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ABSTRACT
In this paper we present a general hybrid systems modeling
framework to describe the flow of traffic in communication
networks. To characterize network behavior, these models
use averaging to continuously approximate discrete variables
such as congestion window and queue size. Because averag-
ing occurs over short time intervals, one still models discrete
events such as the occurrence of a drop and the consequent
reaction (e.g., congestion control). The proposed hybrid sys-
tems modeling framework fills the gap between packet-level
and fluid-based models: by averaging discrete variables over
a very short time scale (on the order of a round-trip time),
our models are able to capture the dynamics of transient
phenomena fairly accurately. This provides significant flex-
ibility in modeling various congestion control mechanisms,
different queuing policies, multicast transmission, etc. We
validate our hybrid modeling methodology by comparing
simulations of the hybrid models against packet-level simu-
lations. We find that the probability density functions pro-
duced by ns-2 and our hybrid model match very closely with
an L1-distance of less than 1%. We also present complexity
analysis of ns-2 and the hybrid model. These tests indicate
that hybrid models are considerably faster.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks

General Terms
Algorithms, Performance
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1. INTRODUCTION
Data communication networks are highly complex sys-

tems, thus modeling and analyzing their behavior is quite
challenging. The problem aggravates as networks become
larger and more complex. The most accurate network mod-
els are packet-level models that keep track of individual
packets as they travel across the network. These are used in
network simulators such as ns-2 [32]. Packet-level models
have two main drawbacks: the large computational require-
ments (both in processing and storage) for large-scale simu-
lations and the difficulty in understanding how network pa-
rameters affect the overall system performance. Aggregate
fluid-like models overcome these problems by simply keeping
track of the average quantities that are relevant for network
design and provisioning (such as queue sizes, transmission
rates, drop rates, etc). Examples of fluid models that have
been proposed to study computer networks include [21, 22,
9]. The main limitation of these aggregate models is that
they mostly capture steady state behavior because the aver-
aging is typically done over large time scales. For instance,
detailed transient behavior during congestion control cannot
be captured. Consequently, these models are unsuitable for
a number of scenarios, including capturing the dynamics of
short-lived flows.

Our approach to modeling computer networks and its pro-
tocols is to use hybrid systems [29] which combine both
continuous time dynamics and discrete-time logic. These
models permit complexity reduction through continuous ap-
proximation of variables like queue and congestion window
size, without compromising the expressiveness of logic-based
models. The “hybridness” of the model comes from the fact
that, by using averaging, many variables that are essentially
discrete (such as queue and window sizes) are allowed to take
continuous values. However, because averaging occurs over
short time intervals, one still models discrete events such as
the occurrence of a drop and the consequent reaction (e.g.,
congestion control).

In this paper, we propose a general framework for building
hybrid models that describe network behavior. Our hybrid
systems framework fills the gap between packet-level and



aggregate models by averaging discrete variables over a very
short time scale (on the order of a round-trip time). This
means that the model is able to capture the dynamics of
transient phenomena fairly accurately, as long as their time
constants are larger than a couple of round-trip times. This
time scale is quite appropriate for the analysis and design of
network protocols including congestion control mechanisms.

We use TCP as a case-study to showcase the accuracy
and efficiency of the models that can be built using the pro-
posed framework. We are able to model fairly accurately
TCP’s distinct congestion control modes (e.g., slow-start,
congestion avoidance, fast recovery, etc.) as these last for
periods no shorter than one round-trip time. One should
keep in mind that the timing at which events occur in the
model (e.g., drops or transitions between TCP modes) is
only accurate up to roughly one round-trip time. However,
since the variations on the round-trip time typically occur
at a slower time scale, the hybrid models can still capture
quite accurately the dynamics of round-trip time evolution.
In fact, that is one of the strengths of the models proposed
here, i.e., the fact that they do not assume constant round-
trip time.

We validate our hybrid modeling methodology by compar-
ing results from hybrid models against packet-level simula-
tions. We run extensive simulations using different network
topologies subject to different traffic conditions (including
background traffic). Our results show that the model is able
to reproduce packet-level simulations quite accurately. We
also compare the efficiency of the two approaches and show
that hybrid models incur considerably less computational
load. We anticipate that speedups yielded by hybrid models
will be instrumental in studying large-scale, more complex
networks.

2. RELATED WORK
Several approaches to modeling and simulating networks

exist, some of which have been widely used by the net-
working community in the design and evaluation of network
protocols. On one side of the spectrum, there are packet-
level simulation models. For example, ns [32], QualNet [27],
SSFNET [28] are event simulators where an event is the
arrival or departure of a packet. These models are highly
accurate, but are not scalable to large networks. On the
other extreme, static models provide approximations using
first principles. For example, in [8, 24, 25, 20, 17], simple
formulas are derived that model how TCP behaves. This
approach has been extended to the case of short-lived flows
[5]. These models ignore much of the dynamics of the net-
work. For example, the round-trip time and loss probability
are assumed constant and the interaction of flows is not con-
sidered.

Between static models and detailed packet level simula-
tors are dynamic fluid flow models. By allowing some pa-
rameters to vary, these models attempt to obtain more ac-
curacy than static approaches, and yet alleviate some of the
computational overhead of packet level simulations. This
more dynamic modeling approach was followed by [19, 16,
12] where TCP’s sending rate is taken as an ensemble aver-
age. Specifically, the sending rates do not suffer the linear
increase and divide in half. However, this ensemble aver-
age dynamically varies with queue size and drop probabil-
ity. For example, [21, 22] present a stochastic differential

equation (SDE) model of TCP where the sending rate lin-
early increases until a drop event occurs and then divides
in half. Along these lines, [2] developed an SDE model that
allows the round-trip time to vary and includes more accu-
rate loss models. While these SDE approaches make sense
from an end-to-end perspective, they are difficult to justify
for network models. The main source of the problem is that,
from the network perspective, drops among flows are highly
dependent. Such interdependence is difficult to efficiently
incorporate into the SDE approach.

While the dynamic models above proved very useful for
developing a theoretical understanding of networks, their
purpose was not to simulate networks. In an effort to simu-
late networks, [33, 10] develop a fluid approach for efficient
network simulation, which assumes bit rates to be piecewise
constant. This piecewise constant assumption seems to have
a major impact and can lead to an explosion of events known
as the ripple effect [18]. A similar direction is taken in [1]
where packets are aggregated. Again, during a single time
step, the behavior of the set of packets is uniform across all
packets in the set. The approach we present is somewhat
similar to the one in [14, 15], where sending rates vary con-
tinuously. However, our approach also allows for discrete
jumps in the sending rates.

Systems that contain both continuous-time state variable
and discrete-time events causing discontinuities are known
as hybrid systems [29]. Such modeling approach has been
widely used in other fields, but is new to networking. A hy-
brid modeling approach is taken in [30]. In that model, both
discrete-event simulation and analytic techniques are com-
bined to produce efficient, yet accurate models of job queues
and processing on a multi-user computer system. Our ap-
proach of applying hybrid modeling to networking, in par-
ticular congestion control, is conceptually close to the work
in [30]. [13] applied hybrid simulation techniques to perform
large-scale multicast simulations at low computational cost.

The remainder of the paper is organized as follows. Sec-
tion 3 presents our hybrid systems modeling framework, in-
cluding hybrid models for a number of TCP variants (i.e.,
SACK, New Reno, and Reno), and UDP flows. In Sec-
tion 4, we validate our hybrid models by comparing them to
packet-level simulations. Section 5 shows results comparing
the computational complexity of hybrid- and packet level
models. Finally, we present our concluding remarks and di-
rections for future work in Section 6. The reader is referred
to the Technical report [4] for additional details that were
not included due to space restrictions.

3. HYBRID MODELING FRAMEWORK
Consider a communication network consisting of a set N

of nodes connected by a set L of links. We consider all links
as unidirectional and denote by ` := ~ij, the link from node
i ∈ N to node j ∈ N (cf. Figure 1). Every link ` ∈ L is
characterized by a finite bandwidth B` and a propagation
delay T `.

We assume that the network is being loaded by a set F of
end-to-end flows. Given a flow f ∈ F from node i ∈ N to
node j ∈ N , we denote by rf f-flow’s sending rate, i.e., the
rate at which packets are generated and enter node i where
the flow is initiated. Given a link ` ∈ L in the path of the
f -flow, we denote by r`

f the rate at which packets from the

f -flow go through the `-link. We call r`
f the `-link/f-flow
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transmission rate. At each link, the sum of the link/flow
transmission rates must not exceed the bandwidth B`, i.e.,

∑

f∈F

r`
f ≤ B`, ∀` ∈ L. (1)

In general, the flow sending rates rf , f ∈ F are determined
by congestion control mechanisms and the link/flow trans-
mission rates r`

f are determined by packet conservation laws
to be derived shortly.

Associated with each link ` ∈ L, there is a queue that
temporarily holds packets before transmission. We denote
by q`

f the number of bytes in this queue that belong to the
f -flow. The total number of bytes in the queue is then given
by

q` :=
∑

f∈F

q`
f , ∀` ∈ L. (2)

The queue can hold, at most, a finite number of bytes that
we denote by q`

max. When q` reaches q`
max, drops will occur.

For each flow f ∈ F , we denote by RTTf the f-flow round-
trip-time that elapses between a packet is sent and its ac-
knowledgment is received. The round-trip-time can also be
determined by adding the propagation delays T ` and queu-
ing times q`/B` of all links involved in one round-trip. In
particular,

RTTf =
∑

`∈L[f ]

(

T ` +
q`

B`

)

,

where L[f ] denotes the set of links involved in one round-trip
for flow f .

3.1 Flow conservation laws
Consider a link ` ∈ L in the path of flow f ∈ F . We denote

by s`
f the rate at which f -flow packets arrive (or originate)

at the node where ` starts. We call s`
f the `-link/f-flow

arrival rate. The link/flow arrival rates are related to the
flow sending rates and the link/flow transmission rates by
the following simple flow-conservation law : for every f ∈ F
and ` ∈ L,

s`
f :=

{

rf f starts at the node where ` starts

r`′

f otherwise
(3)

where `′ denotes the previous link in the path of the f -flow.
For simplicity, we are assuming here single-path routing and
unicast transmission. It would be straightforward to de-
rive conservation laws for multi-path routing and multi-cast
transmission.

3.2 Queue dynamics
In this section, we make two basic assumptions regarding

flow uniformity that are used to derive our models for the
queue dynamics:

Assumption 1 (Arrival uniformity). On a short
time-interval over which the arrival rates can be assumed
approximately constant, the packets of the different flows ar-
rive at each node in their paths uniformly distributed over
time.

Assumption 2 (Queue uniformity). Packets of the
different flows are uniformly distributed in each queue.

Clearly, because of packet quantization, bursting, synchro-
nization, etc., these assumptions are never quite true. How-
ever, they are sufficiently accurate to lead to models that
match closely packet-level simulations. We will show this in
Section 4.2.

Consider a link ` ∈ L that is in the path of flow f ∈ F .
The queue dynamics associated with this pair link/flow are
given by

q̇`
f = s`

f − d`
f − r`

f ,

where d`
f denotes the f-flow drop rate. In this equation s`

f

should be regarded as an input whose value is determined
by upstream nodes. To determine the values of d`

f and r`
f

we consider three cases separately:

1. Empty queue (i.e., q` = 0). There are no drops and the
outgoing rates r`

f are equal to the arrival rates s`
f , as

long as the bandwidth constrain (1) is not violated. In
case r`

f = s`
f , ∀f ∈ F would violate (1), the available

link bandwidth B` is distributed among all flows pro-
portionally to their arrival rates s`

f , which is justified
by the Arrival Uniformity Assumption 1. This can be
summarized as follows: for every f ∈ F ,

d`
f = 0, r`

f =







s`
f

∑

f̄∈F s`
f̄ ≤ B`

s`
f

∑

f̄∈F
s`

f̄

B` otherwise

2. Queue neither empty nor full (i.e., 0 < q` < q`
max or

q` = q`
max but

∑

f̄∈F s`
f̄ ≤ B`). There are no drops

and because of the Queue Uniformity Assumption 2,
the available link bandwidth B` is distributed among
the flows proportionally to their percentage of bytes in
the queue, i.e., for every f ∈ F ,

d`
f = 0, r`

f =
q`

f
∑

f̄∈F q`
f̄

B`.

3. Queue full and still filling (i.e., q` = q`
max and

∑

f̄∈F s`
f̄ > B`). The total drop rate d` must equal the

difference between the total arrival rate and the link
bandwidth, i.e., d` =

∑

f̄∈F s`
f̄ − B` > 0. From the

Arrival Uniformity Assumption 1, we conclude that
this total drop rate d` should be distributed among all
flows proportionally to their arrival rates s`

f . More-
over, from the Queue Uniformity Assumption 2, we
conclude that the available link bandwidth B` is dis-
tributed among the flows proportionally to their the



percentage of bytes in the queue. This can be summa-
rized as follows: for every f ∈ F ,

d`
f =

s`
f

(

∑

f̄∈F s`
f̄ − B`

)

∑

f̄∈F s`
f̄

, r`
f =

q`
f B`

∑

f̄∈F q`
f̄

. (4)

To complete the queue dynamics model, it remains to
determine when and which flows suffer drops. To this ef-
fect, suppose that at time t1, q` reached q`

max with s` :=
∑

f∈F s`
f > B`. Clearly, a drop will occur at time t1 but, in

general, multiple drops may occur. In general, if a drop oc-
curred at time tk a new drop is expected at a time tk+1 > tk

for which the total drop rate d` integrates from tk to tk+1

to the packet-size L, i.e., for which

z` :=

∫ tk+1

tk

∑

f∈F

d`
f =

∫ tk+1

tk

(

∑

f∈F

s`
f − B`

)

= L. (5)

We call (5) the drop-count model.

The question as to which flows suffer drops must be con-
sistent (on the average) with the drop rates specified by (4).
In particular, the selection of the flow f∗ where a drop oc-
curs is made by drawing the flow randomly from the set F ,
according to the distribution

pf∗(f) =
d`

f
∑

f̄∈F d`
f̄

=
s`

f
∑

f̄∈F s`
f̄

, ∀f ∈ F . (6)

We assume that the flows f∗(tk), f∗(tk+1) where drops occur
at two distinct time instants tk, tk+1 are (conditionally) in-
dependent random variables (given that the drops did occur
at times tk and tk+1). We call (6) the drop-selection model.

We validated the drop-selection model defined by (6) by
matching it with ns-2 [32] simulations. The top plot in Fig-
ure 2 shows the outcome of a simulation where 2 TCP flows
(RED and BLUE) compete for bandwidth on a bottleneck
queue (with 10% on-off CBR traffic). The x-axis shows the
fraction of arrival rate for each flow and the y-axis shows the
corresponding drop probability. A 45 degree line would be
exactly consistent with (6). We can see in the figure that the
probabilities of drop measured experimentally match well
with the theoretical 45 degree line.

3.2.1 Hybrid model for queue dynamics
The queue model developed above can be compactly ex-

pressed by the hybrid automaton represented in Figure 3.
Each ellipse in this figure corresponds to a discrete state (or
mode) and the continuous state of the hybrid system con-
sists of the flow byte rate s`

f , f ∈ F and the variable z`

used to track the number of drops in the queue-full mode.
The differential equations for these variables in each mode
are shown inside the corresponding ellipse. The arrows in
the figure represent transitions between modes. These tran-
sitions are labeled with their enabling conditions (that can
include events generated by other transitions), any necessary
reset of the continuous state that must take place when the
transition occurs, and events generated by the transition.
Events are denoted by E[·]. We assume here that a jump al-
ways occurs when the transition condition is enabled. This
model is consistent with most of the hybrid system frame-
works proposed in the literature (cf., e.g., [29]). The inputs

to this model are the rates r`′

f , f ∈ F of the upstream queues
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Figure 2: Drop probability vs. fraction of arrival
rate for 10% background traffic (top) and packet
synchronization (bottom).

`′ ∈ L[`], which determine the arrival rates s`
f , f ∈ F ; and

the outputs are the transmission rates r`
f , f ∈ F . For the

purpose of congestion control, we should also regard the
drop events and the queue size as outputs of the hybrid
model. Note that the queue sizes will eventually determine
packet round-trip-times.

3.2.2 Other drop models
For completeness one should add that the drop-selection

model described by (6) is not universal. For example, in
dumbbell topologies without background traffic, one can ob-
serve synchronization phenomena that sometimes lead to
flows with small sending rates suffering more drops than
flows with larger sending rates. The bottom plot in Fig-
ure 2 shows an extreme example of this (2 TCP flows in a
5Mbps dumbbell topology with no background traffic and
drop-tail queuing). In this example, the BLUE flow gets
most of the drops, in spite of using a smaller fraction of the
bandwidth. In [26], it was suggested that 10% of random
delay would remove synchronization for many TCP connec-
tions. We used background traffic because this suggested
delay is not sufficient when the number of connections is
small. The top plot in Figure 2 shows results obtained with
background traffic. In the rest of this section, we briefly dis-
cuss another drop model that is useful in specific situations.
The reader is referred to [4] for additional models.
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`-queue-empty:

q̇`
f = s`

f − r`
f , f ∈ F

r`
f =







s`
f s` ≤ B`

s`
f

s`
B` otherwise

`-queue-not-full:

q̇`
f = s`

f − r`
f , f ∈ F

r`
f =

q`
f

q`
B`

`-queue-full:

ż` = s`
− B`

q̇`
f = (s`

f /s`
− q`

f /q`)B`, f ∈ F

r`
f =

q`
f

q`
B`

q` > 0?

q` ≤ 0?

q` = q`
max, s` > B`?

s` ≤ B`? z` := 0, E
[

drop in flow f
∗ ∼ pf∗

]

z` = L?

z` := 0, E
[

drop in flow f
∗ ∼ pf∗

]

dN > 0? ( with E[dN] = γ(q`)s`dt )
E

[

drop in flow f
∗ ∼ pf∗

]

r`′

f , f ∈ F , `′ ∈ L[`]

q`, r`
f , E

[

drop in flow f
]

, f ∈ F

Figure 3: Hybrid model for the queue at link `. In this figure, q` is given by (2), the s`
f , f ∈ F are given by

(3), and s` :=
∑

f∈F s`
f , ∀` ∈ L.

Drop rotation. The drop model in (6) is not valid when
packet synchronization occurs. This effect is particularly
noticeable under TCP congestion control (without cross
traffic), when all the flows have the same round-trip time
and there is a bottleneck link with bandwidth significantly
smaller than that of the remaining links. The corresponding
bottleneck queue should be operating under drop-tail [3]. A
more accurate model for this situation is drop rotation. Ac-
cording to this model, when the queue gets full each flow
gets a drop in a round-robin fashion. The rationale for this
is that, once the queue gets full, it will remain full until TCP
reacts (approximately one round-trip-time after the drop).
In the meanwhile, all TCP flows are in the congestion avoid-
ance mode and each will increase its window size by one.
When this occurs each will attempt to send two packets
back-to-back and, under a drop-tail queuing policy, the sec-
ond packet will almost certainly be dropped. Although the
drop-count model (5) would predict the correct number of
drops, the drop-selection model (6) would not predict drop
rotation because of the independence assumption associated
with it.

3.3 TCP model
So far our discussion focused on the modeling of the trans-

mission rates r`
f and queue sizes q`

f across the network, tak-
ing as inputs the sending rates rf of the end-to-end flows.
In this section, we construct a hybrid model for TCP that
should be composed with the flow-conservation law and
queue dynamics presented in Sections 3.1 and 3.2, in or-
der to construct a model that describes the overall system.
We start by describing the behavior of TCP in each of its
main modes, which we later combine into a hybrid model of
TCP. We concentrate here on a single flow f ∈ F .

3.3.1 Slow-start mode
During slow-start, the congestion window wf (cwnd) in-

creases exponentially, being multiplied by 2 every round-trip
time RTTf . This can be modeled by

ẇf =
log m

RTTf
wf , (7)

for an appropriately defined constant m. If RTTf was con-
stant, we would get

wf (t + RTTf ) = e
log m

∫ t+RT Tf
t

1
RT Tf

dτ
wf (t) ≈ mwf (t),

Since wf packets are sent each round-trip time, the instan-
taneous sending rate rf should be given by

rf =
wf

RTTf
. (8)

However, in this mode the round-trip time RTTf tends to
increase rapidly because of variations on the queue sizes and
therefore this formula needs to be corrected to

rf =
βwf

RTTf
, (9)

where the best match with ns-2 traces is obtained for
β = 1.45. The formulas (7) and (9) hold as long as the con-
gestion window wf is below the receiver’s advertised window
size wadv

f . When wf exceeds this value, the sending rate is

limited by wadv
f and (9) should be replaced by

rf =
min{βwf , wadv

f }

RTTf
. (10)

If congestion window reaches the advertised window, slow-
start mode enters congestion-avoidance mode. The slow-
start mode lasts drop or timeout is detected. Detection of



a drop leads the system to the fast-recovery mode, whereas
the detection of a timeout leads the system to the timeout
mode.

3.3.2 Congestion-avoidance mode
During the congestion-avoidance mode, the congestion

window size increases “linearly,” with an increase equal to
the packet-size L for each round-trip time RTTf . This can
be modeled by

ẇf =
L

RTTf
,

with the instantaneous sending rate rf given by (8). When
the receiver’s advertised window size wadv

f is finite, (8)
should be replaced by

rf =
min{wf , wadv

f }

RTTf
.

The congestion-avoidance mode lasts until a drop or timeout
are detected. Detection of a drop leads the system to the
fast-recovery mode, whereas the detection of a timeout leads
the system to the timeout mode.

3.3.3 Fast-recovery mode
The fast-recovery mode is entered when a drop is de-

tected, which occurs some time after the drop actually oc-
curs. When a single drop occurs, the sender leaves this mode
at the time it learns that the packet dropped was success-
fully retransmitted (i.e., when its acknowledgment arrives).
When multiple drops occur, the transition out of fast recov-
ery depends on the particular version of TCP implemented.
We provide next the model for TCP-Sack and briefly dis-
cuss the differences with respect to TCP-Reno and TCP-
NewReno. Due to lack of space we do not provide here the
formal model for the later two versions of TCP.

TCP-Sack. In TCP-Sack, when ndrop drops occur, the
sender learns immediately that several drops occurred and
will attempt to retransmit all these packets as soon as the
congestion window allows it. As soon as fast-recovery is
initiated, the first packet dropped is retransmitted and the
congestion window is divided by two. After that, for each ac-
knowledgment received, the congestion window is increased
by one. However, and until the first retransmission suc-
ceeds, the number of outstanding packets is not decreased
when acknowledgments arrive.

Suppose that the drop was detected at time t0 and let
wf (t−0 ) denote the window size just before its division by
2. In practice, during the first round-trip time after the
retransmission (i.e., from t0 to t0 + RTTf ) the number of
outstanding packets is wf (t−0 ); the number of duplicate ac-
knowledgments received is equal to wf (t−0 )−ndrop (we are in-
cluding here the 3 duplicate acknowledgments that triggered
the retransmission), and a single non-duplicate acknowledg-
ment is received (corresponding to the retransmission). The
total number of packets sent during this interval will be one
(corresponding to the retransmission that took place im-
mediately), plus the number of duplicate acknowledgments
received, minus wf (t−0 )/2. We need to subtract wf (t−0 )/2
because the first wf (t−0 )/2 acknowledgments received will
increase the congestion window up to the number of out-
standing packets but will not lead to transmissions because

the congestion window is still below the number of outstand-
ing packets [31]. This leads to a total of 1+wf (t−0 )/2−ndrop

packets sent, which can be modeled by an average sending
rate of

rf =
1 + wf (t−0 )/2 − ndrop

RTTf
on [t0, t0 + RTTf ].

In case a single packet was dropped, fast recovery will finish
at t0 + RTTf , but otherwise it will continue until all the re-
transmissions take place and are successful. However, from
t0 + RTTf on, each acknowledgment received will also de-
crease the number of outstanding packets so one will observe
an exponential increase in the window size. In particular,
from t0 + RTTf to t0 + 2RTTf the number of acknowledg-
ments received is 1+wf (t−0 )/2−ndrop (which was the number
of packets sent in the previous interval) and each will both
increase the congestion window size and decrease the num-
ber of outstanding packets. This will lead to a total number
of packets sent equal to 2(1+wf (t−0 )/2−ndrop) and therefore

rf =
2(1 + wf (t−0 )/2 − ndrop)

RTTf
on [t0 + RTTf , t0 + 2RTTf ].

On each subsequent interval, the sending rate increases ex-
ponentially until all the ndrop packets that were dropped are
successfully retransmitted. In k round-trip times, the total
number of packets retransmitted is equal to

k−1
∑

i=0

2i(1 + wf (t−0 )/2 − ndrop) =

= (2k − 1)(1 + wf (t−0 )/2 − ndrop),

and the sender will exit fast recovery when this number
reaches ndrop, i.e., when

(2k − 1)(1 + wf (t−0 )/2 − ndrop) = ndrop ⇔

⇔ k = log2

1 + wf (t−0 )/2

1 + wf (t−0 )/2 − ndrop

.

In practice, this means that the hybrid model should remain
in the fast recovery mode for approximately

n
(

wf (t−0 ), ndrop

)

:=
⌈

log2

1 +
wf (t−

0
)

2

1 +
wf (t−

0
)

2
− ndrop

⌉

(11)

round-trip times. The previous reasoning is only valid when
the number of drops does not exceed wf (t−0 )/2. As shown in
[31], when ndrop > wf (t−0 )/2+1 the sender does not receive
enough acknowledgments in the first round-trip time to re-
transmit any other packets and there is a timeout. When
ndrop = wf (t−0 )/2 + 1 only one packet will be sent on each
of the first two round-trip times, followed by exponential in-
crease in the remaining round-trip times. In this case, the
fast recovery mode will last approximately

n
(

wf (t−0 ), ndrop

)

:= 1 + dlog2 ndrope (12)

round-trip times. The behavior of the several variants of
TCP in the presence of multiple packet losses in the same
window is also discussed in [7].

In ns-2, the value of the congestion window variable
(cwnd) is actually not changed inside the fast-recovery
mode. Instead, a variable (pipe) is used to emulate the con-
gestion window of standard TCP-Sack algorithm described



above. For compatibility with ns-2, in our model we ac-
tually keep the congestion window wf constant throughout
the whole duration of fast recovery but adjust the sending
rates according to the previous formulas.

TCP-NewReno. TCP-NewReno differs from TCP-Sack in
that the sender will only learn about the existence of each
additional drop when the retransmission for the previous
drop was successful. This means that it must remain in the
fast-recovery mode for as many round-trip times as the num-
ber of drops. Thus, our duration of fast recovery increases
linear to the number of dropped packets.

TCP-Reno. In TCP-Reno, the sender leaves the fast-
recovery mode as soon as the acknowledgment of the first
retransmitted packet is received, regardless of the occurrence
of more drops. In case more drops occur, these will be de-
tected right after the fast-recovery mode and the system
re-enters fast recovery again. The net result of each time
the fast-recovery mode is entered is a division by two of the
congestion window size. Thus, three dropped packets in a
window often leads to a packet timeout [7].

3.3.4 Timeouts
Timeouts occur when the timeout timer exceeds a thresh-

old that provides a measure of the current round-trip time.
This timer is reset to zero whenever the number of outstand-
ing packets decreases (i.e., when it has received an acknowl-
edgment for a new packet). Even when there are drops, this
should occur at least once every RTTf , except in any of the
following cases:

1. The number of drops ndrop is larger or equal to wf −2
and therefore the number of duplicate acknowledg-
ments received is smaller or equal to 2. These are
not enough to trigger a transition to the fast-recovery
mode.

2. The number of drops ndrop is sufficiently large so that
the sender will not be able to exit fast recovery be-
cause it does not receive enough acknowledgments to
retransmit all the packets that were dropped. As seen
above, this corresponds to ndrop ≥ wf/2 + 2.

These two cases can be combined into the following condi-
tion under which a timeout will occur:

wf ≤ max{2 + ndrop, 2ndrop − 4}.

When a timeout occurs at time t0 the variable ssthrf is set
equal to half the congestion window size, which is reset to
1, i.e.,

ssthrf (t0) = w−
f (t0)/2, wf (t0) = 1.

At this point, and until w reaches ssthr, we have multi-
plicative increase similar to what happens in slow start and
therefore (10) hold. This lasts until wf reaches ssthrf (t0) or
a drop/timeout is detected. The former leads to a transition
into the congestion avoidance mode, whereas the latter to a
transition into the fast-recovery/ timeout mode.

3.3.5 Hybrid model for TCP-Sack
The model in Figure 4 combines the modes described in

Sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4 for TCP-Sack. This
model also takes into account that there is a delay between

the occurrence of a drop and its detection. This drop-
detection delay is determined by the “round-trip time” from
the queue ` where the drop occurred, all the way to the
receiver, and back to the sender. It can be computed by

DDD`
f :=

∑

`′∈L[f,`]

(

T ` +
q`

B`

)

,

where L[f, `] denotes the set of links between the `-queue
and the sender, passing through the receiver (for drop-tail
queuing, this set should include ` itself). To take this de-
lay into account, we added two modes (slow-start delay and
congestion-avoidance delay), in which the system remains
between a drop occurs and it is detected. The congestion
controller only reacts to the drop once it exists these modes.
The timing variable ttim is used to enforce that the system
remains in the slow-start delay, congestion-avoidance delay,
and fast-recovery modes for the required time. For simplic-
ity, we assumed an infinitely large advertised window size in
the diagram in Figure 4.

The inputs to the TCP-Sack flow model are the round-trip
time, the drop events, and the corresponding drop-detection
delays (which can be obtained from the flow-conservation
law and queue dynamics in Sections 3.1, 3.2) and its outputs
are the sending rates of the end-to-end flows.

The model in Figure 4 assumes that the flow f is always
active. It is straightforward to turn the flow on and off
by adding appropriate modes (similar to what is done in
Section 3.4 for UDP flows). In fact, in the simulation results
described in Section 4.2 we used random starting times for
the persistent TCP flows.

3.4 UDP model
UDP sources differ from TCP sources in that the former

do not perform congestion control. The diagram in Figure 5
represents a simple hybrid model for an on-off UDP source
with peak rate equal to rmax and exponential distributions
for the on and the off times with means τon and τoff , respec-
tively. The average sending rate for this source is given by
τonrmax

τon+τoff
. This model could be generalized to other distribu-

tions.
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ṫtim = −1

off:

rf = 0
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Figure 5: Hybrid model for a UDP flow with expo-
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4. VALIDATION
We use the ns-2 (version 2.1b9a) packet-level simulator

to validate our hybrid models. Different network topologies
subject to a variety of traffic conditions are considered.
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, where n(·)

is defined by (11)–(12).

4.1 Network Topology
We focus our study on the topologies shown in Figure 6.

The topology on the left is known as the dumbbell topology
and is commonly used to analyze TCP congestion control
algorithms. The dumbbell topology is characterized by a
set of flows that originate at a source node (node 1) and are
directed to a sink node (node 2) through a bottleneck link.
In more realistic networks, a path with several links (and
intermediate nodes) would connect the source and destina-
tion. However, to analyze congestion control mechanisms,
one often ignores the existence of all the intermediate links,
except for the bottleneck, i.e., the most congested link.

While the dumbbell topology only considers TCP flows
with uniform propagation delays, the flows in the “Y-shape”
topology on the right of Figure 6 exhibit distinct propaga-
tion delays: 45ms (Src1), 90ms (Src2), 135ms (Src3), 180ms
(Src4). In our simulations, UDP flows make up for the back-
ground traffic injected. Background flows originate from
Src5 and router R2 while TCP flows originate from Src1 to
Src4. The background traffic model we employ is described
in detail in the Section 4.2 below. For the results presented
here all queues were chosen to be 40 packets long.

4.2 Simulation Environment
All ns-2 simulations use TCP-Sack (more specifically its

Sack1 variant outlined in [7]). Each simulation ran for 600
seconds of simulation time and data points were obtained by
averaging out 20 trials. TCP flows start randomly between
0 and 2 seconds. We model background traffic as (UDP)
on/off CBR flows which turn on/off after being off/on for
an exponentially distributed amount of time. We consid-
ered different amounts of background traffic in the form of

short-lived flows whose on and off time is 0.5 seconds on av-
erage. In particular, the results presented in this paper were
obtained by injecting background flows to account for 10%
of the traffic. While the exact fraction of short-lived traffic
found on the Internet is unknown, it appears that short-lived
flows make up for at least 10% of the total Internet traffic
[11]. We should point out that the quality of the hybrid
system simulations do not degrade as more short-live traffic
is considered. As previously mentioned, the drop model is
topology dependent. As observed in [3], for the single bot-
tleneck topology with uniform propagation delays, drops are
deterministic with each flow experiencing drops in a round-
robin fashion. However, when background on/off traffic is
considered, losses are best modeled stochastically.

The metrics used for comparing the hybrid system and
packet-level models include throughput, round trip time,
loss rate, and congestion window size for the TCP flows.
We also measure queue size at the bottleneck link.

4.3 Results
Figure 7 compares simulation results for the dumbbell

topology with a single TCP flow (no background traffic) ob-
tained with ns-2 and our hybrid model. These plots show
TCP’s congestion window size and bottleneck queue size
over time. As discussed in Section 3.2.2, we use drop ro-
tation to model drops in dumbbell topologies. The plots
show a nearly perfect match. While most existing models of
TCP congestion control are able to capture TCP’s steady-
state behavior, TCP slow-start is typically harder to model
because it often results in a large number of drops within
the same window. We developed our model to capture
the basic slow-start behavior of TCP Sack1: When more
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Figure 6: Dumbbell (left) and Y-shape multi-queue topology with 4 different propagation delays (right).
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Figure 7: Comparison of the congestion window and
queue sizes over time for the dumbbell topology with
one TCP flow and no background traffic.

than cwnd/2+1 packets are lost, a timeout occurs because
there are not enough acknowledgments to open the conges-
tion window [31]; and when the number of losses is around
cwnd/2, Sack1 eventually leaves fast-recovery but only after
a few multiples of the round-trip time (cf. Section 3.3.3).
This is consistent with Figure 7, where we see that, after
the initial drops, the congestion window is divided by two
and maintains this value for about half a second before it
begins increasing linearly.

In the next set of experiments, we simulate 4 TCP flows on
the dumbbell topology with and without background traffic.
Figure 8 shows the simulation results without background
traffic. As observed in previous studies, TCP connections
with the same RTT get synchronized and this synchroniza-
tion persists even for a large number of connections [34,
26]. This synchronization is modeled using drop rotation.
Similarly to the single flow case, the two simulations coin-
cide almost exactly. Specifically, in steady state, all flows
synchronize to a saw-tooth pattern with period around 1
second.
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Figure 8: Congestion window and queue size over
time for the dumbbell topology with 4 TCP flows
and no background traffic. Simulations using ns-2

(top) and a hybrid model (bottom).

Simulation results for 4 TCP flows with background traffic
are summarized in Table 1, which presents average through-
put and round-trip time for each flow for both hybrid system
and ns-2 simulations. These statistics confirm that the hy-
brid model nearly reproduces the results obtained from the
packet-level model.

To validate our hybrid models, we also use the Y-shape,
multi-queue topology with different round-trip-times shown
on the right-hand side of Figure 6. As discussed in Sec-
tion 3.2, we consider the drop-count and drop-selection mod-
els described by Equations (5) and (6), respectively. Unlike
in the drop rotation model in which losses are deterministic,
(6) generates stochastic drops. Since losses are random, no
two simulations will be exactly the same so it is not pos-
sible for the hybrid model to exactly reproduce the results
from ns-2. Table 2 summarizes simulation results obtained
with ns-2 and the hybrid model for 4 TCP flows with 10%
background traffic on the Y-shape topology under drop tail
discipline. This table presents the mean throughput and



Thru1 Thru2 Thru3 Thru4 RTT1 RTT2 RTT3 RTT4

ns-2 1.14 1.13 0.13 1.12 0.094 0.094 0.094 0.094
hybrid system 1.14 1.15 1.15 1.15 0.096 0.096 0.096 0.096
relative error 0% 0.01% 0.01% 0.02% 0.02% 0.02% 0.02% 0.02%

Table 1: Average throughput and round-trip time for the dumbbell topology with 4 TCP flows and 10%
background traffic.

mean round-trip time for each competing TCP flow. Note
that the relative error is less than 10% and in most cases
well under 10%. Similar results hold for variations of the Y-
shape topology, e.g., different round-trip times, number of
competing flows. However, for the stochastic drop model to
hold, there must be either background traffic and/or enough
complexity in the topology and flows such that synchroniza-
tion does not occur. When synchronization does occur, then
a deterministic model for drops should be employed. As
described in Section 3.2.2, in single bottleneck topologies
drop-rotation provides an accurate model. However, in more
complex settings, deriving the deterministic drop model is
quite challenging. This is one direction of future work we
plan to pursue.

A more accurate methodology to compare stochastic pro-
cesses is to examine their probability density function. Fig-
ure 9 plots the probability density functions corresponding
to the time-series used to generate the results in Table 2.
We observe that the hybrid model can reproduce similar
probability densities. Regarding the density function of the
congestion window, three of the flows closely agree, while
one shows a slight bias towards the larger value. The den-
sity function of the queue is similar for both models. One
noticeable discrepancy is that the peak near the queue-full
state is sharper in the case of the hybrid model. This dif-
ference is due to the fact that the queue in ns-2 can only
take integer values, while the queue in the hybrid model can
take fractional values. Thus, the probability that the queue
is nearly full is represented by a probability mass at qmax−ε
for the hybrid model, while it is represented by probability
mass at qmax − 1 in ns-2. This results in a more smeared
probability mass around queue-full in the case of ns-2.

While visually comparing two density functions provides
a general understanding of their similarity, there are sev-
eral quantitative metrics to compare density functions. One
good metric is the L1-distance [6], which has the desirable
property that when f and g are densities,

∫
∣

∣f − g
∣

∣ = 2 supA

∣

∣

∫

A
f −

∫

A
g
∣

∣.

Thus, if the probability of an event A is to be predicted, the
error of the prediction is half of the L1-distance between the
density functions. Table 3 shows the L1-distance between
the hybrid model and ns-2 histograms. The distances in-
dicate that the hybrid model provides a good prediction of
the actual probability density function.

5. COMPUTATIONAL COMPLEXITY
While hybrid systems allow for a theoretical understand-

ing of networks, they are also amenable to simulation.

In [18] it was shown that a ripple effect may greatly de-
grade the efficiency of fluid models. Since a hybrid model is
to some extent a fluid model, one might expect an increase
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Figure 9: Probability density functions for the con-
gestion window and queue size for the Y-shape
topology with 4 TCP flows and 10% background
traffic. These were computed from simulations us-
ing ns-2 (top) and a hybrid model (bottom).

in computation speed when compared to a packet level sim-
ulator such as ns-2. However, in [18] the flow rates are
held constant between events, whereas here we utilize ordi-
nary differential equations (ODEs) to describe the bit-rates,
accommodating complex variations in the sending rates be-
tween events.

Modern ODE solvers are especially efficient while the con-
tinuous variables are well modeled by polynomials. How-
ever, in networks the bit-rates have occasional discontinu-
ities. This requires special care and can lead to signifi-
cant computational burden. In fact, the simulation time
grows essentially linearly with the number of discontinuities
in the continuous variables. In our models, these discontinu-
ities are essentially caused by two types of discrete events:
drops and queues emptying. Drops typically cause TCP to
abruptly decrease the congestion window, whereas a queue



Thru1 Thru2 Thru3 Thru4 RTT1 RTT2 RTT3 RTT4

ns-2 1.873 1.184 0.836 0.673 0.0969 0.141 0.184 0.227
hybrid model 1.824 1.091 0.823 0.669 0.0879 0.132 0.180 0.223
relative error 2.6% 7.9% 1.5% 0.7% 9.3% 5.9% 3.6% 2.1%

Table 2: Average throughput and round-trip time for the Y-shape topology with 4 TCP flows and 10%
background traffic.

cwnd1 cwnd2 cwnd3 cwnd4 bottleneck queue

4 flows dumbbell with background traffic 0.0071 0.0067 0.0071 0.0066 0.0108
4 flows y-shape with background traffic 0.0034 0.0044 0.0025 0.0033 0.0054

Table 3: L1-distance between histograms computed from simulations using ns-2 and a hybrid model.

becomes empty forces the outgoing bit-rates to switch from
a fraction of the outgoing link bandwidth to the incoming
bit-rates1. It turns out that the frequencies at which these
events occur are essentially determined by the drop-rates of
the active flows and the rate at which flows start and stop.
These issues are illustrated in the comparison in Table 4
between ns-2 and an hybrid model. This table shows exe-
cution time (in seconds) of ns-2 and the hybrid simulator
Modelica [23], where a single bottleneck topology with 20ms
propagation delay was utilized. The bandwidth of the bot-
tleneck link is 5Mbps, 50Mbps or 500Mbps as shown. There
were either one or three long-lived TCP flows competing for
the bottleneck bandwidth. Each simulation ran for 10 min-
utes of simulations time. The table displays the number of
seconds required to complete the simulation on a 1.2GHz
Pentium PC with 512MB memory.

Since the main factor that determines the simulation
speed is the drop-rate, it is informative to study how it
scales with the number of flows. To this effect consider
the well-known equation T = c

RTT
√

p
, which relates the

per-flow throughput T , the average round-trip time RTT ,
and the drop probability p for dumbbell topology [24]. Ac-
cording to this formula the total drop-rate for n competing

flows, which is equal to nTp, is given by n
T

c2

RTT2 . This sug-
gests that the computational complexity is of order O(n/T ),
scaling linearly with the number of flows when the per-flow
throughput is maintained constant and is actually inversely
proportional to the per-flow throughput when the number of
flows remains constant. This is in sharp contrast with event-
based simulators for which the computational complexity is
essentially determined by the total number of packets trans-
mitted, of order O(nT ). This is confirmed by the results in
Table 4, which show that the hybrid simulator is especially
competitive for large per-flow throughputs. However, when
many flows share a low-bandwidth link packet-level simula-
tors have the advantage. E.g., when 3 flows share a 5Mbps
link ns-2 is only twice as slow and could actually be faster
than our hybrid simulator if we increased the number of
flows.

Memory usage is also a concern when simulating networks.
Hybrid systems requires one state variable for each active
flow and one state variable for each flow passing through a

1Neither of these events exhibits the type of explosion de-
scribed in [18] because none of them instantaneously gener-
ates further events of the same type downstream. Actually, a
queue emptying can eventually cause other queues to empty
downstream but not before some time has elapsed.

queue. Hence, memory usage scales linearly with the num-
ber of flows and number of queues. For ns-2, the memory
usage depends on the number of packets in the system, and
hence scales with the bandwidth delay product.

6. CONCLUSION AND FUTURE WORK
We propose a general framework for building hybrid mod-

els that describe network behavior. Our hybrid systems
framework fills the gap between packet-level and aggregate
models by averaging discrete variables over a very short time
scale. This means that the model is able to capture the dy-
namics of transient phenomena fairly accurately, as long as
their time constants are larger than a couple of round-trip
times. This is quite appropriate for the analysis and de-
sign of network protocols including congestion control mech-
anisms.

One direction for future research is to perform very large
scale simulation. We found that the hybrid model accurately
matches discrete packet level simulation for small simula-
tions. However, the real benefit of this approach will be-
come apparent after a study of very large scale simulations
is complete.
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