Services with Alarms
Overview
· A service is required for an alarm to be processed when the system is sleeping.
· The idea is as follows
· The activity starts the service. A button triggers the service to set the alarm
· The alarm calls the OneShotAlarmReceiver,
· which calls a BroadcastReceiver that is part of the service
· Since the service is always able to receive broadcasts, it will be triggered even if the system is sleeping
· One complication is that we need to make sure that the system stays awake long enough to call the service.
Merge FunWithLocalServices and FunWithAlarms
· Start with a service developed in the FunWithLocalServices tutorial
· Open the FunWithAlarms files for reference
· Merge FunWithLocalServices and FunWithAlarms
· Make new class OneShotAlarmReceiver
· Same as in FunWithAlarms. See FunWithAlarms part 1
· onReceive with (note new name of action is changed to com.FunWithServices.MyService.TIMESUP
· Log.d("OneShotAlarmReceiver","Alarm Expired");
· Intent broadcast=new Intent("com.FunWithServices.MyService.TIMESUP");
· context.sendBroadcast(broadcast);
·
· In manifest,
· add entry for receiver OneShotAlarmReceiver (see FunWithAlarms part 1)
· In MyService, add broadcast receiver
· From FunWithAlarms part 1, copy
public BroadcastReceiver receiver=new BroadcastReceiver() {
			public void onReceive(Context context, Intent intent) {
				Log.d("FunWithAlarms ","Received TimesUp message");
			}
};
· In MyService, add function to set the alarm and register the BroadcastReceiver
· public void startAlarm()
· {
· 	registerReceiver(receiver, new IntentFilter("com.FunWithServices.MyService.TIMESUP"));
· 	Intent intent = new Intent(this, OneShotAlarmReceiver.class);
· 	PendingIntent pendingIntent = PendingIntent.getBroadcast(this, 0, intent, PendingIntent.FLAG_ONE_SHOT);
· 	AlarmManager alarmManager = (AlarmManager) getSystemService(Context.ALARM_SERVICE);
· 	alarmManager.set(AlarmManager.RTC_WAKEUP, System.currentTimeMillis() + (5 * 1000), pendingIntent);
· 	Log.d("MyService","Alarm is set");
· }
· In MyService.onDestroy(), add
· unregisterReceiver(receiver);
· In FunWithLocalServices, call startAlarm from button onClickListener
· Add myService.startAlarm();
· Run
· If “received TimesUp message is not shown, check that the registered receiver in MyService.startAlarm is has the same name as the destination of the intent called in OneShotReceiver.

Problem with sleeping
· When an activity or service is running, the system might sleep at any time
· In order to keep the system awake, WakeLocks are used
· So, when the alarm goes off and the service’s broadcast receiver is triggered, it should set a WakeLock.
· The alarm’s BroadcastReceiver does not need a WakeLock, the AlarmManager keeps a WakeLock so the system does not sleep before the BroadcastReceiver.onReceive is complete
· However, the system is allowed to sleep as soon as the alarms BroadcastReceiver is finished.
· It might go to sleep before the service is able set its WakeLock
· We need to call a WakeLock from the alarm’s BroadcastReceiver.onReceive, but then release it from the services BroadcastReceiver.
· One way to solve this is to make a class with static member variables and functions.
MyStaticWakeLock class
· Make new class call MyStaticWakeLock
· public class MyStaticWakeLock {
· 	private static PowerManager.WakeLock wl = null;
· 	public static void lockOn(Context context) {
· 		PowerManager pm = (PowerManager) context.getSystemService(Context.POWER_SERVICE);
· 		if (wl== null) 	
· 			wl = pm.newWakeLock(PowerManager.FULL_WAKE_LOCK, "MyStaticWakeLock");
· 		wl.acquire(); 			
· 	}
· 	public static void lockOff(Context context) {
· 		PowerManager pm = (PowerManager) context.getSystemService(Context.POWER_SERVICE);
· 		if (wl != null) 	
· 			wl.release(); 		
· 	}
· }
· Note, this class has two functions, one for setting the WakeLock and one for releasing
· In OneShotAlarmReceiver.onReceive, add
· MyStaticWakeLock.lockOn(context);
· At the end of MyService.receiver.onReceive(), add
· MyStaticWakeLock.lockOff((MyService.this);
· In manifest, add permission WAKE_LOCK
· Run

