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ABSTRACT

We ask the question, “How good are parameter estimates?,”
and offer criticism of confidence intervals as an answer. In-
stead we suggest the engineering community adopt a little
known idea, that of defining plausible intervals from the rela-
tive likelihood ratio. Plausible intervals answer the question,
“What range of values could plausibly have given rise to the
data we have seen?” We develop a simple theorem for com-
puting plausible intervals for a wide variety of common dis-
tributions, including the Gaussian, exponential, and Poisson,
among others.

1. INTRODUCTION

We consider a basic question of statistical analysis, “How
good are the parameter estimates?”. Most often this question
is answered with confidence intervals. We argue that confi-
dence intervals are flawed. We propose that a little known al-
ternative based on relative likelihood ratios be used. We term
these “plausible intervals.” We present a theorem on comput-
ing plausible intervals that applies to a wide range of distri-
butions, including the Gaussian, exponential, and Chi-square.
A similar result holds for the Poisson. Lastly, we show how
to compute plausible regions for the Gaussian when both lo-
cation and scale parameters are estimated.

This work is part of a larger effort to understand why sta-
tistical and signal processing procedures do not work as well
in practice as theory indicates they should. Furthermore, we
strive to develop better and more robust procedures. In this
work, we begin to understand why “statistically significant”
results are, upon further evaluation, not as reliable as thought.
One reason is that confidence intervals are too small. They do
not accurately reflect the range of possible inputs that could
have given rise to the observed data.

This work is not defense specific, though there are nu-
merous defense applications of statistical inference and signal
processing. We expect this work to influence a wide range
of procedures beyond simple parameter estimation. For in-
stance, Kalman filtering, spectral estimation, and hypothesis
testing are potential applications.

CGB can be reached at boncelet@udel.edu, LMM at mar-
vel@arl.army.mil, and MEP at mpicolle@udel.edu.

Standard statistical procedures including maximum likeli-
hood estimates and confidence intervals can by found in many
textbooks, including Bickel and Docksum [1] and Kendall
and Stuart [4]. Relative likelihoods have received some atten-
tion in the statistics and epidemiological literature, but little
attention in the engineering literature. The best reference on
relative likelihood methods is the text by Sprott [7]. One en-
gineering reference is a recent paper by Sander and Beyerer
[6].

In this paper, we adopt a “frequentist” interpretation of
probability and statistical inference. Bayesian statisticians
adopt a different view, one with which we have some sym-
pathy, but that view is not explored herein. For a recent dis-
cussion of Bayesian statistics, see Jaynes [3].

2. PRELIMINARIES: LIKELIHOOD FUNCTIONS,
MAXIMUM LIKELIHOOD ESTIMATES, AND

CONFIDENCE INTERVALS

Consider a common estimation problem: estimating the mean
of a Gaussian distribution. Let X1, X2, . . . , Xn be IID (in-
dependent and identically distributed) Gaussian random vari-
ables with mean µ and variance σ2, i.e.,Xi ∼ N(µ, σ2).

For the moment, we assume we know σ2 and seek to esti-
mate µ. The density of eachXi is

f(xi;µ) =
1√

2πσ2
exp

(
−(xi − µ)2

2σ2

)
The likelihood function of µ is

L(µ;xn1 ) = f(x1;µ)f(x2;µ) · · · f(xn;µ)

= (2πσ2)−n/2 exp

(
−
∑n
i=1(xi − µ)2

2σ2

)
where we use the notation xn1 = x1, x2, . . . , xn.

The maximum likelihood estimate (MLE) of µ is found by
setting the first derivative of L(µ;xn1 ) to 0,

0 =
d

dµ
L(µ;xn1 )

∣∣∣∣
µ=µ̂



The calculations are somewhat easier if we find the maximum
of the log-likelihood function,

0 =
d

dµ
logL(µ;xn1 )

∣∣∣∣
µ=µ̂

=
d

dµ

(
−n

2
log 2πσ2 − 1

2σ2

n∑
i=1

(xi − µ)2

)∣∣∣∣∣
µ=µ̂

=
n

σ2

(
1

n

n∑
i=1

xi − µ̂

)
From which we conclude the MLE of µ is the sample mean

µ̂ =
1

n

n∑
i=1

xi = xn

Just how good is the sample mean as an estimator of µ?
A commonly used measure of goodness is the confidence in-
terval. Find u(Xn

1 ) and v(Xn
1 ) such that

Pr
[
u(Xn

1 ) ≤ µ ≤ v(Xn
1 )
]
≥ 1− α

for some α > 0. Normally, the confidence interval is selected
as the minimal range v(Xn

1 ) − u(Xn
1 ). For the Gaussian

example, the confidence interval is

Pr
[
u(Xn

1 ) ≤ µ ≤ v(Xn
1 )
]
≥ 1− α

u(Xn
1 ) = µ̂− cσ√

n

v(Xn
1 ) = µ̂+

cσ√
n

where c = Φ−1(1−α/2) and Φ(·) is the Normal distribution
function. In the usual case where α = 0.05, c = 1.96.

3. CRITICISMS OF CONFIDENCE INTERVALS

Many criticisms of confidence intervals have been raised.
Here we list a few of them:

There is considerable confusion as to what a confidence
interval actually represents. The standard interpretation goes
something like this: Before the experiment is done, we agree
to compute a sample average and a confidence interval (u, v)
as above. Then the probability the interval will cover µ is
1− α.

Note, however, after the experiment is done, the Xi have
values, xi. Then, µ̂, u, and v are numbers. Since µ is not
considered to be random, we cannot even ask the question,
“What is the probability µ is in the interval (u, v)?” µ is either
in the interval or not, but the question is not within the realm
of probability.

The confidence interval has probability about the true
mean of 1 − α if µ = µ̂. In general µ 6= µ̂, and the interval
contains less mass,

Φ
(
(v − µ)/σ

)
− Φ

(
(u− µ)/σ

)
< 1− α

The confidence interval is not too helpful at predicting fu-
ture values either. For instance, consider the following change
to the experiment: After observing n measurements we will
compute a sample average and a confidence interval. Then
we will make another n measurements (independent of the
first) and ask what is the probability the second sample mean
is in the confidence interval? Let the second sample mean be
denoted µ̂′. Then,

Pr
[
u ≤ µ̂′ ≤ v

]
= Pr

[
µ̂− cσ√

n
≤ µ̂′ ≤ µ̂+

cσ√
n

]
= Pr

[
− cσ√

n
≤ µ̂′ − µ̂ ≤ cσ√

n

]
Since both µ̂ and µ̂′ are independent N(µ, σ2/n) random
variables, the probability is

Φ(c/
√

2)− Φ(−c/
√

2) = 2Φ(c/
√

2)− 1

For example, when α = 0.05, c = 1.96 and the probability
evaluates to only 0.834.

We regard the latter criticism as particularly damning.
The usual reason to perform statistical analysis is to deter-
mine something about future observations. After all, the
current observations are already known. Parameter estimates
are often useful to the extent they help inform us about future
observations. Confidence intervals are misleading indicators
of future values.

To guarantee that µ̂′ is in the confidence interval with
probability 1− α, c must increase to 1.96

√
2 = 2.78.

4. RELATIVE LIKELIHOOD RATIO INTERVALS

We hope to revive an older idea that has received little atten-
tion in the engineering literature, relative likelihood ratios. A
good reference is the text by Sprott [7]. The relative likeli-
hood ratio is the following:

R(θ;xn1 ) =
L(θ;xn1 )

supθ L(θ;xn1 )
=
L(θ;xn1 )

L(θ̂;xn1 )

where θ represents the unknown parameter or parameters and
θ̂ is the MLE of θ.

The relative likelihood ratio helps answer the question,
“What values of θ could plausibly have given the data xn1 that
we observed?” The relative likelihood is useful after the ex-
periment is run, while probabilities are most useful before the
experiment is run.

As an example, we consider the Gaussian example above.
The unknown parameter is θ = µ and the MLE is θ̂ = µ̂.
Compare the relative likelihood ratio to a threshold,

R(θ;xn1 ) =

exp

(
−
∑n
i=1(xi − µ)2

2σ2

)
exp

(
−
∑n
i=1(xi − µ̂)2

2σ2

) ≥ α (1)



After taking logs and simplifying, the relation becomes

(µ− µ̂)2 ≤ 2σ2

n
log 1/α (2)

Solving for µ gives a relative likelihood ratio interval, which
we shall refer to as a plausible interval.

µ̂−
√

2σ2 log 1/α

n
≤ µ ≤ µ̂+

√
2σ2 log 1/α

n

µ̂− c σ√
n
≤ µ ≤ µ̂+ c

σ√
n

(3)

When α = 0.05, c = 2.45.
We see the plausible interval is bigger than the confidence

interval. It is a more conservative measure. To reiterate, the
plausible interval gives all values of θ that could have plau-
sibly given rise to the data observed, where plausibly is mea-
sured by the ratio of the likelihood at θ to the maximum like-
lihood.

As another example, consider estimating the parameter in
an exponential distribution. Let X1, X2, . . . , Xn be IID ex-
ponential with density f(x) = λe−λx.

L(λ;xn1 ) = λn exp(−λ
n∑
i=1

xi)

λ̂ =
n∑n
i=1 xi

=
1

xn

R(λ;xn1 ) =

(
λ

λ̂

)n
exp

(
n(1− λ/λ̂)

)
If we let γ = λ/λ̂ and compare the relative likelihood to α,
we obtain an interesting result:

γe1−γ ≥ α1/n (4)

We get a semi-graphical way of determining the plausible in-
terval, as demonstrated in Figure 1. Compute α1/n and find
graphically or numerically the upper and lower values, u and
v. An essential feature of the exponential inference problem
is the asymmetry of the upper and lower values of the plausi-
ble interval. The upper limit is much farther from γ = 1 than
is the lower limit.

As a third example of the utility of relative likelihoods,
consider estimating the parameters in a multinomial distribu-
tion. LetX1,X2, . . . ,Xn be n IID multinomial random vari-
ables with parameters p1, p2, . . . , pk (p1 +p2 + · · ·+pk = 1).

L(p1, p2, . . . , pk;xn1 ) = pn1
1 pn2

2 · · · p
nk

k

p̂j =
nj
n

for j = 1, 2, . . . , k

R(p1, p2, . . . , pk;xn1 ) =

((
p1
p̂1

)p̂1 (p2
p̂2

)p̂2
· · ·
(
pk
p̂k

)p̂k)n

1.0

1.0u v

α1/n

γ

γe1−γ

Fig. 1: Graphical representation of the plausible interval for
an exponential distribution.

After taking logs, multiplying by -1, and comparing to α, the
relation reduces to

−
k∑
j=1

p̂j log

(
pj
p̂j

)
= KL(p̂||p) ≤ − logα

n
(5)

where KL(p̂||p) is the Kullback-Leibler divergence between
p̂ and p (Kullback and Leibler [5]). In words, the set of plau-
sible p’s are those with a Kullback-Leibler divergence from p̂
less than or equal to − log(α)/n.

Below we present a theorem on the calculation of plausi-
ble intervals for a wide class of exponential-type distributions.

Theorem 1 IfX1,X2, . . . ,Xn are IID with common density

f(x) = Cλkxk−1e−dλ
lxl

(6)

where k and l are shape parameters, d is a convenience con-
stant (e.g., for the Gaussian, d = 0.5), andC is a normalizing
constant. Let x1, x2, . . . , xn denote the corresponding obser-
vations. The maximum likelihood estimate of λ is

λ̂ =
nk

dl
∑n
i=1 x

l
i

(7)

The relative likelihood reduces to

γe1−γ ≥ αl/nk (8)

where γ = (λ/λ̂)l and α is the threshold level.

This theorem applies to a wide variety of distributions.
Some are listed below in Table 1. For example, the exponen-
tial distribution has k = 1, l = 1, and d = 1 and (8) reduces
to (4), since l/k = 1.

This theorem is easy to apply:

1. Compute the MLE of λ using (7).

2. Compute αl/nk.

3. Using graphical (Figure 1) or numerical means, solve
(8) for u and v.



Exponential k = 1, l = 1, d = 1
Weibull k = l, d = 1
Erlang l = 1, d = 1
Gaussian (known mean) k = 0, l = 2, d = 0.5
Chi-Square k ← (k/2)− 1, l = 1, d = 0.5
Rayleigh k = 1, l = 2, d = 0.5

Table 1: Some distributions that meet the conditions of The-
orem 1

4. Solve for upper and lower bounds on λ using λ = λ̂u1/l

and λ = λ̂v1/l.

While the Poisson does not fit the conditions of the the-
orem, its probability mass function is sufficiently close the
same general conclusions apply. Let X1, X2, . . . , Xn be n
IID Poisson random variables with parameter λ. Then,

Pr
[
Xi = xi

]
=
λxi

xi!
e−λ

L(λ;xn1 ) =
λ
∑n

i=1 xi∏n
i=1 xi!

e−nλ

λ̂ =
1

n

n∑
i=1

xi = xn

R(λ;xn1 ) =

(
λ

λ̂

)nλ̂
enλ̂(1−λ/λ̂)

Letting γ = λ/λ̂ and comparing to α results in

γe1−γ ≥ α1/(nλ̂) (9)

The only difference for the Poisson is that α is raised to a data
dependent power, 1/(nλ̂) = (x1 + x2 + . . .+ xn)−1.

5. LINEAR REGRESSION

In this section, we consider the linear regression problem with
additive Gaussian noise of unknown variance. Let the regres-
sion problem be y = Xβ + ε where ε ∼ N(0, σ2I). The
MLE of β is

β̂ = (XTX)−1XT y

The MLE of σ2 is

σ̂2 =
(y −Xβ̂)T (y −Xβ̂)

n
=

1

n
‖y −Xβ̂‖22

Define two derived quantities:

δ2 =
(β − β̂)TXTX(β − β̂)

nσ̂2
(10)

γ =
σ̂2

σ2
(11)

Fig. 2: A contour plot of location error, δ2, versus scale error,
γ for the Gaussian, with z = γ exp(1− γ − γδ2).

Using γ and δ2, the relative likelihood can be written as

R(β, σ; y,X) = γn/2 exp
(n

2
(1− γ − γδ2)

)
Comparing this to α and simplifying results in the following:

γe(1−γ−γδ
2) ≥ α2/n (12)

Since the Gaussian depends on two parameters, the rela-
tive likelihood depends on two parameters: δ2 represents the
error in the location estimate and γ the error in the scale es-
timate. When compared to α, we obtain plausible regions, a
generalization to higher dimensions of plausible intervals.

The plausible region is defined by (12). When δ2 = 0,
(12) reduces to (8); when γ = 1, (12) reduces to (2).

The function z = γ exp(1−γ−γδ2) is shown in Figure 2.
The location error is large when δ2 is large. This happens
when γ < 1, i.e., when σ̂2 < σ2.

When γ = 1, δ2 = − log(α(2/n)). It is interesting to ask
what is the maximum value of δ2 when γ is allowed to vary
(i.e., when the variance is also unknown). One can solve the
following maximization problem:

max
δ2,γ

δ2 such that γe1−γ−γδ
2

≥ α(2/n)

The solution is γ = α(2/n) and δ2 = α−(2/n) − 1. That the
maximum value of δ2 is larger when γ is allowed to vary is a
restatement of the familiar log inequality, x− 1 ≥ log(x).



6. CONCLUSION

We argue that confidence intervals are flawed and do not accu-
rately represent the range of possible parameter values. Better
we argue are plausible intervals based on relative likelihood
ratios. Plausible intervals answer the question, “What range
of parameter values could plausibly have given rise to the data
we have observed?” Unlike probabilities, likelihood ratios are
informative after the experiment is run.

We have presented a theorem that provides a simple se-
quence of steps to compute the plausible interval for a wide
range of distributions, including the Gaussian, exponential,
Weibull, Chi-squared, Erlang, and Poisson. We have extended
the theorem to the Gaussian when both location and scale pa-
rameters are unknown.

The relative likelihood for the multinomial distribution re-
duces to the Kullback-Leibler divergence.

This work is part of a larger effort to understand why sta-
tistical and signal processing procedures often do not work as
well in practice as the theory indicates and to develop better,
more robust, procedures. Specific work to follow includes
more analysis of the Gaussian case, including applications
such as Kalman filtering, autoregressive fitting, and spectral
analysis. Also, we need to extend Theorem 1 to a wider class
of distributions.

We believe that plausible intervals can replace the need
for resampling techniques such as the bootstrap and the jack-
knife (Efron [2]). Rather than creating new data, we can use
plausible intervals to explore the space of plausible inputs.
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