a class of first order Markov sources.

In some applications it is desirable to adaptively estimate the
probabilities. As with stream arithmetic coding, BAC encodes
the input in a first-in-first-out fashion. The only requirement is
that the adaptive formula depends only on previous symbols,
not on present or future symbols.

VI. THE EOF PROBLEM
One practical problem that BAC and other arithmetic coders

have is denoting the end of the input sequence. In particular,
the last codeword may be only partially selected.

The simplest solution to this problem is to count the number
of symbols to be encoded and to send this count before
encoding any. It is an easy matter for the decoder to count the
number of symbols decoded and stop when the appropriate
number is reached. However, this scheme requires that the
encoder process the data twice and incurs a transmission
overhead to send the count.

The EOF solution proposed in the stream arithmetic coder
of Witten, Neal, and Cleary [25] and used in FIXARI [22]
is to create an artificial letter with minimal probability. This
letter is only transmitted once, denoting the end of the input.
When the decoder decodes this special letter, it stops. We
computed BAC’s lost efficiency for binary inputs for a variety
of probabilities and codebook sizes and found that it averages
about 7%. For the English text example, the loss averaged
about 3.5% over a wide range of codebook sizes.

We propose two alternatives to the simple schemes above
(see also [2]). The first assumes the channel can tell the
decoder that no more codewords remain and that the decoder
is able to “lookahead” a modest number of bits. The idea
is for the encoder to append to the input sequence as many
least probable symbols as necessary (possibly zero) to flush
out the last codeword. After transmitting the last codeword,
the encoder transmits the number of encoded symbols to the
decoder. Even with 232 codewords, at most 31 extra input
symbols are needed. This number can be encoded with 5 bits.
The decoder looks ahead 5 bits until it detects that no more
symbols are present. It then discards the appropriate number
of appended symbols. The overhead caused by this scheme is
modest: 5 bits at the end and one possibly wasteful codeword.

The second scheme assumes the channel can not tell the
decoder that no more codewords remain. We suggest devoting
one codeword to specify the end of the codeword sequence.
(Note, we are not suggesting an extra input letter, but one
of the K codewords.) Then append the extra number of bits
as above. The inefficiency here includes the 5 bits above and
the loss due to one less codeword. Using the approximation
discussed in Section IV above, one computes the relative

inefficiency as follows:

M (K(1og K - Cl))-’ (38)
log K - C’ - log(K - 1) + C’

log K - C‘
For K large enough, this overhead is negligible.

WI. CONCLUSIONS AND DISCUSSION

We believe that BAC represents an interesting alternative in
entropy coding. BAC is simple to implement, even for large
block sizes, because the algorithm is top-down and regular.
In contrast, Huffman’s and Tunstall’s algorithms are not top-
down and generally require storing and searching a codebook.

BAC is efficient, though probably slightly less efficient than
ordinary arithmetic coding. The comparison with Huffman is
a little more complicated. The asymptotic result for BAC is,
on the surface, weaker than for Huffman. The BAC bound
uses C which must be computed on a case by case basis,
while the Huffman bound is 1. Both coders can be made as
relatively efficient as desired by selecting the block size large
enough. However, BAC can use much larger block sizes than
is practical for Huffman. The BAC asymptotic result is much
stronger than that for Tunstall’s coder. For BAC, the difference
between entropy and the heuristic rates is bounded. Tunstall
shows only that the ratio of rates of entropy and his coder
approaches 1 as K + 03.

In the proof for Theorem 2, we have shown that a constant,
C, exists that bounds the difference between entropy and the
heuristic BAC for all K. We have made no effort to actually
evaluate the constant from the conditions given in the proof.
This is because such an evaluation would be worthless in
evaluating the performance of BAC. As shown in Section IV,
the constant in practice is quite small. One important need for
future research is to provide tight bounds for C and, perhaps,
to characterize the difference between the entropy rate and
BAC more accurately.

One advantage of BAC compared to Huffman and stream
arithmetic coding is that BAC uses fixed length output code-
words. In the presence of channel errors, BAC will not suffer
catastrophic failure. The other two might.

We have also argued that BAC can accommodate more
complicated situations. Certainly the heuristic can handle
time varying and Markov probabilities. It can estimate the
probabilities adaptively. It remains for future work to prove
optimality results for these more complicated situations.

REFERENCES

[l] R. E. Blahut, Principles and Practice of Information Theory. Reading,
MA: Addison-Wesley, 1987.

[2] C. G. Boncelet, Jr., “Extensions to block arithmetic coding,” in Proc.
1992 ConfInform. Sci. and Syst., Princeton NJ, Mar. 1992, pp. 691-695.

[3] -, “Block arithmetic coding for Markov sources,” in Proc. 1993
Inform. T h o v Symp., San Antonio, TX, Jan. 1993.

[4] -, “Experiments in block arithmetic coding,” Univ. Delaware, Dep.
Elec. Eng., Tech. Rep. 93-2-1,1993.

[5] R. M. Capocelli and A. De Santis, “New bounds on the redundancy of
Hufhnan codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 1095-1104,
July 1991.

[6] R. Elias, “Universal codeword sets and representation of the integers,”
IEEE Trans. Inform. Theory, vol. IT-21, pp. 194-203, Mar. 1975.

[7] S. W. Golomb, “Run-length encodings,” IEEE Transhaform. Theory,

,

vol. IT-12, pp. 399401, July 1966.

1554 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 5, SEPTEMBER 1993

[8] M. Guazzo, “A general minimum-redundancy source-coding algorithm,”
IEEE Trans. Inform. Theory, vol. IT-26, pp. 15-25, 1980.

[9] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. IRE, pp. 1098-1101, Sept. 1952.

[lo] R. Hunter and A. H. Robinson, “International digital facsimile coding
standards,” Proc. IEEE, vol. 68, pp. 854-867, July 1980.

[ll] M. Jakobsson, “Huffman coding in bit-vector compression.” In& Proc.
Left., vol. 7, no. 6, pp. 304-307, Oct. 1978.

[12] F. Jelinek and K. Schneider, “On variable-length-to-block coding,” IEEE
Trans. Inform. Theory, vol. IT-18, pp. 765-774, Nov. 1972.

[13] G. G. Langdon, “An introduction to arithmetic coding,” IBM J. Res.
Develop., vol. 28, pp. 135-149, Mar. 1984.

[14] A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE
Trans. Inform. Theory, vol. IT-22, pp. 75-81, Jan. 1976.

[15] N. Merhav and D. L. Neuhoff, “Variable-to-fixed length codes provide
better large deviations performance than fixed-to-variable length codes,”
IEEE Trans. Inform. Theory, vol. 38, pp. 135-140, Jan. 1992.

(161 B. L. Montgomery and J. Abraham, “Synchronization of binary source
codes,” IEEE Trans. Inform Theory, vol. IT-32, pp. 8494354, Nov.
1986.

[17] -, “On the redundancy of optimal binary prefix-condition codes
for finite and infinite sources,” IEEE Trans. Inform. Theory, vol. IT-33,
pp. 156-160, Jan. 1987.

[18] W. B. Pennebaker, J. L. Mitchell, Jr. G. G. Langdon, and R. B. Arps,

“An overview of the basic principles of the q-coder adaptive binary
arithmetic coder,” IBM J. Res. Develop., vol. 32, no. 6 pp. 717-726,
Nov. 1988.

[191 J. Rissanen, “Generalized kraft inequality and arithmetic coding.”IBM
J. Res. Develop., pp. 198-203, May 1976.

[20] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM J . Res.
Develop., vol. 23, no. 2, pp. 149-162, Mar. 1979.

[21] J. Rissanen and K. M. Mohiuddin, “A multiplication-free multialphabet
arithmetic code.” IEEE Trans. Commun., vol. 37, pp. 93-98, Feb. 1989.

[22] J. Teuhola and T. Raita, “Piecewise arithmetic coding.” in Proc. Data
Compression Con& 1991, J. A. Storer and J. H. Reif, Fds., Snow Bird,
UT, Apr. 1991, pp. 3342,

[23] B. P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D.
dissertation, Georgia Inst. Techno]., 1967.

[24] T. A. Welch, “A technique for high-performance data compression,”
IEEE Compuf. Mag., pp. 8-19, June 1984.

[25] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression.” Commun. ACM, vol. 30, pp. 520-540, June 1987.

[26] J. Ziv, “Variable-to-ked length codes are better than fixed-to-variable
length codes for Markov sources,” IEEE Tram. Inform. Theory, vol. 36,
pp. 861-863, July 1990.

[27] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Trans. Inform. Theory, vol. IT-24, pp.
530-536, Sept. 1978.

