Fun with alarms Part 1: Alarms without services
Overview (Video) (Source code for first part)
· Android allows you to set alarms
· When the alarm goes off, the OS sends your application an intent.
· However, receiving these intents is a bit tricky.
· Consequently, this approach is probably not sufficient for most applications.
· We’ll need to use services, which is Part 2
· Note that Handler is also used to make things happen in the future. Thus, one should consider using it instead of AlarmManager.
· Note: The Alarm Manager is intended for cases where you want to have your application code run at a specific time, even if your application is not currently running. For normal timing operations (ticks, timeouts, etc) it is easier and much more efficient to use Handler.
Starting
· Start with a new Android project
· called FunWithAlarms
· with a button and button listener, and
· TextView, called textView
· Make a new class, we’ll call OneShotAlarmReceiver, derived from android.content.BroadcastReceiver
· Note, it must be a new class. It cannot be a local class of FunWithAlarms.
· As we will see, some BroadcastReceivers can be local classes.
· In OneShotAlarmReceiver, add function onReceive(Context context, Intent intent)
· In this function, add Log.d("OneShotAlarmReceiver ","Alarm Expired");
· In the manifest, with the application section (as far as I know, everything must be in the application section), add
· <receiver android:name=". OneShotAlarmReceiver "> </receiver>, alternatively, add a “receiver” node under the applications tab
· Note, this is the name we gave our broadcast receiver
Setting the alarm
· In FunWithAlarms, within the button onClick listener add
· Intent intent = new Intent(FunWithAlarms.this, OneShotAlarmReceiver.class); // again, our broadcast receiver
· PendingIntent pendingIntent = PendingIntent.getBroadcast(FunWithAlarms.this, 0, intent, PendingIntent.FLAG_ONE_SHOT); // other flags make other types of alarms, like periodic alarms
· AlarmManager alarmManager = (AlarmManager) getSystemService(Context.ALARM_SERVICE);
· alarmManager.set(AlarmManager.RTC_WAKEUP, System.currentTimeMillis() + (5 * 1000), pendingIntent); // (5*1000) so the alarm will expire in 5 seconds
· Log.d("FunWithAlarms1","Alarm is set");
Run program
· Press button
· Note that all log shows things worked as expected.
· Try setting the alarm and closing the app (by pressing the back button or the home button). The alarm still expires as expected.
· Try setting alarm and then sleeping the phone. The alarm still expires as expected.
Problems (Video) (Source code for second part)
· How to run the main activity?
· We can’t directly access the FunWithAlarms object.
· Instead we’ll use another intent to trigger a BroadcastReceiver that is part of FunWithAlarms
· Why not make OneShotAlarmReceiver part of FunWithAlarms?
· Maybe one can, but I couldn’t get it to work.
Add BroadcastReceiver to FunWithAlarms
· In FunWithAlarms, add local class
· public BroadcastReceiver receiver=new BroadcastReceiver() {
· 		public void onReceive(Context context, Intent intent) {
· 			Log.d("FunWithAlarms ","Received TimesUp message");
· 		}
· 	};
· Register this BroadcastReceiver
· In FunWithAlarms.onCreate add
· registerReceiver(receiver, new IntentFilter("edu.udel.eleg454.FunWithAlarms.TIMESUP"));// note that this name com. FunWithAlarms.TIMESUP must be the same as the name below (It is better to use a single string constant.).
· We must also unregister this broadcast receiver in onPause
· In FunWithAlarms, add
· @Override
· public void onPause () {
· 		super.onPause();
· Log.d(“FunWithAlarms1”,”onPause”);
· 		unregisterReceiver(receiver);
· 	}
· And reregister in onResume
· In FunWithAlarms, add
· @Override
· public void onResume () {
				super.onResume();
				Log.d("FunWithAlarms1","”onResume");
				registerReceiver(receiver, new IntentFilter("edu.udel.eleg454.FunWithAlarms.TIMESUP")); // that same constant again!
	
· Call this BroadcastReceiver from OneShotAlarmReceiver
· In OneShotAlarmReceiver.onReceive add
· Intent broadcast=new Intent("edu.udel.eleg454.FunWithAlarms.TIMESUP"); // the same name again, we really should use a constant!
· context.sendBroadcast(broadcast); // context is the first argument of onReceive. Change the argument name from arg0 to context
· Note: now we have two BroadcastReceivers. One is registered in the manifest and one is registered in the code.
Run program
· The log shows that things run as expected
· Now test what happens if the phone sleeps before the alarm goes off. The alarm expires so that first BroadcastReceiver is called.
· But the activity is not running, so it is not called.
· In some cases, this behavior might be fine.
· However, if you want to catch this event, you must use a service

