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Abstract– While many models of the TCP’s dynamics
have been developed, few focus on the effects of timeout and
high loss probability. Active queue management (AQM) is
an important application of these dynamic models. How-
ever, recent work has shown that AQM provides little per-
formance benefit over drop-tail queueing for HTTP traffic,
except possibly at high utilizations. It is at these utiliza-
tions that the dynamic models of TCP are the least accu-
rate. This paper presents a dynamic model of TCP that
accurately models timeout. This model is also applicable
to the static case. This paper also presents a model of the
variance and the distribution of the congestion window. It
is shown that, while the dynamics of the mean value of the
congestion window are rather mild, the dynamics of time-
out display large oscillations that take several seconds to
decay. These oscillations cause the average bit-rate to also
wildly oscillate. Finally, this paper includes results from
several million simulations providing a detailed view of the
dynamics of timeout.

I. Introduction

Models of TCP are extensively used throughout net-
working research. For example, TCP models are used
in fields such as AQM [1], [2], [3], [4], design of TCP
friendly transport protocols [5], planning and provision-
ing networks [6], predicting file transfer time [7], [8], etc.
In this way, TCP models are foundation for research. The
accuracy of these models is critical to the accuracy and
relevance of the work that rests upon them.
Models for TCP have evolved over time. Initially, a

simple relationship between the sending rate and the loss
probability was developed. The well-known "1/sqrt(p)"
formula, or more specifically MSS ×

p
3/2/

¡
RTT

√
p
¢
,

was found and verified [9], [10]. While this formula is use-
ful in many settings, it was found to not be accurate in
situations where the packet loss probability is high. The
reason for this inaccuracy is that this simple model does
not account for TCP’s timeout mechanism. Some stud-
ies have shown that timeout, as oppose to triple duplicate
acknowledgement, is a significant way that TCP detects
packet loss [11].
In order to include the impact of timeout, the simple
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"square root of p" formula was extended to include the
effect of timeout [11]. This formula was shown to be more
accurate for large loss probabilities where timeout is sig-
nificant. Sikdar et al. [12] developed a model for TCP
throughput that includes time-out. While this model is
different from [11], they report that it gives similar nu-
merical results. However, we have performed extensive
simulations, over 5 million in total, and have found that
when applied to the ns-2 implementation of TCP-SACK
and when loss is probabilistic, the model given in [11] re-
sults in errors as large as a factor of two. Considering the
importance of the relationship between sending rate and
loss probability, these differences are significant and re-
quire closer examination. This paper provides an accurate
method to estimate TCP’s sending rate even for large loss
probabilities.

Another important extension to the TCP models was
to make them dynamic. That is, the initial models as-
sumed that the loss probability was fixed. In the case that
the loss probability varied, dynamic models were required.
The first model in this direction was given in [4], and sev-
eral closely related models have followed [1], [3], [7]. The
principle application of these models is for design and anal-
ysis of AQM. These models are extensively used to prove
stability and to indicate the performance of AQM.

Since AQM was first introduced, there have been a large
number of researchers active in this area. Recently, sev-
eral groups have investigated what, if any, benefit AQM
has on the performance of the network (see [13] and ref-
erences therein). A recent paper along these lines showed
that the AQM, be it drop tail or any more elaborate ver-
sion, has little impact on the performance of the network
for utilization below 90%. However, for utilization above
90%, some AQM techniques were shown to improve the
performance [14].

This work is significant as it indicates the environment
where AQM might have a positive impact, specifically, in
networks with high utilization. On the other hand, this
conclusion is troubling since the models of TCP used to
design AQM neglect timeout. That is, in the environ-
ment where AQM might have the largest impact on perfor-
mance, the analysis and design of AQM is least accurate.



Because of this inaccuracy, the possible impact of AQM on
network performance at high utilizations has never been
carefully explored.
One reason that AQM design has not considered high

utilization networks is that dynamics of TCP in such an
environment are not known. By dynamics, we mean the
variation of the throughput in the face of a time-varying
loss probability. This paper provides a simple model of
the dynamics of TCP’s throughput that includes timeout.
Perhaps one of the most significant contributions of this
paper is that the dynamics of timeout is quite complicated
and can result in wildly varying bit-rates that can take
several seconds to decay. For example, the lower right of
Figure 4 shows such oscillations. This dynamics is far more
complicated than the dynamics of the mean congestion
window used by most AQM design. As a result, this work
calls into question the proof of stability of AQM at high
loss probabilities.
As a by-product of this work, the variance and the dis-

tribution of the congestion window is also found. Specifi-
cally, it is shown that the window size is accurately mod-
eled with a negative binomial distribution. And finally the
huge number of simulations used to validate this model
provide a detailed view of the behavior of the dynamics of
TCP’s timeout mechanism.
The paper proceeds as follows: The next section dis-

cusses the simulations used for verification. In Section III
the distribution of the congestion window is found. Next,
in Section IV, a model of the probability of a flow being
in timeout is developed. The results from Sections III and
IV yield a static model of TCP throughput. In Section
V, this model is then extended to the dynamic case. The
paper closes with some concluding remarks in Section VI.

II. The simulations

The goal of this effort is to closely examine the behav-
ior of TCP. There is little doubt that in today’s networks
the sending rate of a TCP connection is complicated by
interacting flows, router induced packet reordering, faulty
load balancing induced packet reordering, server stalls, im-
plementation idiosyncrasies, etc. While these effects are
critical and a better understanding of them is necessary
for a complete understanding of TCP, this paper focuses
strictly on the behavior of TCP. The rationale for this
is that in order to understand the behavior of TCP in
the wild, it is necessary to thoroughly understand TCP
in a controlled environment. Perhaps the most significant
difference between these simulations and the environment
found in the wild is that in these simulations packet losses
are entirely random and never due to queue overflow. In
the case of AQM, such simulations are appropriate as the
goal of AQM is to drop packets in a controlled fashion, not
when the queue fills.
The simulations presented in this paper are for a single

flow over a single bottleneck topology where drops at the

bottleneck are random. The ns-2 error model was used
to produce the drops. The results presented here are for a
fixed round-trip time of 30ms. Other round-trip times have
been explored and yield the same results as the ones pre-
sented here. These simulations used ns-2 implementation
of TCP-SACK in version 2.1b8a. Delayed acknowledge-
ment and a maximum receiver window were not used.
Our investigation into TCP included over 5 million sim-

ulations. This large number of simulations is required
to estimate the dynamics of timeout. These simulations
were performed on the University of Southern Califor-
nia’s Linux cluster [15] and the large simulation results
were transferred via the Internet 2 to the University of
Delaware for post-processing and storage. There is little
doubt that without such high-performance computing, this
work would not be possible.

III. The distribution of the congestion window

This section presents a simple model for the distribution
of the congestion window. While the distribution may be
of interest in its own right, we are particularly interested in
this distribution since it is used to determine the probabil-
ity of a flow entering timeout. We justify the model briefly
with some analysis and then present simulations results.
Misra [4] introduced the idea of modeling TCP as a

stochastic differential equation. Specifically, he suggested
that the window size varies according to

dWt =
1

RTT
dt− 1

2
WtdNt (1)

where N is a Cox process that counts the number of packet
losses. This model is for the evolution of the congestion
window when the flow is not in timeout. Thus, all proba-
bilities should be conditioned on the flow not in timeout.
We denote this condition as TO. This model was further
investigated in [7] where the partial differential equation
of the window size was found. Specifically, if p

¡
w, t|TO

¢
is the probability density of the congestion window taking
the value w at time t, then p satisfies

∂p
¡
w, t|TO

¢
∂t

=
1

RTT

Ã
−
∂p
¡
w, t|TO

¢
∂w

(2)

+w × δ (t−RTT )
¡
4p
¡
2w, t|TO

¢
− p

¡
w, t|TO

¢¢¢
,

where δ is the loss probability. If δ is constant, then in

steady state, i.e.,
∂p(w,t|TO)

∂t = 0, the distribution of the
window solves

dp
¡
w|TO

¢
dw

= w × δ
¡
4p
¡
2w|TO

¢
− p

¡
w|TO

¢¢
. (3)

From (3) it is straightforward to show that

E
¡
wm|TO

¢
=

cm
δm/2

,



for some constants cm. If m = 1, then this is the well-
known "square root of p" formula where c1 has been found
to be between 1.1 and 1.3. Consideringm = 2, we find that
the variance is of the form

V ar
¡
w|TO

¢
:= E

¡
w2
¯̄
TO

¢
−E

¡
w|TO

¢2
=

γ

δ
, (4)

where γ := c2 − c21. This relationship is borne out in sim-
ulations that indicates that γ ≈ 0.31.
A closed form solution has not been found for (2),

whereas a complicated closed form solution has been found
for (3). However, simple yet accurate approximate solution
to (3) is the negative binomial distribution, i.e.,

p (w) =
Γ (N + w − 1)
Γ (N) (w − 1)! (1− q)

N
qw−1.

Since the mean of this negative binomial random variable
is Nq/ (1− q) + 1 and the variance is Nq/ (1− q)

2,

q = 1−
E
¡
w|TO

¢
− 1

V ar
¡
w|TO

¢ and N =
1− q

q

¡
E
¡
w|TO

¢
− 1
¢
(5)

and from mean and variance of the w given above we get

q = 1− δ

γ

µ
c1√
δ
+ 1

¶
and N =

(1− q)

q

µ
c1√
δ
− 1
¶
. (6)

In order to determine the distribution of the window
size, the parameters q and N must be determined. This
can be done by plugging the mean and variance into (5).
However, if only the loss probability is known, then (6)
must be used, in which case the parameters c1 and γ must
be determined. We have found that if the objective is to
use the distribution to determine the probability of time-
out, the c1 =

p
3/2 and γ = 0.31 is sufficient. On the

other hand, if one is interested in the distribution of the
congestion window (the objective of this section), then the
selection of these parameters, especially c1 requires some
more analysis. However, to keep this paper focused, this
issue is not discussed.
Once the parameters are determined, the distribution of

the congestion window can be estimated. Figure 1 shows
the distribution of the congestion window given the flow
is not in the timeout state, i.e., p

¡
w|TO

¢
. These figures

shows the three types of curves, the observed distribution
(histogram), the distribution with c1 =

p
3/2, and the dis-

tribution where the parameters are determined by plugging
in the observed mean and variance into (5). This last dis-
tribution coincides with the distribution given by (6) but
with c1 = 1.27 for δ = 10−4 and c1 = 1.14 for δ = 0.05.
For δ = 0.01, the value of c1 plays less of a role, c1 = 1.14,
c1 =

p
3/2, and c1 = 1.27, or by using the observed mean

and variance, all yield nearly the same distribution. In all
cases, γ = 0.31.
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Figure 1. Distribution of the congestion window for loss probability
of δ = 10−4 (left), δ = 0.1 (middle), and δ = 0.05 (right).

IV. A model of timeout

In this section, we present a model of the probability of
a flow being in the timeout state. We say that a flow is
in the timeout state if the next packet will be sent only
after the retransmission timer expires. To understand the
development of this model, one should consider a large
collection of TCP experiments all running in parallel on
different networks with identical network characteristics
(e.g., link speeds, propagation delays, etc.). Our goal is to
determine the fraction of these flows that are in timeout.
A flow can enter the timeout state in the following three

ways:
I If a flow experiences so many losses that triple dupli-
cate acknowledgements are not received, i.e., if at least
max (w − 2, 1) losses occur in one window.
II In the case of the ns-2 implementation of TCP-SACK,
if more than w/2 packets are dropped1.
III If a retransmitted packet is dropped.
Considering I and II, we see that a flow will

timeout if a single drop is followed by at least
max (min (bw/2c , w − 3) , 0) drops out of the next w − 1
packets. Given that drops occur at a rate w

Rδ, drops that
lead to timeout occur at a rate

ρ0 (w, δ)

=
w

R
δ

w−1X
k=max(min(bw/2c,w−3),0)

µ
w − 1
k

¶
δk (1− δ)w−1−k .

Let λ0 (δ) be the rate that a flow moves congestion avoid-
ance to timeout due to I and II. This rate is found taking
the expected value of ρ (w, δ), i.e.,

λ0 (δ) = E
¡
ρ0 (w, δ) |TO

¢
=
X
w

ρ0 (w, δ) pδ (w) ,

where pδ (w) is given in Section III, however, we have
shown the dependence on δ. This dependence is

1This way of entering time-out is discussed in [12]. RFC-3517 elim-
inates this way to enter time-out. It is straightforward to adjust the
development below to reflect RFC-3517.



made explicit by (6). Note that the approximation
E
¡
ρ0 (w, δ) | TO

¢
≈ ρ0

¡
E
¡
w| TO

¢
, δ
¢
will result in large

errors. Consider the situation where δ = 0.09 and, us-
ing c1 =

p
3/2, the mean value of the congestion win-

dow is 4. In this case, E
¡
ρ0 (w, δ) | TO

¢
= 0.13×R while

ρ0
¡
E
¡
w| TO

¢
, δ
¢
= 0.38×R, a difference around a factor

of three.
Next we determine λ00, the rate that a flow moves from

congestion avoidance to timeout because a retransmitted
packet is dropped. The rate that a packet is first dropped
is δwR . The drop will lead to a retransmission only if triple
duplicate acknowledgements are received, i.e., if less than
max (min (bw/2c , w − 3) , 0) packets are dropped out of
the next w − 1 packets. In this case, the retransmission is
dropped and timeout is entered with probability δ. Thus

ρ00 (w, δ) := δ
w

R
× δ × (1

−
w−1X

k=max(min(bw/2c,w−3),0)

µ
w − 1
k

¶
δk (1− δ)w−1−k

⎞⎠ .

The average rate that a flow enters timeout due to dropped
retransmissions is

λ00 (δ) := E (ρ00 (w, δ)) = δ2
µ1 (δ)

R

Finally, the rate that a TCP flow moves into timeout is
λ0 + λ00.
Up to this point we considered the rate that a single

flow moves into timeout. Now we will determine the frac-
tion of flows entering timeout. Let I1 (t), denote the rate
that flows enter timeout at time t. That is, in small time
interval ∆t, the probability that some flow enters timeout
is I1 (t)∆t. Let RTO be the time in which flows remain
in the timeout state upon the first timeout. If a flow exits
timeout, but immediately experiences another drop, then
this flow again enters timeout, but for 2×RTO seconds2.
We denote the rate that flows enter timeout for this sec-
ond time with I2 (t). The fraction of flows in timeout areR t
t−RTO I1 (τ) dτ +

R t
t−2RTO I2 (τ) dτ . The rate that flows

enter timeout is the product of the fraction of flows not in
timeout and the rate that such flows enter timeout, i.e.,

I1 (t) = (λ
0 (δ (t)) + λ00 (δ (t)))× (7)µ

1−
µZ t

t−RTO
I1 (τ) dτ +

Z t

t−2RTO
I2 (t) dτ

¶¶
.

While the rate that flows exit timeout only to reenter time-
out is

I2 (t) = δI1 (t−RTO) . (8)

2We don’t consider the case where a flow enters time-out a third
time for a time interval 4 × RTO. While it is straightforward to
extend the calculations, it does not appear to improve the accuracy
of the model.

In steady state, I1 (t) and I2 (t) are constant. So (7) and
(8) reduce to

I1 = (1− I1 ×RTO − 2I2 ×RTO) (λ0 (δ) + λ00 (δ))

I2 = δI1.

This can be solved

I1 =
λ0 (δ) + λ00 (δ)

1 +RTO (λ0 (δ) + λ00 (δ)) (1 + 2δ)

I2 = .
δ (λ0 (δ) + λ00 (δ))

1 +RTO (λ0 (δ) + λ00 (δ)) (1 + 2δ)

Thus, the fraction of flows in timeout is

P (TO) =

Z t

t−RTO
I1 (τ) dτ +

Z t

t−RTO
I2 (τ) dτ (9)

=
(1 + 2δ)RTO (λ0 (δ) + λ00 (δ))

1 + (1 + 2δ)RTO (λ0 (δ) + λ00 (δ))
.

If the loss probability varies, then (7), (8), and the re-
lationship P (in timeout at time t) =

R t
t−RTO I1 (τ) dτ +R t

t−2RTO I2 (τ) dτ must be used to determine the probabil-
ity that a flow is in timeout.
To verify (9), a large number of ns-2 simulations were

performed so that the probability of timeout could be de-
termined even for small loss probabilities. Figure 2 shows
the observed relationship of P (in timeout) and the loss
probability as well as the estimate of this probability given
by (9). These calculations used c1 =

p
3/2. Note that the

fit is quite good, the observed probability and the model
are essentially the same.
Padhye et al. [11] provides an estimate of the through-

put that accounts for timeout. This formula also provides
an estimate of the fraction of time a flow spends in timeout,
i.e., P (TO). Specifically, [11] finds

P (timeout) ≈
Q (W (δ) , δ)G (δ)To

1
1−δ

R
8 (W (δ) + 1) +Q (W (δ) , δ)G (δ)To

1
1−δ

,

(10)
where

Q (w, δ) = min

⎛⎝1,
³
1 + (1− δ)

3
´³
1− (1− δ)

w−3
´

(1− (1− δ)w) /
³
1− (1− δ)3

´
⎞⎠

W (δ) = 1 +

r
8 (1− δ)

3δ
+ 1

G (δ) = 1 + δ + 2δ2 + 4δ3 + 8δ4 + 16δ5 + 32δ6.

Figure 2 includes this estimate. We see that this model,
while providing a qualitative fit in that the shape of the
relationship is correct, it over estimates the probability of
being in timeout. For example, for δ = 1%, the observed
probability of being in timeout is 5%, while (10) gives an
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Figure 2. Probability of Timeout. The solid blue line represents the
observed probability of a flow being in timeout. The dashed green
line is the model’s estimate of this probability. Note that these two
lines nearly coincide. The third curve is the relationship derived from
[11].
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Figure 3. Relative Error of Predicted Throughput. Note that an
error fraction of 0.5 implies a 50% error.

estimate of 43%. However, this comparison must be quali-
fied. This paper focuses on TCP-SACK while the focus of
[11] is on TCP-RENO. Furthermore, this paper examines
how TCP behaves under random losses such as arises in
AQM. In [11], the queueing discipline is drop tail. Fur-
thermore, the loss probability in [11] was not exactly the
probability of a packet being dropped, but more along the
lines of the probability of a drop event occurring where a
drop event leads to the rest of the packets in the "round"
being dropped. Thus, the δ used in (10) is less than the
packet loss probability. However, this model is useful as a
benchmark as it was not known how accurate this model
would be for TCP-SACK.
From the probability of timeout, the average through-

put can be found via

T =
c1

R
√
δ
(1− P (TO))×MSS.

Figure 3 shows the relative error of this model when com-
pared to the observed throughput. Figure 3 also shows
the relative error of the model in [11] as well as the model
suggested in RFC-3448 for a TCP friendly sending rate.
The figure shows only the relative error, an examination
of the error shows that the model of [11] and RFC-3448
underestimate the sending rate (this is due to the over es-
timation of the timeout probability). As mentioned, these
other models are for benchmarking purposes only.
Figure 2 shows that for even moderately large loss prob-

abilities, the probability of being in timeout is quite high.
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Figure 4. Simulation and modeling of a jump in loss probability
from 1% to 10%. The jump occurred at t = 0. The solid blue curves
show the observed and the dashed red curves shows the model. In the
lower right, the dotted green indicates the bit-rate if only the mean
size of the congestion window is used (i.e., the dashed red curve in
the upper left). Note the units of the bit-rate is in 1000 bps.

Specifically, for δ > 1%, timeout plays an important role
in the sending rate of TCP. For δ > 5%, a flow will spend
60% of the time in timeout. Thus, timeout dominates the
sending rate of TCP. There are many implications of this.
Recently there have been some proposed modifications to
TCP such as limited transmit and ECN. These modifica-
tions significantly affect the behavior of timeout, specifi-
cally, they enter timeout much less frequently. Thus, for
δ > 1%, one can expect that TCP implementations with
these modifications will be much more aggressive than im-
plementations without these modifications.
There has been extensive work in dynamic modeling of

TCP, but most has neglected timeout. For example, many
approaches to AQM utilize a model of TCP that neglects
timeout. We see that such an approach is only reasonable
if the loss probability is less than 1%. However, in the area
of AQM, it is hoped that these models are applicable to
higher loss probabilities. Next we develop a model for the
dynamic behavior of TCP that includes timeout.

V. Dynamics of TCP

Here we extend the dynamics that is commonly used to
model the dynamics of TCP. The commonly used model
is for only the mean sending rate of TCP. Here we present
a model for the variance. Once the variance is known, the
distribution is found as in Section III. With the distribu-
tion, we can find the probability of being in timeout as was
done in the previous section. Of course, the paper to this
point has only considered a constant loss probability. Here
we allow the loss probability to vary with time. Thus, this
model is appropriate for AQM design.
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Figure 5. These figures are similar to the ones shown in Figure 4.
However, here two sets of dynamics are shown, the loss probability
jumping from 0.1% to 1% and falling from 1% to 0.1%. In both cases,
the changes occur at t = 0.
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Figure 6. Validation of the Model. These figures are near identical
to Figure 5, however, here the loss probability jumps between 1%
and 5%.

Let w̄ (t) = E
¡
w (t) | TO

¢
and w2 (t) = E

¡
w2 (t) |TO

¢
.

An approximation of the dynamics of the mean value of
the congestion window is often given by

d

dt
w̄ (t) =

1

R
− 1

c21

1

R
δ (t−R) w̄ (t−R) w̄ (t) . (11)

This is often approximated as

d

dt
w̄ (t) =

1

R
− 1

c21

1

R
δ (t−R) w̄2 (t) . (12)

Interestingly, this formula is often derived from (1). How-
ever, if proper stochastic calculus is applied, the correct

dynamics for the mean are

d

dt
w̄ (t) =

1

R
− 1

R
δ (t−R)E (w (t−R)w (t)) ,

which can be approximated as

d

dt
w̄ (t) =

1

R
− 1

R
δ (t−R)w2 (t) . (13)

Note that in (13) the second moment is utilized, while
(12) have 1

c21
multiplied by the first moment squared. For-

tunately, we have found that (11) and (12) give good ap-
proximation to the dynamics of the mean. It seems that
the mean varies slowly enough that this difference between

w2 (t) and 1
c21
w (t)

2
is not significant.

From (1) it is possible to determine the dynamics of the
second moment of the congestion window,

d

dt
w2 (t) =

2

R
w̄ (t)− 3

4

1

R
δ (t−R)E

¡
w3 (t)

¢
.

Using the same idea as above, we approximate

E
¡
w3 (t)

¢
≈ 8

3
β

(c21−0.31)
3/2

³
w2 (t)

´3/2
and arrive at

d

dt
w2 (t) =

2

R
w̄ (t) (14)

− 3
4

8

3

β

(c21 − 0.31)
3/2

1

R
δ (t−R)

³
w2 (t)

´3/2
.

As in the case of (12), this approximation is exact in steady
state.
Equations (12) and (14) form a system of ordinary dif-

ferential equations (ODEs). With the mean and second
moment, the distribution of the congestion window can be
found as discussed in Section III. With this approxima-
tion of the distribution, the probability of being in time-
out can be found as in Section IV, i.e., P (TO at time t) =R t
t−RTO I1 (τ) dτ +

R t
t−2RTO I2 (τ) dτ, where I1 (τ) is given

by (7) and I2 (τ) is given by (8).
Figures 4-6 provide some validation of this dy-

namic model of TCP. Through extensive simulation,

E
¡
w (t) |TO

¢
, E

³
w2 (t) |TO

´
, and P (TO at time t) were

found under different time variations of the loss probabil-
ity. Specifically, in each simulation, the loss probability
took two values δ0 and δ1. The simulation began and ran
for 20 seconds with loss probability set to δ0. In these
simulations, 20 seconds was enough to ensure that the sys-
tem was in steady state (i.e., E

¡
w (t) |TO

¢
was constant).

Then, 20 seconds after the beginning of the simulation,
the loss probability was switched to δ1. In the figures,
this moment is labeled as t = 0. This simulation was car-
ried out 200,000 times. With these simulations it is possi-
ble to determine the value of the statistics E

¡
w (t) |TO

¢
,

E
³
w2 (t) |TO

´
, and P (TO at time t) at each time point.



For example, to determine P (TO at time 500 ms), we
found the fraction of the 200,000 flows that were in the
timeout state at time t = 500 ms. This large number of
simulations allows for high confidence in the observations
and allows the details of the dynamics to be observed.
Figures 4-6 indicate that the dynamic model is quite

accurate. They also show, as expected, that using the dy-
namics of the mean congestion window given by (12) is
not adequate for large loss probability, but is adequate for
small loss probability. We also see that the dynamics for
the mean and the variance of the congestion window per-
form rather poorly for very large loss probability. However,
in this case, the behavior of TCP is completely dominated
by the timeout, which is well modeled. As a result, the
bit-rate is accurately modeled.
Perhaps the most striking aspect of Figures 5-6 is the

dynamics of the bit-rate at large loss probabilities. Most
significantly, we see that the bit-rate experiences wild os-
cillations that can take several seconds to decay. In all
cases, the model for the mean congestion window (12) does
not produce any oscillations. To the best of the authors’
knowledge, this behavior has not been previously observed,
much less modeled. Oscillating "step" responses are often
a sign of instability, thus it is likely that these dynamics
will impact the stability results of previous AQM research.
Figure 6 shows some unexpected behavior of the mean

and the variance of the congestion window. Specifically,
we see that the mean has two distinct phases of growth
with a transition at t = 1000 ms while the variance shows
non-monotonic growth. The ODEs (12) and (14) do not
model this behavior. This behavior is due to the feedback
of the fraction of flows in timeout to the mean and the
variance of the congestion window. Notice that the non-
monotonic growth of w2 occurs just as flow exit timeout.
Since the probability of a flow being in the timeout state
is so high, a slight error in the mean congestion window
has a minor impact on the average bit-rate.

VI. Conclusions

We have developed a new model for the sending rate of
TCP that includes the effect of timeout. Previous mod-
els have included the effect of timeout, but we have found
these models to greatly over estimate the probability of
being in timeout. The model presented is easily extended
to a dynamic model of timeout. This dynamic model was
shown to agree with simulations quite well. Furthermore,
it was shown that timeout can cause the bit-rate to os-
cillate substantially for several seconds after a change in
the loss probability. It was also shown that for large loss
probabilities, the behavior of TCP is dominated by the
behavior of timeout.
This model is significantly different from those used in

previous design of AQM. Future work will examine the
possibility of designing an AQM that utilizes these models
for TCP. Perhaps, more substantial performance gains will

be achieved for large loss probability.
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