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Abstract

In this paper we determine routing polices for a data
transmission network that are robust with respect to
attempts of packet interception by an adversary. This
problem is formulated as a zero-sum game between the
designer of the routing algorithm and an adversary that
attempts to intersect packets. We show that for some
versions of the game, the optimal routing policies also
maximize the throughput between the source to the
destination node. In this paper we also list problems
in this area that remain open.

1 Introduction

In modern networking, game theory has been used to
investigate flow control [1], [2], allocation of link ca-
pacities [3], server allocation [4], the trade-off between
delay and throughput along virtual circuits [5], [6], [7],
competitive routing, where multiple users are sharing
the network and each is trying to minimize the flow cost
[8]. However, there has been little work on secure rout-
ing where packets are under threat of being corrupted
or filtered by an attacker. For example, an attacker
may have the ability to “sniff” packets along a partic-
ular link and watch for passwords or other information
traversing the link.

In this paper we are interested in determining routing
policies for the network that are robust with respect
to attempts of packet interception by an adversary. To
this effect, we will formalize routing design as a game
between two players: an adversary that attempts to
intersect packets and the designer of the routing al-
gorithm that tries to avoid packets from crossing the
links that are under the attackers surveillance. This
game is investigated under different rules and informa-
tion structures. In some cases, the game reduces to the
well known max flow problem for which there exists
computationally efficient algorithms.

We consider a data transmission network with nodes
N = {1,2,...,n} connected by unidirectional links.
We denote by L the set of all links and use the notation

ﬁ to represent a link from node j to node i. For a given

link £ € £ we denote by 7, the time it takes for a packet
to transverse that link and by b, the link’s bandwidth
in packets per second, where the packets are assumed
to be of uniform size. We assume here that all the
nodes in the network are connected in the sense that
it is possible to reach any node from any other node
through a finite sequence of links.

By a routing policy for a network it is usually meant

an algorithm that determines which sequence of links
{192, 1213, . ..,ik—11%} C L should be used to direct

(route) a packet from a source node i; € N to a des-
tination node i, € N. Without loss of generality, we
take the source and destinations nodes to be 1 and n,
respectively. Because of this we do not need to con-
sider links coming out of node n and for simplicity we
will assume that no link in £ exits node n. Most rout-
ing policies used in data transmission network have no
memory in the sense that, when a packet arrives at
some node i € N with final destination iz, € N, the
routing algorithms selects a path from 7 to i; inde-
pendently of where the packet is coming from. Here,
we will not restrict our attention solely to this class of
routing algorithms. In particular, some of the policies
considered will take into account the node where the
packets started (by convention node 1).

In the next section the max flow problem is posed in
an uncommon setting. Then, different types of games
are investigated. The first is an on-line game where
the attacker has full information and is able to attack
a new link at every step. This game is solved with
dynamic programming. The second game is off-line,
where the attacker must choose one link to attack at
the beginning of the game. The routing algorithm is
designed to minimize the effect of the attack. In some
cases, these games reduces to the max flow problem of
Section 2. Finally, the routing algorithm is adjusted
in order to not only minimize the effect of the attack,
but also reduce the delay (e.g. number of hops). This
problem will reduce to the max flow with gain problem

[9].

2 Maximum Flow

Before formalizing the routing problem we derive some
basic results on the maximum number of packets per



second that can flow in a network without violating the
bandwidth constraints.

2.1 Maximum Throughput

Suppose that we want to compute the maximum num-
ber of packets per second that can be transferred be-
tween two nodes in the network without drops. With-
out loss of generality, we take the source and destina-
tions nodes to be 1 and n, respectively, and we denote
by z¢ the number of packets per second that transverses
link £ € £. Each z; must be in the interval [0, b].

In this section, we consider routing policies that
distribute packets among several possible alternative
paths according to a rule defined in terms of the per-
centage of packages sent through each path. Here, we
take as given a routing policy that enforces that 7
percent of all the packets arriving at node i are routed
through link ik € L. We ignore the quantization
and assume that this percentage is exact at all times.
Policies of this type are called deterministic multi-path
routing policies. We denote by Rget the set of all such
policies. As far as the traffic flow is concerned, each
deterministic routing policy is characterized by the list
R := {r; : £ € L}, where the 7, satisfy

Z rg =1, Vie N\ {n}.

k:iikeL

In the sequel, we actually equate Rqet to the set of
lists R with the above property. The maximum number
of packets per second that can be transferred without
drops by a deterministic multi-path routing policy R :=
{re: £ € L} is called the mazimum throughput of R.

Assuming that u packets per second are sent from node
1 to n without drops, we must have

Ty =Tﬁ>(5z~1u+ Z wy), iKeLl, itn (1)
JiJEL
where 6;; := 1 when i = j and §;; := 0 otherwise.
Equation (1) can also be written as
T = ARz + pcr, (2)

where z := {z, : £ € L}, AR is an appropriately defined
matrix, and cpg is an appropriately defined vector. The
maximum throughput of R is then equal to

Up=mMax max _ [. 3
R 1 z,€[0,bg]: ( )
r=ARz+lCR

Remark 1. We say that a routing policy R € Rget
is cycle-free if under this policy a packet will never
pass through the same node twice. Formally, this

means that there is no sequence of links & :=
{192,213, ..., ik—1%k, k31 } C L, with 7, > 0 for all

£ € S. For a cycle-free policy R, the matrix I — Ag is
nonsingular! and the input flow p completely defines
the traffic z = u(I — Ar)'cr at every link.

IWhen R is cycle-free A% = 0 and therefore the series
Yo A’f2 converges and is equal to (I — Ag)~! [10].

2.2 Maximum Bandwidth

The maximum throughput computed above depends on
the routing policy R. One can also pose the question,
given a routing policy, what is the maximum through-
put attainable? We call this throughput the mazimum
bandwidth of the network between nodes 1 and n.

Assuming that u packets per second are sent from node
1 to n without drops, we must have

bapt Y zp= ) o5,

JiJiEeL i EeL

ieN\{n}. (4

Equation (4) can also be written as Az+ pc = 0, where
z:={xz¢: ¢ € L}, Ais an appropriately defined matrix,
and ¢ an appropriately defined vector. The following
can then be proved:

Theorem 1 (Maximum Bandwidth). For  each
deterministic multi-path routing policy R € Rget, let
g be defined by (3). Then

max fip = fpax = MaX mMax [ (5)
RER et R max B x€[0,be]:
Ax+pc=0

and the mazimum is attained at any policy R* defined
by
Tx,
i = ﬁ,ﬁc}EQ (6)
jiijEL Tf

where the x* = {x} : £ € L} mazimizes (5). Moreover,
it is always possible to find a cycle-free optimal policy

R*.

Remark 2. Equation (4) can be generalized to multiple
flows, i.e., sources of traffic. Assuming there are m
flows {p, : k € M}, M :={1,2,...,m}, with the flow
s, from node 13 to node ny, equations (4) becomes

k k
Saut Y o= Y o,

J:JEeL i EL

for i € N\ {n}, k € {1,2,...,m}. In this case, the
bandwidth constraints are

Sz e 0,8, teL.
keM
3 Routing Games

Take the routing problem as a game between the net-
work designer that specifies the routing algorithm and
an adversary that attempt to intercept data in the net-
work. We consider here a zero-sum game in which
the designer wants to minimize the time it takes for
a packet to be sent from node 1 to node n, and the
adversary wants to maximize this time. To accomplish
this, the adversary attempts to intercept the packet at
particular links in the network. For short we say that
the adversary scans link £ € £ when she attempts to
intercept the packet at that link. Several versions of
the game are possible depending on how the game is
defined:



Offline v.s. online The adversary can choose the
link to be scanned only once before the packet
is sent out of node 1, or she can select a new link
every time the packet arrives at a new node. In
the latter case, we assume that she knows where
the packet is when she makes her selection.

Effectiveness In case the adversary scans a link over
which the packet is traveling, the probability that
she will intercept the packet maybe smaller than
1, i.e., she may not produce any effect on the
routing of the packet with some nonzero probabil-
ity. This probability may be fixed or it may vary
from link to link. Effectiveness can account for
defenses such as camouflaging packets amongst
decoy packets, were the attacker can only inter-
cept a fraction of all packets send.

Delay v.s. resend In case the adversary intercepts
the packet, it may just suffer an additional delay
(or cost) and proceed from the same node after
that, or it can be sent back to node 1 after some
delay (time-out).

In this paper we assume that the interception is done
at the links but similar results can be derived when the
interception occurs at the nodes.

3.1 Onmnline Game

We start by considering an on-line game in which the
adversary selects a new link to be scanned every time
the packet arrives at a new node and makes the selec-
tion knowing where the packet is. For generality, we
take the probability of intercepting a packet to be link
dependent and denote by py the probability of inter-
cepting a packet traveling in link £ € L, given that
link £ is being scanned by the adversary. Here, we will
assume that there are no drops.

We start by considering the case in which intercept-
ing a packet simply results in a fixed? extra delay T.
The routing of the packet over the network can then
be regarded as a stationary Markov chain whose state
q: € N is a random variable denoting the node where
the packet is before the hop t € {1,2,...}. Denoting
by a; € L the next link as determined by the rout-
ing algorithms and by b; € L the link scanned by the
adversary, we have the following transition probability
function for the Markov chain

Platy1 =¢ |ar =¢q, a; =qd, by =€) =644, (7)

qgeN\{n}t,d e N,qdte L te{1,2,...}. The
state m is an absorbing state, i.e.,

P(qf,+1 = q' | q:=n, ag =41, by = 52) = 611'"5

qdeEN, bl e L,te{1,2,...}. The cost to be opti-
mized is the average time it takes to send the pack-
age from node 1 to node n and can be written as

J =E[ X2, aea:,by)|, where

2This could be easily generalized for link-dependent extra de-
lays.

0 qg=n
Ug,a,b) = Ta a#b g#n
Tga + Pl a=0b,g#n

To optimize this cost, for each node i € N\ {n}, the
player that deﬂ)gns the routing chooses the distribution
a(i) := {ag : ik € L} of links to route the packet out
of node i and the adversary chooses the distribution
b(7) :={be : £ € L} of links to be scanned.

The two-person zero-sum game just defined falls in the
class of stochastic shortest path games considered in
[11]. In particular, it satisfies the following SSP as-
sumptions:

SSP 1 There exists at least one proper policy for the
minimizer, i.e., a policy that will lead to a finite
cost regardless of the policy chosen by the maxi-
mizer. This is true because we assume that there
exists a sequence of link that connects node 1 to
node n. Note that even considering the version of
the game in which an intercepted packet is sent
back to node 1, this assumption holds provided
that py < 1 for every £ € L, because the packet
will eventually reach the destination with proba-
bility one.

SSP 2 For any policies for which there is a zero prob-
ability that the packet will reach the destination
node, the corresponding cost is infinite. This is
true provided that 7, > 0 for every £ € L, because
all links that do not reach node n will contribute
to the final cost with a positive marginal cost.

To find a saddle solution to the game defined above,
let us denote by V;, i € N, the cost-to-go from node i,
defined to be the average time it takes to send a packet
from node i to node n

Vi=E [il(qt,at,bt) =i, ®

using optimal routing policies for each player. Because
we are dealing with a stationary Markov chain and an
infinite horizon cost, starting the summation at time
k =1 is completely arbitrary. Clearly, V;, = 0. Suppose
now that a packet just arrived at node i € N\ {n}, the
designer decides to route it through the link ik €Ll
and the adversary decides to scan link £ € £. For these
particular choices, the average cost will be

Tz +pzT 6,7 + Vi 9)

Denoting by a(i) := {ay : ik € L} the distribution
of links with which the designer decides to route the
packet out of node i and by b(¢) := {b; : £ € L} the
distribution of the links to be scanned, the average cost
will then be a(i)M;[V]b(i) where M;[V] is a matrix
defined by

M[V] = [t +p TO, 7 + Vi (10)

ikl



Consider now the operators Tiin max 80d Tmax min that
transform a set of costs-to-go V := {V; : i € N'} into
V' i={V!:ie N} and V" := {V/ : i € N'}, respec-
tively, with

V= infsupd M{VIb, i€ N\ {n}, Vi=0 (11
a

V" =supinfa'M;[V]b, i€ N \{n}, V. =0.(12)
b a

These operators satisfy the regularity assumptions in
[11]. In particular,

R 1 The sets over which the controls a(),b(3), i €
N\ {n}, take values are compact.

R 2 The maps {a(7),b(i)} — a’ M;[V]b are continuous.

R 3-4 The infima and suprema in (11)—(12) are ac-
tually minima and maxima and the two opera-
018 Tinin max 80d Tiax min are equal [12, Minimax
Theorem].

The following Theorem is then a consequence of the
results in [11]

Theorem 2. The operator Tiin max (which is the same
a5 Tmaxmin) has a unique fized point V* := {V* i €
N} and, for any V :={V; :i € N},
V= kli»n;o Tr’fﬁnmax‘_/'

This fized point V* is equal to the cost-to-go V := {V; :
i € N} corresponding to a pair of saddle policies for
the game. Moreover, any pair of policies for which the
outer inf and sup in (11)—(12) are achieved, forms a
saddle solution for the game.

Now consider the case in which an intercepted packet
is sent back to node 1 after a delay T, the transition
probability for the Markov chain in (7) becomes

dpa L#7qd
P(Qt+1=q/IQt=q,at=_d,bt=f)={5q,1 ng?
q =

The cost in (9) must then be replaced by
TR+ Vi +tpg (T -7 +Vi— Vi)dyzz
and, therefore, the matrix M;[V] must be replaced by

MV]i= [rg + Vi+pg (T -t + Vi - V)8, |

However, all the assumptions mentioned before still
hold and Theorem 2 is also true for this version of the
game.

Remark 3. When the intercepted packet is sent back
to the source node, the cost-to-go V; (and therefore the
optimal routing policy) depends on the source node
(chosen to be 1 in this derivation). This does not hap-
pen when interception just introduces an extra delay.

3.2 Off-line Game

Now we consider an offline game in which the adversary
selects which link to be scanned before routing starts,
but the player responsible for designing the routing pol-
icy does not know which link was selected.

This problem can be solved by converting it into its
extensive form by building a matrix M with one row
for each possible path from node 1 to node n and one
column for each possible link that the adversary can
scan. If one allows for circular paths (as could in prin-
ciple happen with stochastic routing) the matrix may
have an infinite (but countable) number of rows. This
method to compute the optimal solution does not scale
well because potentially the number of distinct paths
grows exponentially with the number of links.

Another method to solve this problem consists in con-
verting it into a game in a Markov chain as done in the
previous section. For the Markov chain to “memorize”
the initial decision of the adversary, its state must be a
pair (qq, s;) where q; denotes the node where the packet
is before the tth hop and s; the link being scanned by
the adversary. In this game s; remains constant after
t > 1, since we assume the adversary cannot change is
mind after the initial choice. The resulting game is then
played in a partially observable Markov chain because
the player that designs the routing cannot measure the
component s; of the state. However, we can assume
that it is a nested information game because the ad-
versary can have full state information (of course there
is nothing she can do with this information) and there-
fore a solution to this game that avoids the combinato-
rial explosion by making use of dynamic programming
seems possible. Unfortunately, even with nested infor-
mation, solving this game seems computationally hard
because of partial information.

In search for solutions to the game that are computa-
tionally more attractive, we start by considering a sim-
pler version of the game in which the cost that defines
the zero-sum game is simply J = E[x] = P(x = 1),
where x is a random variable that is equal to 1 if the
packet is intercepted and 0 otherwise. This cost as-
sumes that all paths are equal and therefore all that
matters is to make sure that the packet reaches its des-
tination. This can be viewed as the limiting case when
a packet being intercepted means that it will suffer a
fixed extra delay T that is much larger than any of
the delays ¢, £ € L, incurred when the packet is not
caught.

We consider here stochastic routing policies and de-
note by Rsto this class of policies. Under such policies,
whenever a packet arrives at node k € N, it will be
routed through link ki € £ with probability 7. As
far as the routing is concerned, each routing policy is
characterized by the list R := {ry : £ € L}, where the

r¢ satisfy
Z Tz =1, VieN.
kiikel

In the sequel we equate R, to the set of lists R with



the above property.

Let us consider a fixed routing policy R := {r; : £ €
L} € Rsto and a choice of link £ € L to be scanned by
the adversary. The corresponding cost Jgy is then given
by Jre = Pre(x = 1), where the subscript g in the
probability measure emphasizes its dependency on the
choices of both players. Since all we are interested in is
determining if the packet is caught (in which case x =
1), without loss of generality we can assume that, once
a packet is caught it will not be routed anymore. Under
this assumption, denoting by z;() the probability that
the packet will be sent to link £ € L for the hop t €

{1,2,...}, we have that for ¢ > 1 and ikecL,

> ral

JiJiEL

zm(l) = Tﬁ,mm(t + 1) =
(13)

Using the fact that the conditional probability that a
packet is caught in the tth hop, given that it was sent
to link £ in that hop, is equal to py, we can then write
the cost as Jre = Y ;o pewe(t). Equation (13) can also
be written as

z(1) =cpr,z(t+1) = Ar(I — P)x(t), t>1, (14)
where z(t) := {x¢(t) : £ € L}, t > 1, P; is a matrix
whose entries are all zero except for the /th diagonal
element that is equal to py, and Agr and cgr are as in

Section 2.1. The probability of the packet being inter-
sected can then be written as

Jre=1PY 2(t) =1P Y (Ar(I — P,))" 'cr,
t=1 t=1

(15)

where 1 denotes a row vector of ones.

Suppose now that the adversary scans each link £ € L,
with probability d; and let D := {d; : £ € L}. We then
have

JRD = Zd@]}u Zd@lpg Z AR(I - Pg))t_lcR.

el LeL

A saddle solution for this zero-sum game exists in case

1

i APy (Ap(I—Pp))"~
p  max, e; 0 zz rI—Pp)) cr

. t—1
- De?d’i}ngqa‘:mZdﬂPthl (An(I = P0)en.

Since the cost is not bilinear on the policies, it is not
clear if a saddle solution does exist. We conjecture that
it does but leave this issue for a future paper. Here,
we will seek for a security policy R* for the player that

pf&lf Ji )IE i1 (t)

designs the routing policy. The policy R* policy is
defined by

* .= mj 1P, (Ar(I - P) ler (1
I i, gy a3 (antt —P0) e 10

ZGL
AP (Ag-(I—- )"
= m {de}e; o e; (I = Py))

3.2.1 Cycle-free Routing: To solve (16), we
restricting ourselves to stochastic cycle-free routing
policies. These are stochastic routing policies for which
R := {ry : £ € L} is chosen so that a packet will not
return to a node where it has been before with prob-
ability one. Formally, this means that there is no se-
quence of links S := {4143, 4913, ...,9k_1%k, ki1 } C L,
with 7 > 0 for all £ € S. We denote by Ruocycle the
set of lists R € Ryt with the above property. The fol-
lowing basic property of cycle-free policies is proved in
the appendix.

Lemma 1. For any cycle-free routing policy R := {r :
L€ L} € Ruocycle and any £ € L,

P> (ArUI - P)) ™' =P A = P(I - Ap)~t
t=1 t=1

(17)

Once we restrict ourselves to stochastic cycle-free rout-
ing policies, the security policy R* for the player that
designs the routing policy can be defined by

J* = min max ngnga:R— m?x Zd@ngmR*

RERsto Dz{de ter D= ter
where zr = (I — Ag)~'cg and therefore zr is the
unique solution to
Tr = ARTR + CR. (18)

Because of linearity we have that

J*= min max1Pzg.
RERnocycle LEL

Moreover, since max{a, b} = ming<,, p<, ¢ and all the
T are nonnegative, we also have
J*= min min
RERnocycle 1Ppzr€E[0,pu]:
TrR=ARTR+CR

Suppose now that we make the change of variables ji :=
% and Zr := pzgr in the above optimization. This
yields

. . b
J*= min min -,
R€Rnocycle 1P, Zr€[0,0: [

Tr=ARTR+[CR

and therefore

b _
- = max max Mn = max 1253
J* ReRnocycle 1PliRe[0,b}5 ReRnocycle ’
TrR=ARIR+ICR



where pp denotes the maximum throughput defined by
(3), when all links have bandwidths b, £ € L, equal to
b. Security policies for this game can then be com-
puted using the linear program defined in Theorem 1,
provided that one selects an optimal policy R* that is
cycle-free. Note that the optimal policy R* in Theorem
1 should now be interpreted as a stochastic cycle-free
routing policy.

3.2.2 Bias Towards Short Paths: In the pre-
vious sections we considered a cost J = E[x] that ig-
nores the length of the path taken. We show here how
this cost can be modified to bias the routing towards
short paths and still keeping the computations simple.
The cost proposed is defined by J. := E[x,] where X.,
€ > 0, is a random variable that is equal to (1 + e)tfl
if the packet is intercepted at the tth hop and 0 oth-
erwise. For € = 0, this random variable degenerates in
the random variable x defined before. This new cost
function bias the solution sought by the player that
designs the routing policy towards shorter paths since,
when being caught is inevitable, it incurs in less cost
if it is caught sooner than later. In fact, as € — oo,
the burden of an extra hop is so large that the optimal
solution will minimize the number of hops.

It turns out that solving the game for the new cost J.
is conceptually the same as solving the game for the
previous cost J. To see why this is so, let us expand J,
as

Jo = > pe(l+€) (1)
t=1

o

ST1RY (1 + AR - P) e

t=1

Here we have used (14). This means that this new game
can be solved similarly to the previous ones, provided
that we replace Ag by (1 + €)Ag.

Remark 4. For the case of no cycles, the solution to
this game corresponds to a flow constrain of the form

z=(14¢€)Arx + pcg,

instead of (2). This can be view as a multiplicative flow
amplification of (1 + €) at each node and it will make
input flows that use many hops smaller because they
are more amplified as they travel to the destination
node.

4 Conclusions

In this paper we determined routing polices for a data
transmission network that are robust with respect to
attempts of packet interception by an adversary. This
problem is formulated as a zero-sum game between the
designer of the routing algorithm and an adversary that
attempts to intersect packets. We show that for some
versions of the game, the optimal routing policies also
maximize the bandwidth between the source to the des-
tination node.

Several problems remain open. For online games, nu-
merical computations seem to indicate that policy it-
eration seems to converge to a fixed point in a finite
number of steps. We have also observed that the opti-
mal policies computed numerically are cycle-free. We
are now investigating if these are general properties of
these games. This seems to be so, at least, for the
case when interception just introduces an extra delay.
For offline game, we have so far only computed security
policies that are worst case solutions for the player that
designs the routing policies. We believe that the solu-
tions that we derived are actually saddle solutions but
that remains to be proved. Finally, so far we restricted
our attention to cycle-free policies for the offline game.
It remains to investigate if policies with cycles can yield
more favorable costs.

References

[1] E. Altman, “Flow control using the theory of
zero-sum markov games,” IEEE Transaction on Au-
tomatic Control, vol. 39, pp. 814-818, 1994.

[2] R. Maheswaran and T. Basar, “Multi-user flow
control as a nash game: Performance of various algo-
rithms,” in Proc. 87th IEEE Conference on Decision
and Control, (Tampa, Florida), pp. 1090-1095, 1998.

[3] Y. A. Korilis, A. A. Lazar, and A. Orda, “Ca-
pacity allocation under noncooperative routing,” IEEE
Transactions on Automatic Control, vol. 42, no. 3,
pp- 309-325, 1997.

[4] S. Olafsson, “Resource allocation as an evolv-
ing strategy,” Ewvolutionary Computation, vol. 4, no. 1,
pp- 33-55, 1996.

[6] K. Bharath-Kumar and J. M. Jaffe, “A new ap-
proach to preformance-oriented flow control,” IEEFE
Transactions on Communications, vol. 29, pp. 427-435,
1981.

[6] A. Orda, N. Rom, and N. Shimkin, “Compet-
itive routing in multi-user communication networks,”
IEEE/ACM Transaction on Networking, vol. 1,
pp- 614-627, 1993.

[7] S. Shenker, “Making greed work in networks: A
game-theoretic analysis of switch service disciplines,”
in SIGCOMM Symposium on Communications Archi-
tectures and Protocols, (London, UK), pp. 47-57, 1994.

[8] E. Altman, T. Basar, T. Jimenez, and
N. Shimkin, “Competitive routing in networks with
polynomial costs,” in IEEE INFOCOM 2000, (Tel-
Aviv, Israel), 2000.

[9] M. Gondran and M. Minoux, Graphs and Algo-
rithms. New York: John Wiley, 1979.

[10] L. G.Mason, “Equilbrium flows, routing patterns
and algorithms for store-and-forward networks,” Large
Scale Systems, vol. 8, pp. 187209, 1985.

[11] S. D. Patek and D. P. Bertsekas, “Stochastic
shortest path games,” SIAM J. Control and Optimiza-
tion, vol. 37, no. 3, pp. 804-824, 1999.

[12] T. Basar and G. J. Olsder, Dynamic Noncooper-
ative Game Theory. London: Academic Press, 1995.



