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Abstract
In this paper we propose a hybrid model for TCP congestion control mechanism operating under
drop-tail queuing policy. Using this model we confirmed the standard formula 7' := RTV;/ jﬁ used by

TCP-friendly congestion control mechanisms, which relates the average packet drop rate p, the average
round-trip time RT'T, and the average throughput 7. The hybrid model also allows us to understand the
transient behavior and theoretically predict the flow synchronization phenomena that has been observed
in simulations and in real networks but, to the best of our knowledge, has not been theoretically justified.
This model can also be used detect abnormalities in TCP traffic flows, which has important applications
in network security.
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1 Introduction

Consider the computer network show in Figure 1. In this topology, n TCP flows are generated at a source
node n; and are direct towards a sink node ny. All the flows compete for the finite bandwidth B that
characterizes the link £ that connects the nodes. This configuration is known as a dumbbell topology and is
typically used to analyze TCP’s congestion control. In more realistic networks, a path of several links (and
intermediate nodes) would connect the source and destination nodes. However, to analyze congestion control
mechanisms, one often ignores the existence of all the intermediate links, except for the bottleneck link, i.e.,
the link that has the smallest bandwidth. In the dumbbell topology, £ represents precisely this link.
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Figure 1: Dumbbell topology

The basic problem in congestion control is to determine sending rates for each of the n flows that result
in an optimal utilization of the available bandwidth. The transport layer of the TCP/IP protocol stack is
responsible for solving this problem and the sending rates are determined by n congestion controllers. Each
congestion controller adjusts the sending rate of one particular flow, based on the number of packet drops
that this flow is suffering. Packet drops occur when the sending rates of the flows are too large and the
source node n; is unable to process all the packets received. The congestion controller becomes aware of
packet drops because, each time a packet is received by the destination node, it send an acknowledgment
packet back to the source node. When a data packet is dropped, its acknowledgment is never received and
the congestion controller should take some action. The congestion control problem is nontrivial because of
the following:

1. The bandwidth B associated with the link £ and the total number of flows n competing for this
bandwidth are not known by the congestion controllers. Moreover, these parameters are likely to
change over time.

2. The exchange of control information among congestion controllers and between the congestion con-
trollers and the nodes is undesirable. This is because the control information would compete with the
data for the available bandwidth.

Every computer connected to the Internet runs some version of TCP congestion control. It is therefore
not surprising to find that a significant body of literature is devoted to this topic. However, many basic
questions remain poorly understood. These include:

1. Does TCP congestion control work? In particular, is it able to prevent a catastrophic collapse of the
network under very heavy load.

2. Is TCP congestion control fair? In particular, does it result in approximately equal throughput for all
competing flows.

3. Is TCP optimal or close to optimal? This question is particularly difficult because there is no universally
accepted notion of optimality. Small drops rates, small delays, approximately constant flow rates, and
fast adaptation to changes in the network are certainly desirable properties. However, these criteria
are self-contradictory and therefore trade-off solutions are required.



In this paper we provide a hybrid model for Reno congestion control [1]. Reno is one of the more popular
versions of TCP congestion control and is generally accepted to perform well. The hybrid model developed
here allowed us to shed light in some of the questions formulated above.

The model proposed provides a new derivation for the now fairly standard formula

3/2

== (1)
RTT \/p

that relates the average packet drop rate p, the average round-trip time RTT, and the average throughput T

[2, 3]. Formulas such as (1) have been used to design congestion control mechanisms that are TCP-friendly

but produce more constant sending rates, making them more suitable, e.g., for streaming multimedia over

the Internet [4]. Unlike previous derivations, ours considers the effect of queuing and the coupling between

the competing flows.

The hybrid model presented here also predicts that the dumbbell topology in Figure 1, with drop-tail
queueing at node nj, leads to flow synchronization, i.e., the sending rates of all the flows exhibit in-phase
periodic variations. This produces undesirably large variations of the round-trip time and poor utilization
of the queue. This type of behavior has been observed before [5] and actually led to the development of
Random Early Detection/Drop active queuing [6]. To the best of our knowledge, this is the first time that
the synchronization phenomena is theoretically explained.

2 Hybrid Model for Congestion Control

In this paper, we consider Reno congestion control. We describe next a simplified version of this algorithms
that is sufficient for the purposes of this paper. Each congestion controller possesses an internal state known
as the window size. We denote by w;, i € {1,2,...,n}, the window size of the congestion controller associated
with the ith flow. The window size determines the maximum number of unacknowledged packets for that
flow. E.g., if w; = 3, then the congestion controller can send 3 packets immediately, but must wait for one
acknowledgment to arrive before a 4th packet can be sent. The algorithm to update the window size w;
is as follows: While no drops occur, the window size is incremented by a fixed constant a > 1 for each w;
acknowledgments received (typically a = 1). This is known as additive increase. When it is detected that a
drop occurred (because an acknowledgment packet is missing) the window size is multiplied by a constant
m € (0,1) (typically m = 1/2). This is known as multiplicative decrease. We are ignoring Reno’s initial
adjustment of the window size known as slow start because it has little impact on the system after a brief
initial period. The reader is referred to [1] for a detailed description of Reno congestion control.

Although the window size takes discrete values, it is convenient to regard it as a continuously varying
variable. Let us call round-trip time, denoted by RTT, the time interval measured from the moment a
packet is sent until an acknowledgment for that packet is received. As we will see below, the round-trip time
is a time-varying quantity. Suppose that at some time ¢, the congestion controller for the ith flow sends
one packet and fills its window. This means that w; packets are now unacknowledged for. Assuming that
there are no drops, after one round-trip time the acknowledgment for this packet is received, as well as the
acknowledgments for the previous w; — 1 packets. Since w; acknowledgments were received, the window size
must have increased by a. The following hybrid model provides a good approximation of the ith window
size dynamics: While the ith flow suffers no drops we have

a
= RTT" ®

w;
and if a drop is detected on this flow at time ¢, we have
wz’(t) =muw; (t)7

where w; (t) denotes the limit from below of w;(s) as s 1 .



We proceed to determine the evolution of the round-trip time RTT(t). Typically, the round trip time
has two components: a fixed propagation time T}, that is determines by the physical length of the link ¢ and
the speed of light, and a variable service time Ts that accounts for the time the nodes take to process the
packet. The service time is usually dominated by the gueue time T}, i.e., the time a packet stays in the
input queue of node n; before it is sent to the link. Denoting by ¢(t) the size of this queue at time ¢, and by
B the bandwidth of link £ in packets per second, the queuing time is given by

because ¢(t) packets need to be transmitted (each taking 1/B seconds) before a new packet can also be
transmitted. The round-trip time is then given by

RTT(t) =T, + %. (3)

In this formula, we incorporated in T}, any fixed component of the service time.

As mentioned above, the ith flow receives w; acknowledgment packets in one round-trip time. Therefore,
in average, it sends w; packets per round-trip time. This means that the input queue at node ny receives a
total of %TI; packets per second and is able to send B packets to the link in the same period. The difference
between these two quantities determines the evolution of ¢(t). In particular,

= [ 0=0. %7 <B or 4= guw iy > B )
BT otherwise

The first branch in (4) takes into account that the queue size cannot become negative nor should it exceed
the mazimum queue size gmax. When ¢(t) reaches ¢max drops occur. These will be detected by the congestion
controllers some time later.

To complete our model it remains to understand how many drops occur and in which flows. As mentioned
above, drops will occur whenever ¢ reaches the maximum queue size ¢nax and the rate of incoming packets
to the queue %TZJW exceeds the rate B of outgoing packets. Since a drop will only be detected after one
round-trip time, the rate of incoming packets will not change for a period of length RTT and multiple drops
are expected. It turns out that, in most operating conditions, exactly one drop per flow will occur. To
understand why, we must recall that in every round-trip time the window size of each flow will increase
because each flow will receive as many acknowledgments as its window size. When the acknowledgment
that triggers the increase of the window size by a > 1 arrives, the congestion controller will attempt to send
two packets. The first packet is sent because the acknowledgment that just arrived decreased the number
of unacknowledged packets and therefore a new packet can be sent. The second packet is sent because the
window size just increased, allowing the controller to have an extra unacknowledged packet. However, at
this point there is a very fragile balance between the number of packets that are getting in and out of the
queue, so two packets will not fit in the queue and the second packet is dropped. This, of course, assumes
a drop-tail queuing policy. Although this behavior is essentially caused by the discreteness of the queue
mechanism, we can incorporate it in our hybrid model by considering two modes for the system: One mode
corresponds to the situation when the queue is not full and therefore the system evolves according to (2),
(3), (4). The other mode of operation corresponds to the situation where the queue is full and one drop will
occur in each flow. This mode of operation is active for RTT seconds. When the system leaves this mode
all window sizes are multiplied by m because of the multiplicative decrease caused by the drops.

Figure 2 contains a graphical representation of the overall hybrid system. In this figure, each node
represents one of the two discrete states: queue-full and queue-not-full. The continuous state of the hybrid
system consists of the queue size g, the window sizes w;, ¢ € {1,2,--- ,n}, and a timing variable t7 used to
enforce that the system remains in the queue-full state for exactly RT'T seconds. The differential equations
for these variables in each discrete state are shown inside the corresponding nodes. The links in the figure



represent discrete transitions, which are labeled with their enabling conditions and any necessary reset of
the continuous state that must take place when the transition occurs. We assume here that a jump always
occurs when the transition condition is enabled. This model falls in several of the general hybrid systems
frameworks proposed in the literature [7, 8, 9, 10, 11, 12, 13, 14, 15]. For simplicity we assume here that the
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Figure 2: Hybrid model for Reno congestion control

queue size g never reaches zero.

Remark 1. For a very large number of flows, a single drop per flow may not be sufficient to produce the
decrease in the window size required to make the queue size drop below gmax after the multiplicative decrease.
In this case, the model in Figure 2 is not valid. However, for most operating conditions the above model is
approximately valid as we shall see in Section 4.

3 Dynamics in normalized time

The dynamics for the hybrid system in Figure 2 are nonlinear essentially because of the dependence of
RTT on q. However, it is possible to make them linear by normalizing the time variable. To this effect we
introduce a new time variable 7, called the normalized time', defined by

Y prr—m,+ 4, 7(0) = 0. (5)
dr

This means that an interval with duration dr in the variable 7 corresponds to an interval of duration
dt = RTTdr in the variable t. We can think of 7 as a time variable normalized so that 1 unit of 7
corresponds to one round-trip time. Figure 3 shows the dynamics of the hybrid system in normalized time.
In this figure, ' denotes the derivative % with respect to the normalized time 7. In Figure 3, we also used
the fact that in the queue-full state, ¢ = gmax and therefore, waiting until ¢7 reaches T}, + 3= from zero
with ¢, = RTT = T, + %=, is equivalent to wait until 77 reaches 1 from zero with 77 = 1.

It is interesting to note that the equation that models the queue dynamics in the queue-not-full state is
stable. This is an important property of window-based congestion control, as opposed to other congestion
control mechanisms that adapt the packets sending rates directly, instead of indirectly through the window
size.

IFormally, there is a bijective function f that maps normalized time 7 into real time ¢. This function is actually defined by
(5). With some abuse of notation, when we write g(7) for some normalized time 7, we really mean ¢(f(7)). Similar notation is
used for the remaining time-dependent variables.
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Figure 3: Hybrid model for Reno congestion control in normalized time.

Let us denote by {7y : 7 < Tiy1,k > 1} the set of times at which the system leaves the queue-full state.
Because the system dynamics is essentially linear in each discrete state, it is straightforward to show [16]
that

Thp1 — Tk = f (s1) + 1, k>1, (6)

where

BT, — " .
Sp 1= Gmax + BTy = 3 iy WZ(Tk), (7)

an

and f :[0,00) = [0, 00) denotes the smooth bijection

s {1 220
0 z=0

Denoting by tx, k > 1, the real-time that corresponds to the normalized time 7y, it is also straightforward
to show that

Tkt T 1., " an ,_ max
b —te= [ (T B dr = 0 Y + s e + T4 T ()
Tk i=1

We proceed to analyze the evolution of the w;(7x). To this effect, suppose that the system left the queue-full
state at some normalized time 71, k > 1. Since it takes f~!(sz)+ 1 units of normalized time until the system
leaves the queue-full state again and during this time w} = a, ¢ € {1,2,...,n}, we conclude that

w; (Thy1) = wime) +af "' (sk) + a, i€{1,2,...,n},
and therefore
w;i(Tr+1) =m(w,-(7'k)+af*1(sk)+a), i€{1,2,...,n} 9)

From (7) and (9) we then conclude that

ke = m sk = £ (58) + - (s + BTy) — m. (10)



It turns out that, as long as

2ma
qmax + BT, > 1

n,

the map g : [0,00) — [0, 00), defined by

1—-m
§ = m(s - f_l(s)) + W(qmax + BTp) - m,

is a contraction. In particular,
l9(s) = 9(8)| =mls —5— F'(s) + 7' (s5)] <mls — 3], 8,5 > 0.

Using the Contraction Mapping Theorem [17, p. 126] we conclude that the s; converges to the unique fixed
point s of (10), which is the unique solution to

o0 = (500 = f 1 (50)) + T (gmax + BT;) — . 1)

The convergence is as fast as m*. From this and (9) we conclude that the following theorem holds:

Theorem 1. For gmax + BT, > fi"%n, all the wi(my), i € {1,2,...,n}, converge exponentially fast to
ma ,,
o 1= o 1), 12
oo 1= 1 (7 500) 1) (12)

as k = oo. The convergence is as fast as m¥.

A straightforward conclusion of Theorem 1 is that all the flows become synchronized as time goes to
infinity. This is because the window sizes of all the flows converge to the same limit cycle. This limit cycle
correspond to an increase of the window size from ws, to %wm, lasting f~1(ss) + 1 units of normalized
time, followed by an instantaneous decrease back to wy, due to drops.

4 Steady-state behavior
We proceed now to derive a formula, such as the ones derived in [2, 3], that relates the average throughput

with the average drop rate (i.e., the percentage of dropped packets) and the average round-trip time. To
this effect, suppose that the steady state has been reached and therefore

Thpt — T = [ (800) + 1, (13)
thp1 — b = %f—l(sm)(f—l(m) +1) + %f—l(sm)z + B(ﬂlla_nm) (F " (s00) +1) + an;oo_ (14)

Here, we used (8), (12) and the fact that

man

Gmax + BT = 1_ m(f_l(soo) + 1) + anseo,

which can be derived from (11).

We concentrate next on the case where f!(se) is much larger than one. This occurs when the system
remains in the state queue-not-full for a period of time considerably larger than one round-trip time. For
S0 > 1, it is straightforward to show hat f~1(54) &~ 800 + 1 & 55 and therefore

anl4+m .
Tk+1 — Tk R Sooy tk+1 - tk ~ ﬁmsfm (15)



In each interval [tg,tr+1) there are n drops out of B(ty41 — tx) packets sent. Therefore the average drop
rate p is equal to
n 21—-m 1

= ~ - . 16
P B(tgy1 —tr)  al4+m s (16)

On the other hand, since each unit of normalized time corresponds to one round-trip, the average round-
trip-time is equal to

Sc0- (17)
We therefore conclude that

1 B(Tg1 — Tk)

_ 2~ /21—mT
RTT\/[)_ nlteer —tr) Vald+m '

where T' := % is the average throughput of each flow, which means that
Twyfoltm 1 (18)
21-m RTT,/p

VA
" RTT./p’

For a = 1 and m = 1/2 we obtain

which confirms similar formulas derived in [2, 3]. It should be noted that the derivations in these references
do not take queueing into account. The coupling between the n competing flows is also ignored and therefore
no theoretically-supported claim is made to the extent that the steady state solution is actually reached in
an asymptotic sense. Moreover, in these references no formulas are derived for RTT and p as a function of
the number of flows n, such as the ones in (16) and (17).

Formulas for RT'T and p can also be derived directly from (13) and (14) for cases when s, is not much
larger than one. However, this situation usually corresponds to unusually high drops rates that only occur
for very large number of flows.

To test the formulas derived above we ran several simulations of a network with the dumbbell topology
using the network simulator ns-2 [18]. Figure 4 summarizes the results obtained for a network with the

. 7 bi .
following parameters: B = g4— /Ch;)x 16350/ T Tpacker = 1250 bits/packet, T}, = .04 sec, gmax = 250 packtes,

a = 1 packet/RTT, m = 1/2. As seen in the figure, the theoretical predictions given by (16)—(18) match the
simulation results quite accurately. Some mismatch can be observed for large number of flows. However,
this mismatch only starts to become significant when the drop rates are around 1%, which is an unusually
large value. This mismatch is due to the existence of multiple drops per flow (cf. Remark 1).

5 Conclusions

In this paper we proposed a hybrid model for Reno congestion control. Using this model, we analyzed
both the transient and the steady state behavior of n TCP flows competing for the available bandwidth on
a dumbbell network topology. Our model confirmed formulas for the steady-state behavior that could be
found in the literature and also derive new relationships between the several quantities of interest. We were
also able to explain the flow synchronization phenomena that has been observed in simulations and in real
networks but, to the best of our knowledge, has not been theoretically justified. In are now in the process
of exploring mechanisms that can be used to avoid the undesirable synchronization. Another application of
the hybrid model derived here is the detection of abnormalities in TCP traffic flows. This has important
applications in network security.
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Figure 4: Comparison between the predictions obtained from the hybrid model and the results from ns-2
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