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Abstract

Interference and collisions greatly limited the throughput of mesh networks that used contention-based MAC

protocols such as 802.11. Significantly higher throughput is achievable if transmissions are scheduled. However,

traditional methods to compute such schedules are so computationally complex that they can only be used on

relatively small networks. This paper presents results from several recent works on techniques to efficiently compute

capacity optimizing schedules. The techniques presented allow optimal schedules to be computed for networks with

hundreds and perhaps even a few thousand links, satisfying the requirements of current and planned mesh networks.

The techniques have been verified on networks generated with a realistic propagation simulator, hence, the findings

are directly applicable to the networks planned in urban areas such as Philadelphia and San Francisco. In this

setting, it is shown that optimal scheduling increases the capacity by between a factor of four and ten over 802.11

CSMA/CA, depending on the density of the mesh routers and gateways.

I. INTRODUCTION

One of the key advantages of mesh networks over cellular-based networks is that mesh nodes are relatively

inexpensive. Hence, it is economically feasible to spread mesh nodes at a high enough density to provide high data

rates to a dense user population. Specifically, the high node density results in a short distance between receivers

and transmitters, and hence high SNR channels and high bit-rates are possible. However, the high node density
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also leads to interference and collisions, which, unless properly managed, will reduce the benefits provided by high

node density.

There has been some effort focused on reducing interference by adjusting transmission times in an ad hoc fashion

[1], [2], [3]. However, a more effective way to control interference and collisions is to use spatial TDMA (STDMA)

where nodes transmit according to a schedule such that transmissions are not significantly affected by interference.

Efforts in this direction include [4], [5], [6], [7], [8], [9], [10], [11], [12]. However, until recently, computing

optimal schedules for networks with more than a few tens of links was intractable (e.g., in [13], the maximum

network size was 15 links). However, recently, significant progress has been made. It is now possible to compute

optimal schedules for moderate sized networks. In fact, in this paper an example of a 500 link network is given,

which is considerably larger than the largest currently deployed mesh network [14].

This paper discusses techniques to compute the capacity and optimizing schedule for mesh networks. This

paper also presents insights and results gained from extensive experimentation with capacity maximization. This

experimentation utilized a realistic urban propagation simulator [15]. Therefore, these results are directly applicable

to the mesh networks currently being deployed.

The paper proceeds as follows. In the next section, the propagation simulator is discussed. Section III provides

a detailed problem definition. Section IV discusses techniques to solve the capacity optimization problems. This

section has two parts. In Section IV-A, it is shown how the capacity optimization can be reduced to a problem of

iteratively solving a simplified version of the capacity problem. However, this iterative approach requires solving the

maximum weighted independent set (MWIS) problem from graph theory. The MWIS problem has been extensively

studied. Section IV-B reviews some of the work on solving the MWIS problem and presents several alternatives

for computing the MWIS. Section V presents a technique to alleviate the problem of aggregate interference. These

techniques are then employed to maximize the capacity of an urban mesh network in downtown Chicago. Section

VI presents the results of this computational experiment. Finally, Section VII briefly discusses areas for future

research and Section VIII presents concluding remarks.
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II. REALISTIC MESH NETWORK MODELING

One of the important aspects of capacity optimization is that in theory, determining the optimal capacity has a

theoretical worst-case computational complexity that makes computing capacity even for small networks (e.g., 30

links) intractable with today’s computing abilities. However, the theoretical worst-case performance provides little

insight into the typical performance that occurs in mesh networks. Thus, it is imperative that the performance be

examined in realistic mesh networks. For this reason, this examination employed the UDel Models [15]. Along with

a realistic mobility simulator, the UDel Models includes a map builder, a realistic propagation simulator, and large

collection of data and tracefiles. The propagation simulator is based on ray-tracing and accounts for reflections off

of the ground and off of buildings, transmission through building walls, and diffraction around and over buildings

[16]. It also accounts for the impact that different materials have on reflections off of walls and transmission through

walls. Data sets for several urban areas are available online. Many of the results shown or referred to here are

derived from a simulation of a 2 km2 (13×9 block) region of downtown Chicago. Figure 1 shows part of the region

along with the placement of the mesh nodes. There are 500 mesh nodes in the entire region. Different topologies

were considered a randomly selected 6 × 6 region and by reducing the node density by eliminating some of the

mesh nodes.

It is quite clear that propagation has a significant impact on network performance, and hence it is expected that

propagation impacts not only the network capacity, but also the performance of algorithms that compute capacity.

Since this study utilizes realistic propagation in realistic urban regions, it is expected that the results presented here

are directly applicable to the urban mesh networks currently being deployed.

III. PROBLEM DEFINITION

A. Constraints

A STDMA schedule is a convex combination of assignments. An assignment is a specification of which links

transmit and at what power, and bit-rate. If multiple antennas are used, then the assignment specifies the correlation

between the antennas. An assignment is abstractly denoted as v, but in the simple case of single antenna and no

power control, an assignment specifies which link is transmitting, and hence v is a vector of zeros and ones with
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Fig. 1. A portion of map of simulated region used for determine the performance and behavior of capacity maximization techniques. Mesh
routers are shown as orange dots with green circles. The full region is 13x9 blocks.

vx = 1 indicating that link x is transmitting, where all links are unidirectional. The bidirectionality of a physical

link is represented by two unidirectional links. When the links transmit as specified by the assignment, the effective

data rate across link x is denoted by R (v, x). (See In Section III-C, for further discussion of R and the effective

data rate). Of course, if v specifies that link x is not transmitting, then R (v, x) = 0.

A schedule is a convex combination of assignments. Specifically, a schedule is defined by {αv : v ∈ V } whereP
v∈V αv ≤ 1, αv ≥ 0, and V is the set of all considered assignments. A schedule can be interpreted as a

TDMA schedule, as a FDMA resource allocation, or a combination of both. In the TDMA case, the weights

αv are the fraction of time that assignment v is used. Thus, if a schedule specifies that α{1,0,1,0,0,1} = 2/3 and

α{0,1,0,1,1,0} = 1/3, then links 1, 3, and 6 simultaneously transmit for 2/3 of the time and links 2, 4, and 5

simultaneously transmit for 1/3 of the time. The schedule does not specify the TDMA period. However, if the

period is long, then the time between when a particular link transmits might be long, resulting in high end-to-end

delay. Note that this approach requires synchronization. Errors in synchronization can be accommodated with guard

times, which reduces the total capacity. The impact of guard times on capacity can be quite large if the TDMA

period is short. Thus, there is a trade-off between the end-to-end delay and the capacity wasted due to errors in

synchronization.
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In the FDMA approach, if the total bandwidth is 2.4 GHz to 2.42 GHz, and α{1,0,1,0,0,1} = 2/3 and α{0,1,0,1,1,0} =

1/3, then links 1, 3, and 6 continuously transmit on the bandwidth 2.4GHz-2.413GHz and links 2, 4, and 5

continuously transmit on the bandwidth 2.413GHz-2.42GHz. Since all links are continuously transmitting, this

approach results in lower delay than TDMA. OFDMA radios can support flexible distribution of bandwidth.

However, simultaneously transmitting and receiving on different but nearby frequency bands requires precise filtering

and oscillators and can dramatically increase the cost of the radio.

Let fφ be the data rate assigned to flow φ. The focus of this paper is on capacity of the mesh infrastructure. Thus,

the source and destinations of the flows are gateways and mesh access points. Hence, flows may be the aggregate

of several connections between various end-hosts.

Let P (φ) be the set of links that flow φ traverses (i.e., flow φ’s path). Thus, the aggregate of the demand

data rate over link x is
P
{φ:l∈P(φ)} fφ. Under the schedule {αv : v ∈ V }, the data rate supplied over link x isP

v∈V αvR (v, x). Hence, a schedule must meet the link rate constraint

X
{φ:l∈P(φ)}

fφ ≤
X
v∈V

αvR (v, l) for all links l. (1)

B. Objective Functions

There has been considerable research that examines objective functions in the context of capacity maximization

(e.g., [17], [18], [19]). Perhaps the most common is total network utility
P

Uφ (fφ), where Uφ is an increasing func-

tion. There are significant computational advantages if Uφ is convex. A popular example is Uφ (fφ) = wφ log (fφ)

where wφ is an administrative weight that can be either set statically (e.g., depending on the service level agreement

for the end hosts of flow φ) or may be allowed to vary according to changing traffic demands. In either case, the

capacity optimization problem is

max
X

Uφ (fφ) (2)

such that:
X

{φ:x∈P(φ)}
fφ ≤

X
v∈V

αvR (v, x) for all links x (3)

X
v∈V

αv ≤ 1 (4)

and 0 ≤ αv.
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The utility-based approach is general, and in cases such as Uφ (fφ) = wφ log (fφ), the optimal flow rates satisfy

certain fairness conditions [19]. However, a drawback is that the objective nonlinear significantly increasing the

computational complexity.

Maximizing the minimum bit-rate is an alternative that results in a linear programming problem. Specifically,

maxF (5)

such that: F ≤ wφfφ for all φX
{φ:x∈P(φ)}

fφ ≤
X
v∈V

αvR (v, x) for all links x (6)

X
v∈V

αv ≤ 1 (7)

and 0 ≤ αv.

Our experiments indicate that (5) can be solved in approximately a tenth the time required to solve (2). However,

a drawback of (5) is that capacity is dominated by the data rate that the slowest flow can support. There are two

ways to accommodate this problem. First, an iterative approach can be used to solve the max-min flow problem

[19]. Specifically, first (5) is solved. Then, the slowest flows are identified. Let S be the set of slowest flows, i.e.,

θ ∈ S implies that wθf
∗
θ ≤ wφf

∗
φ for all flows φ where f∗φ is the optimal flow rate found from solving (5). Then,

(5) is modified

maxF

such that: F ≤ wφfφ for all φ /∈ S

wφfφ ≥ wφf
∗
φ for all φ ∈ SX

{φ:x∈P(φ)}
fφ ≤

X
v∈V

αvR (v, x) for all links x

X
v∈V

αv ≤ 1 and 0 ≤ αv.

Thus, a second optimization is performed to maximize the nonbottleneck flows subject to the constraint that the

data rate allocated to the bottleneck flows is not decreased. This second optimization can be used to identify a

second set of bottleneck flows and the process can be repeated. While this approach has the advantage that it yields
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max-min data rates, we have found that in realistic mesh networks, no significant change in data rates occur after

the first iteration. The reason for this is that all links share the same bandwidth and no flow is able to utilize the

entire bandwidth of any link (at least not when networks are dense). That is, all flows share the bandwidth. Hence,

at optimal capacity, it is not possible to increase the data rate of one flow without reducing the data rate of another.

A second way to reduce the impact of bottleneck flows is to mimic the idea of utility maximization. For example,

one approach is to maximize capacity under the constraint that each flow gets the same air time, where the air time

of a flow is the average transmission time required to deliver a bit from the source mesh node to the destination

mesh node. The air time of flow φ is denoted Tφ with Tφ =
P

x∈P(φ) τx, where τx is the average time it takes to

transmit a data bit across link x. Note that τx depends on the schedule. The optimal capacity subject to air time

constraints can be solved by solving a series of LP problems,

n
fk+1φ

o
= argmaxF

such that: F ≤ T k
φfφX

{φ:x∈P(φ)}
fφ ≤

X
v∈V

αvR (v, l) for all links l

X
v∈V

αv ≤ 1 and 0 ≤ αv

where T k
φ =

P
x∈P (φ) τ

k
x with τkx the average time required to transmit a bit across link x under the schedule found

from the kth iteration, with T 1φ = 1.

It is straightforward to extend the above to multipath case, i.e., where a single flow φ is split across a set of

sub-flows Nφ flows. In this case, the sub-flows associated with flow φ are denoted {(φ, n) : n = 1, 2, ..Nφ}. Thus,

the data rate for flow φ is the sum of the data rate over each sub-flow, i.e., fφ =
PNφ

n=1 fφ,n, where fφ,n is the data

rate along the sub-flow (φ, n). Then (2) becomes

max
X

Uφ

⎛⎝ NφX
n=1

fφ,n

⎞⎠
such that:

X
{(φ,n):x∈P(φ,n)}

fφ,n ≤
X
v∈V

αvR (v, x) for all links x

X
v∈V

αv ≤ 1 and 0 ≤ αv.
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While splitting a single flow along multiple paths does increase the dimension of the optimization problem, if the

number of paths is small, then the size of the problem is not significantly impacted. Rather, the number of links and

the number of assignments has a much more significant impact on the computational complexity. Thus, to reduce

notational clutter, this paper focuses only on the single path case.

C. Communication models

The communication model specifies the function R (v, x) and plays an important role in capacity maximization.

Communication models are often classified as either protocol communication models or physical communication

models. The defining feature of protocol communication models is that they are defined by a binary relation.

Consequently, protocol communication models induce graphs and have significant theoretical and computational

advantages over physical communication models. On the other hand, protocol communication models can be

unrealistic. Specifically, a protocol communication model might predict that an assignment has a high data rate.

But when applied in pratice, the assignment might have very low data rates. However, as will be shown in Section

III-C, this problem is easily rectified. Thus, this paper focuses only on protocol models.

A protocol communication model defines rules that determine whether two links can transmit simultaneously.

More abstractly, for each link x, a protocol communication model defines a set of conflicting links χ (x). If link

y ∈ χ (x), then links x and y cannot transmit simultaneously. Different protocol communication models result in

different sets of conflicting links. For example, the node exclusive protocol model stipulates that y ∈ χ (x) if either

the receiver or transmitter nodes of link x are the same as either the receiver or transmitter node of link y. The

disk communication model specifies that y ∈ χ (x) if either the receiver or transmitter nodes of link x are within d

of the either the receiver or transmitter node of link y, where d is the communication range [20]. The disk model

can be generalized to the two-hop disk model or, more generally, the k-hop disk model where the d in the disk

model is replaced with k×d [21]. Arguably, the SNIR protocol communication model is one of the most relevant.

It specifies that y ∈ χ (x) if the signal strength from the transmitter of link x at the receiver of link y is above

a threshold, or if the signal strength from the transmitter of link y at the receiver of link x is above a threshold.

While there are a wide array of reasonable thresholds, one approach is to specify the threshold so that an SNIR

constraint is met. Specifically, define SNIR (y, x) to be the SNIR at the receiver of link x when both links x and
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y are transmitting, i.e.,

SNIR (y, x) :=
Ht,r
x,xPx

Ht,r
y,xPy +N

,

where Ht,r
x,x is the channel gain from the transmitter of link x to the receiver of link x, Ht,r

y,x is the channel gain

from the transmitter of link y to the receiver of link x, Px is the transmit power of link x, and N is the noise power.

Thus, Ht,r
x,xPx is the signal strength at the receiver of link x, and Ht,r

y,xPy is the strength of the interference from y at

x. The SNIR protocol communication model stipulates that y ∈ χ (x) if SNIR (x, y) < γy or SNIR (y, x) < γx,

where γy is the SNIR required for communication across link y for modulation scheme used by link y. It is common

to set γ to the minimum value of the SNR required for the modulation scheme. However, noise and interference

are quite different. We have performed extensive experiments and found that constants derived in that way are

incorrect [22]. Nonetheless, for each modulation scheme there does exist a threshold γ, but the value of γ must be

determined from detailed experiments of realistic simulation.

The protocol communication model also includes many aspects of the MAC. For example, the SNIR protocol

model described above is more properly called the SNIR, without ACK, protocol communication model, as it does

not consider transmission of ACKs. If ACKs are used, then the interference caused by ACKs must be considered.

These ACKs could be transmitted shortly after the data packet, in bursts as in 802.11e, or the transmission of the

ACKs could be determined by the schedule. Indeed, a wide array of MAC schemes can be considered by adjusting

the details of the protocol model. We have found that ACKs can cause considerable interference and reduce the

capacity by 20%. However, in the sequel, only the SNIR, without ACK, protocol model is considered.

Besides defining link conflicts, the communication model also defines the data rate. In the case of physical

models, the data rate can be quite complex. But in the case of the protocol model, the bit-rate over link x is Rx

as long as no links in χ (x) are also transmitting. Thus, when MIMO and power control are not used,

R (v, x) =

⎧⎪⎪⎨⎪⎪⎩
Rx if x ∈ v and χ (x) ∩ {y |vy = 1 and y 6= x} = ∅

0 otherwise
. (8)

Clearly, the value of Rx depends on the modulation scheme used by link x. However, Rx also depends on the

frame overhead (e.g., synchronization preambles, and physical and MAC headers). In the case that ACKs are used,
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it is possible to transmit a packet several times before successfully receiving an ACK. In this case, Rx accounts

for the average number of retransmissions1.

Most of today’s physical layer protocols support several bit-rates. Unfortunately, including this capability into

capacity optimization may greatly increase the size of the problem. Suppose that link x can support modulation

schemes2 M (1), M (2), ..., M (m). This physical link can be represented by m logical links, x1, x2, ..., xm, with

logical link xi using modulation scheme M (i). Of course, the logical links representing a single physical link

would all be in conflict; a link can only transmit at one bit-rate at a time. Unfortunately, representing each physical

link by m logical links increases the size of the problem by a factor of m. Heuristics can be developed in order to

only include bit-rates that are likely to be useful for maximizing the capacity. That is, only a subset of the logical

links x1, x2, ..., xm are included. The best bit-rates to include remains an open question. In this paper, all bit-rates

are used.

Along these same lines, today’s radios support multiple transmit powers. These too can be included as logical

links. This issue is discussed in Section VII.

IV. COMPUTATION OF CAPACITY MAXIMIZING SCHEDULES

A. Assignment Iteration

Recall that an assignment v specifies which links are transmitting. If MIMO and power control are not used,

then the assignment can be represented as a binary number where if the xth bit is one, then link x is transmitting.

Clearly, there are 2L assignments in the set of all assignments, where there are L links in the network. That is, if

all assignments are considered, the set V in Section III-B has 2L elements. Consequently, if V contains all possible

assignments, then with current computational abilities, the optimization problems given in Section III-B cannot be

solved for networks with more than 30 links.

An alternative approach is to not solve the problems of Section III-B for the full set of assignments, but use a

reduced set. This reduced set of assignments is referred to as the set of considered assignments. In [6], the set of

considered assignments was selected in an arbitrary way. Of course, selecting a set of considered assignments in this

1In 802.11, a transmission failure induces backoff. However, when transmissions are scheduled, backoff should be disabled.
2Associated with each modulation scheme is a bit-rate and γ.
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Algorithm 1 Computing network capacity
0: Select an initial set of assignments V (0), set k = 0.
1: Solve (2) (or (5)) for V = V (k) and compute µ(k) and λ(k), the Lagrange multipliers associated with
constraints (3) (or (6)) and (4) (or (7)), respectively.
2: Search for an assignment v∗ /∈ V (k) such thatX

µx (k)R (v, x) > λ(k). (9)

if such an assignment is found then
set V (k + 1) = V (k) ∪ v∗, set k = k + 1, and go to Step 4.

else
if no assignment exists, then stop, the optimal solution has been found.

end if
4: Remove any redundant assignments in V (k). Then go to Step 1.

way provides no guarantee on how close the resulting schedule is to optimal. In [12], the considered assignments

were selected according to a heuristic. For example, assignments with links that are in conflict should not be included

in the set of considered assignments. Unfortunately, no simple heuristic has been found that guarantees that the

set of considered assignments results in the optimal capacity and that the size of the set considered assignments is

small enough so that the problem is tractable.

The idea of considering only a subset of all assignments is justifiable in that it may result in the optimal

capacity. Specifically, it can be proved that there exists a set of no more than L assignments such that if the set of

considered assignments includes these L assignments, then the schedule that results will yield the same performance

as the optimal schedule found by optimizing over all assignments [23] Thus, the main challenge facing capacity

maximization is to determine these L assignments. Algorithm 1 is an iterative approach that searches for these L

assignments.

The intuition behind Algorithm 1 is as follows. For each link there is a constraint such as (3). Each of these

constraints yields an associated Lagrange multiplier. These Lagrange multipliers quantify the impact of adding and

subtracting bandwidth to the corresponding link. Indeed, from sensitivity analysis of Lagrange multipliers (page

307 [24]), the Lagrange multiplier exactly measures how much the objective function would change if bandwidth

were added to the corresponding link. The knowledge of which links are most important allows one to construct

good assignments, e.g., find assignments that give bandwidth to important links.

A geometric interpretation is also useful. Consider the highly simplified case of two links as shown in Figure
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Fig. 2. A geometric view of the optimal scheduling problem. The above shows the space of all data rates, where we assume that there are
only two links, and hence the space of all data rates is the plane. The Lagrange multipliers found from optimizing over the set of considered
assignments divide the space of data rates, r, into two regions, according to whether rTµ ≤ λ (shown as the lower region in the figure
above) or rTµ > λ (shown as the upper region in the figure above). The active assignments and the schedule found by optimizing over the
considered assignments are on the boundary of this division. An assignment will only improve the performance if the vector of data rates
associated with the assignment satisfies rTµ > λ. For example, in the figure above, the assignments that compose the optimal schedule are
currently in the region rTµ > λ.

2. Thus, the space of all combinations of link data rates (feasible or not) is the 2-D plane. An assignment yields a

data rate for each link, and hence is a point in the space of all data rates. As mentioned in Section III-A, a schedule

is a convex combination of assignments. Thus, the schedule can produce any combinations of bit-rates within the

convex hull of the set of considered assignments. In any nontrivial scenario, the optimal schedule will always be

on the edge of this convex region.

From the economic interpretation of Lagrange multipliers,
P

xR (v, x)µx is the revenue generated by assignment

v. All assignments used by the schedule also generate revenue λ, and hence, the schedule generates revenue λ.

Assignments not used in the schedule generate less revenue than λ. Thus, the Lagrange multipliers found while

optimizing over the set of considered assignments divide the space of all data rates into two regions based on whether

the data rates generate more revenue than the schedule (See Figure 2). If the current schedule is not optimal, then

the optimal schedule provides more revenue than the current schedule. Hence, there must be some assignments that

provide more revenue than the current schedule. Searching for an assignment such that
P

xR (v, x)µx > λ is

equivalent to searching for an assignment that is in region of the space of all data rates where none of the currently

considered assignments are (See Figure 2).
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B. Searching for new assignments

In light of the above, it is clear that it is possible to convert the challenge of maximizing capacity from one where

the dimension of the set of considered assignments, V, is intractably large, to one where the size of V and solving

(5) or (2) is not the concern, but to where the main challenge is finding assignments such that
P

xR (v, x)µx > λ.

In most cases, it is not necessary to find the assignment that maximizes
P

xR (v, x)µx, but just one that satisfies

(9). On the other hand, if no assignment exists, then the schedule found from the currently considered assignments

yields the optimal capacity. Thus, in order to ensure that the currently considered assignments result in the optimal

capacity,

max
V

X
x

R (v, x)µx (10)

must be solved.

Unfortunately, in general, solving (10) is NP-hard. However, as shown shortly, in the case of the protocol

communication model, solving (10) is equivalent to a graph theoretic problem known as the maximum weighted

independent set (MWIS) problem, which has been extensively studied. Thus, for the cases where there are a moderate

number of links, there are a large number of algorithms that efficiently solve (10). For networks with more links,

there are a large set of algorithms that approximately solve (10). And finally, there exist extensive theory regarding

the solutions and solvability of (10). The richness of the theory of solving (10) when the protocol communication

model is used is the most significant advantage of the protocol model over the physical model. Of course, the fact

that protocol models result in schedules that yields very low data rate when actually deployed must be addressed

(see Section V).

The connection between solving (10) and the maximum weighted independent set problem is made by the conflict

graph. As discussed in Section III-C, for each link x, the protocol communication model defines a set conflicting

links χ (x). The sets of conflicting links induce the conflict graph as follows. Each link in the network induces a

vertex in the conflict graph. Thus, a link x in the network is associated with a vertex in the conflict graph; this

vertex is denoted with x, where whether x refers to a link in the network or a vertex in the conflict graph is clear

from the context. There is an edge between vertices x and y if y ∈ χ (x) (note, the we require that if y ∈ χ (x),
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then x ∈ χ (y)).

An assignment is a selection of links, or equivalently, an assignment is a selection of vertices from the conflict

graph. In order for data to be delivered over the selected links, none of the vertices selected can be neighbors in the

conflict graph. In graph theory, a selection of vertices where none of the selected vertices are neighbors is referred

to as an independent set or a stable set. We denote selections of vertices as vectors v of zeros and one, with vx = 1

implying that vertex x is selected.

From the conflict graph, the weighted conflict graph is constructed by assigning the weight Rxµx to each vertex

x. Note that from (8), the data rate across link x is Rx as long as no link in χ (x) is transmitting. Therefore, the total

weight of an independent set is
P
{x:vx=1}Rxµx, which coincides with the revenue generated by the assignment v.

The problem of solving (10) is equivalent to selecting an independent set that maximizes the total weights assigned

to the selected vertices; this is precisely the maximum weighted independent set (MWIS) problem.

As mentioned, in general, MWIS problem is NP-hard. Indeed, it is one of the first problems to be shown to be

NP-hard [25]. However, while it is NP-hard in general, it is not always the case. If the conflict graph is a perfect

graph, then the MWIS can be found in polynomial time [26]. The class of perfect graphs includes a wide variety

of graphs (See pages 279-283 in [26]). For example, the interval graph is a perfect graph. In an interval graph,

each vertex is associated with an interval of the real number line. Two vertices are neighbors if their corresponding

intervals overlap. It is not hard to show that if the network is restricted to one dimension (e.g., a network along a

road), then the conflict graph that results from protocol communication models is an interval graph. A 2-D version

of the interval graph is the disc graph, which, while not a perfect graph, allows the maximum weighted independent

set to be computed in polynomial time [27]. Besides perfect graphs, maximum independent sets can be computed

in polynomial time for several other classes of graphs., for example, for "claw-free" graphs [28], for fork-free

graphs [29], for trees (see [30] for a linear time algorithm), for sparse random graphs (see [31] for a linear time

algorithm), and for circle graphs (see [32] for a linear time/space algorithm). Unfortunately, besides the interval

graph, it is unknown whether these graphs typically arise in mesh networks. However, it does give hope that the

MWIS problem can be solved.

There has been considerable effort focused on computing the MWIS in the general case. These research efforts
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tend to take one of two approaches. In one approach, the goal is to develop algorithms that have good worst-case

performance. For example, [33] reports an algorithm with worst-case time complexity of O
¡
1.2461L

¢
, while [34]

achieves O(1.2431L).

One drawback of the worst-case analysis is that most graphs can be solved much faster than predicted by the

worst-case analysis. And hence, another approach is to not optimize the worst-case performance, but focus on the

time to find the MWIS in graphs that have been deemed interesting. Computational methods that work well in this

respect can be found in [35], [36], [37], [38], and [39], where [39] is sometimes cited as the current state-of-the-art.

Another way to compute the MWIS is to use mixed integer programming. Specifically, the MWIS problem can

be written as

max
v

X
Rxµxνz (11)

such that: vx + νy ≤ 1 if y ∈ X (x)

vx ∈ {0, 1} .

Note that since vx ∈ {0, 1}, this problem can also be solved with binary programming. There are many commercially

available mixed integer and binary programming tools (e.g., CPLEX [40]).

Our work has found that these exact methods work well in practice. Nonetheless, approximate solutions to the

MWIS are also of interest since, in many cases, they can quickly provide assignments that pass Step 3 of Algorithm 1,

and in some cases they find the exact MWIS. However, one should not expect too much from approximate solutions

since it is NP-hard to approximate the MWIS with an approximation ratio that is better than L1−ε for any ε > 0.

Thus, in general, the worst-case, the total weight of a polynomial time approximation is a factor of L less than the

total weight of the MWIS. However, as discussed above, the worst-case performance may be considerably worse

than what typically occurs in conflict graphs that arise from mesh networks.

Finding approximate solutions to the MWIS problems is also an active area of research (e.g., see [41] for a review

of some methods). An algorithm suggested by Kako [42] is simple and often provides good results; it achieves a

worst-case approximation ratio of d̄, where d̄ is the average weighted degree, i.e., d̄ = xW (x)

xRxµx
, where W (x) is
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the weighted degree of vertex x and is given by W (x) := y∈χ(x)Ryuy
Rxµx

. Kako’s algorithm is a greedy optimization

that builds the independent set by selecting the vertex with least weighted degree. Once selected, the vertex and

all the neighbors of the vertex are removed from the graph. The weighted degree is recomputed for all remaining

vertices. The vertex with least weighted degree is added to the independent set and the process continues until there

are no more vertices in the graph.

Another algorithm that has been found to perform well in realistic mesh networks is the WMIN algorithm

developed in [43]. WMIN has approximation ratio ∆, the maximum degree. Other algorithms have approximation

ratios
¡
d̄w + 1

¢
/2, O

¡
d̄w log log d̄w/ log d̄w

¢
, and O (δw log log δw/ log δw), where δw is the weighted intuitiveness

of the graph [42]. See [41] for further discussion of some approximation algorithms for the MWIS problem.

One drawback of using approximate solutions to the MWIS problem is that if the approximation scheme does

not result in a better assignment, then, in general, it is not possible to determine whether there does not exists

a better assignment (and hence the current schedule is optimal) or there does exists a better assignment, but the

approximation algorithm is unable to find it. While in general, such a determination is not possible in polynomial

time, as discussed next, in some cases it is possible, and, indeed, in all the realistic mesh network we have examined,

such a determination is possible in polynomial time.

Two important metrics of weighted graphs are ω, the total weight of the MWIS and K, the weighted chromatic

number. In general, both numbers are NP-hard to compute. However, the Lovász number, V can be computed in

polynomial time and ω ≤ V ≤ K. In some cases (e.g., in the case of a perfect graph), ω = V . Thus, in such cases

it is possible to compute ω in polynomial time. Therefore, in general, if an approximation method fails to find a

new assignment with revenue greater than λ, then one can compute the V in polynomial time and check whether

λ = V . If λ = V , then the optimal schedule has been found. On the other hand, since V is only an upper bound on

ω, λ < V does not imply that the assignment found by the approximation is not optimal. However, we have found

that for the realistic mesh networks examined, at convergence (i.e., after Algorithm 1 has converged), we have

λ = V . Unfortunately, while it is possible to compute V in polynomial time, it does take a considerable amount of

time and we have been unable to confirm if ω = V for networks with more than 100 links.

Figure 3 compares the average computation time for computing an (approximate) maximum weighted independent
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Fig. 3. Performance of techniques to compute the maximum weighted independent set. Left: The computation time on a AMD Athlon 64
FX-53 PC. The network had 500 links. Center: The probability of finding the MWIS. Östergård’s methods, CPLEX, and binary programming
are exact methods, and hence always compute the exact MWIS. Right: The probability of the found independent set having a weight within
10% of optimal.

set for a 500 link realistic network3. We see that the exact method develop by Östergård performs the best, even

surpassing approximate solutions. However, the approximate algorithms were implemented in Matlab, whereas the

other methods were implemented in C, hence the comparison is slightly unfair. Nonetheless, Figure 3 confirms that

the MWIS problem is tractable for moderate sized networks.

V. CORRECTING PROTOCOL COMMUNICATION MODELS

The previous section indicates that there are a wealth of techniques to compute optimal capacity for mesh networks

when protocol communication models are considered. However, such models ignore the aggregate of interference.

For example, suppose that y /∈ χ (x), z /∈ χ (x), and y /∈ χ (z) . Thus, according to the protocol communication

model, all three links can transmit simultaneously. In the case of the SNIR protocol communication model, this

implies SNIR (y, x) > γx, SNIR (z, x) > γx. However, it is possible that

Ht,r
x,xPx

Ht,r
y,xPy +Ht,r

z,xPz +N
< γx. (12)

Hence, the aggregate interference from both y and z makes communication across link x impossible. Consequently,

a schedule that uses an assignment with links x, y, and z simultaneously transmitting will not achieve the predicted

performance when deployed in practice. One alternative is to use a physical communication model. However, the

drawback of the physical communication model is that much of the machinery developed for the maximum weighted

set cannot be directly applied. Thus, we seek to repair the protocol model.

The root of the problem is that the protocol communication model only considers binary conflicts, whereas

physical conflicts such as (12) result from multiple links simultaneously transmitting. Such conflicts are referred to

3The largest mesh network currently deployed is Corpus Christi with 300 mesh routers [14].
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as multi-conflicts. A naive use of the protocol model ignores multi-conflicts. However, this problem can be solved

by identifying assignments with multi-conflicts and removing them from consideration. A brute force approach is to

identify all assignments that have multi-conflicts and remove them. However, such an approach is computationally

complex. Instead, when a new assignment is made (in Step 2 of Algorithm 1), it is checked whether it has any

multi-conflicts. Specifically, suppose the newly found assignment is v. This assignment contains a multi-conflicts

if

Ht,r
z,zPzvzP

yHy,zPyvy +N
< γz.

Upon identifying multi-conflicts, assignments with the multi-conflict must be removed from consideration when

searching for new assignments. Techniques to do this are discusses shortly. Once the assignment with multi-conflicts

is removed, a new assignment is generated. This assignment is also tested for multi-conflicts. If there are any, they are

removed, and the process continues until an assignment is generated that has no physical conflicts. This assignment

is then added to the set of considered assignments and a new schedule is created. Thus, Step 2 of Algorithm 1 is

replaced with generating a new assignment that is free from physical conflicts, and this step may involve several

attempts at finding a conflict-free assignment.

There are two ways that multi-conflicts can be removed. One way is a conservative approach that might reduce

the final computed capacity. The second way is not conservative, but requires a slight departure from the MWIS

setting, and must be solved with the mixed integer or binary programming.

In the first approach, a multi-conflict is removed by adding a binary conflict. Suppose that vertices in the assign-

ment with the multi-conflict are z and y1, y2, ...yM , where we assume that the multi-conflict makes transmission

over link z impossible. Without loss of generality, assume that the links yi are ordered such that Ht,r
yi,z ≥ Ht,r

yi+1,z

(i.e., link yi causes more interference than link yi+1). The smallest set of vertices that cause the conflict is y1,

y2,..., ym∗ , where

m∗ = min

(
m ≤M

¯̄̄̄
¯ Ht,r

z,zPzPm
i=1Hyi,zPyi +N

< γz

)
.

Then, from this set of vertices, find the one with the least weight, i.e., i∗ = argmini≤m∗ Ryiµyi . Finally, add

binary conflicts such that yi∗ and z do not simultaneously transmit, i.e., the sets of conflicting links are updated via
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X (z) = X (z) ∪ yi∗ and X (yi∗) = X (yi∗) ∪ z. With these new conflicts, a new conflict graph is made and a new

set of assignments can be generated using the methods discussed in Section IV-B. Note that this approach might

result in a decrease in performance; the multi-conflict is being approximated by a more restrictive binary-conflict.

Also, since the construction of the added binary conflicts depends on µ, these conflicts are removed after a new µ

is found.

A second way to remove multi-conflicts is to change the mixed integer programming problem (11) to

max
v

X
Rxµxνx

such that: vx + νy ≤ 1 if y ∈ X (x)

vz + vy1 + ...vym ≤ m (13)

vx ∈ {0, 1} ,

where, as above, it is assumed that the multi-conflict is from the combination of links z, y1, ..., ym. Note that

condition (13) ensures that these links will not all be simultaneously selected. As additional multi-conflicts are

identified, more such conditions are added. Unlike the previous approach, this approach is not conservative.

Figure 4 shows the computed capacity when the multi-conflicts are ignored, when they are repaired by adding

binary-conflicts, and when they are repaired by adding multi-conflicts. Note that all three approaches yield nearly

the same computed capacity. The fact that the capacity found when multi-conflicts are ignored is the same as

the capacity when multi-conflicts are repaired does not mean that the multi-conflicts can be ignored. Figure 4 also

shows the actual capacity when multi-conflicts are ignored; clearly, ignoring multi-conflicts can dramatically reduce

the actual performance of the computed schedule. On the other hand, either of the methods described above can

eliminate multi-conflicts in a way that has a negligible impact on the computed capacity. The fact that the two

methods for repairing physical conflicts perform equally well implies that all machinery for computing the MWIS

can still be exploited while ensuring that the resulting schedule delivers the expected capacity when applied to the

physical network.
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VI. CAPACITY OF URBAN MESH NETWORKS

A. Experimental setup

In order to examine the capacity of urban mesh networks, a large set of simulated urban mesh networks were

generated. Each network was based on a 6 × 6 block region of downtown Chicago that was randomly selected

from a 2 km2 region. Figure 1 shows part of this region. As discussed in Section II, the radio propagation was

determined with the UDelModels [15].

In order to estimate the typical performance of an urban mesh network, several different types of topologies were

generated, and ten trial topologies were generated for each topology type. The topology types are characterized by

the number of wireless mesh routers and the number of wired gateways. In these experiments, all traffic flowed

from gateways to destinations, where each mesh router in the topology was a destination of a flow. The impact of

routing on capacity is outside the scope of this investigation. Instead, packets were forwarded to their destination

over least hop paths. Among paths with the same number of hops, the path selected was the one that had the highest

minimum link channel gain, where the minimization is over each hop along the path. Each flow originates at the

gateway such that the best route from the gateway to the destination of the flow is no worst than any route from

any other gateway. Mesh routers and gateways were assumed to be placed on lampposts. Apart of this restriction,

mesh routers were uniformly spread throughout the region. The simulated area was partitioned into equal sizes
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Fig. 5. Average ratio of optimal capacity and the capacity provided by 802.11 CSMA/CA with RTS/CTS.

regions where the number of regions is the same as the number of gateways. A gateway was randomly located

within each region.

Finally, the number of nodes ranged from 18 to 90 so that the average number of nodes per block ranged from

0.5 to 2.5 in steps of 0.5. The number of gateways ranged from 1 to 6. Since 10 samples of each topology were

generated, a total of 300 topologies were used.

Here the optimal capacity generated by including all possible modulation schemes supported by 802.11a and

accounting for physical conflicts with the multi-conflict approach. The optimal schedule resulted from solving (5)

(recall that in practice this gives the max-min fair data rate).

B. Improvement over 802.11 CSMA/CA

Here the optimal capacity given by solving (5) is compared to the capacity achievable with 802.11a with

CSMA/CA, RTS/CTS, and automatic rate fallback (ARF) [44] (or 802.11 for short). In order to compute the

capacity with 802.11, constant bit-rate traffic is sent at a fixed rate to each destination. For a particular sending

rate, the arrival rate at each destination was computed, and the minimum arrival rate over all destinations was

computed. This minimum is denoted MN (SR), where SR is the sending rate. The sending rate was varied in

order to determine maxSRMN (SR). This maximum is the 802.11 capacity for the topology. Note that for each

sending rate, repeated trials were performed so that the confidence intervals (computed via bootstrapping [45])

ensured that error in the estimated capacity was less than 10% with 95% confidence.
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Figure 5 shows the ratio of the optimal capacity to the 802.11 capacity. For a high density of gateways (e.g., one

gateway per six blocks), optimal scheduling provides an order of magnitude improvement over 802.11. On the other

hand, for networks with a low density of gateways (e.g., one gateway per 36 blocks), capacity optimization provides

an improvement of approximately a factor of four. While these improvements are substantial, they are idealized. In

practice, the actual performance will likely be reduced due to factors such as synchronization errors, uncontrolled

interferers, and time-varying or incorrectly measured channel gains. Nonetheless, with effort to overcome these

problems, it is reasonable to expect substantial improvements in capacity even in practice.

C. The Impact of the Topology on Capacity

Figure 6 (a) shows the optimal capacity (Mbps/destination) for a wide range of topologies. The general trends

are expected. As the number of destinations increases, the data rate per destination decreases and as the number

of gateways increases, the data rate per destination increases. Recall that there are 36 blocks in the simulated

region. Thus, Figure 6 (a) shows that if there is one gateway for every six blocks, and 2.5 mesh routers/destinations

for each block (i.e., 90 destinations in 36 blocks), then the infrastructure can provide approximately 1.5Mbps per

destination.

Figure 6 (a) shows that the capacity increases as base stations are added. A more detailed view of this behavior

is given in Figure 6 (b). This figure shows that as more destinations are added, the impact of adding more gateways

increases, however, it increases rather slowly. It is important to note that power control is not used. It is possible

that power control will have a significant impact when the node density is high.

Figure 6 (c) shows the average utilization of each gateway in the network. Ideally, each gateway transmits at

all times. When there is only a single gateway, this ideal is nearly achieved. Recall that the communication model

used here does not utilize ACKs; only one-way communication is required. Note that with TDMA, even when

packets must be transmited over multiple hops, the gateway is able to nearly continuously transmit. For example,

suppose that the gateway transmits to node A during the first time slot and to node B during the second time

slot. Furthermore, during the second time slot, node A forwards the packet received during the first time slot to its

neighbor, node C. If node C is far enough away from the gateway and node B is far enough away from node A,

then all transmissions will succeed. Of course, if node A requires an ACK from node C, this ACK would likely
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Fig. 6. (a) Capacity of mesh network infrastructure in a 6Œ6 block region for various numbers of wired gateways and various numbers of
mesh routers/destinations. (b) Ratio of the capacity with six wired gateways and the capacity with one wired gateway. (c) Average utilization
of each gateway.

not be received since the interference from gateway’s transmission to node B would likely be substantial. Thus,

ACKs may decrease the network capacity.

VII. FUTURE WORK AND OTHER ISSUES

The techniques described above can be used to compute optimal schedules. However, several challenges remain.

As mentioned above, factors such as synchronization, uncontrolled interferers, and time-varying or incorrectly

measured channel gains must be addressed. As described next, transmit power, MIMO, flow control, and schedule

computation and distribution are also relevant to capacity maximization.

A. Transmit power

The techniques above do not efficiently accommodate power control. It is possible to include logical links that

represent a physical link transmitting at different powers. However, as mentioned in Section III-C, this approach

greatly increases the computational complexity. Another approach is to directly maximize the revenue generated

by varying the transmit powers, i.e., maximize (10) where the maximization is not only over all assignments, but

also over all transmit powers. It was shown in [46] and [47], that such optimizations are convex when the SNR is

high enough. This means that once it has been decided which links should transmit, if the SNR for each link is

high (which is the typical case in mesh networks), then it is possible to optimize the transmit powers. However,

since links that are not transmitting have low SNR, the optimization of transmit power will not change which

links transmit. Thus, some other technique must be used to determine which links should transmit. Consequently,

maximizing capacity with power control remains an open problem.
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B. MIMO

MIMO offers tremendous improvements in data rates. It also adds flexibility, and hence has the potential to greatly

increase the computational complexity. Specifically, when MIMO is used, an assignment not only specifies whether

the link is transmitting, but also, for the links that do transmit, the assignment specifies a N × N non-negative

definite matrix that defines the correlation of the transmitted signal over the N transmit antennas. By adjusting this

matrix, the transmission can act to increase the data rate or reduce interference. As a result, if N is large, then full

optimization is intractable for even small networks. However, in [48] it is shown that if the link SNR is large (as it

typically is in mesh networks), then full optimization will provide little improvement in performance; it is possible

to simply treat each MIMO link as a SISO high data rate link.

C. Flow Control

Section III-B presented several capacity optimization problems. In all cases, a schedule is designed in order to

maximize some function of the flow data rates. While it is conceivable that network operators could deploy such

a scheduling scheme, it is unclear how the flow data rates can be controlled to meet the data rates offered by the

network. There has been effort in using packet drops to cause TCP flows to adjust their data rate when the objective

is a specific type of network utility [18]. However, it is unclear how to control other connection types such as VoIP

and multimedia streaming, which are expected to be important applications in mesh networks.

D. Schedule Computation and Distribution

The discussion above did not address where and when the schedules are determined. There has been extensive

effort focused on distributed techniques to compute schedules (e.g., [49], [10], and [50]). However, these techniques

perform poorly in terms of convergence rate and overhead [51]. In their current form, they are not suitable for

mesh networks. On the other hand, there does not appear to be any fundamental reason that schedules cannot be

determined in a distributed fashion. Clearly, this area requires further effort.

VIII. CONCLUSION

This paper provides techniques and insight on capacity maximization of the mesh infrastructure. With these

techniques, optimal capacity is achievable. While capacity optimization can be computationally intractable for even
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moderate size networks, the techniques presented here have been successfully applied to 500 link realistic networks

(the largest infrastructure network currently provided by the UDelModels realistic mesh network simulator). This

optimization technique has two key parts. First, the computational approach focuses on solving a simplified capacity

optimization problem. The solution to this problem is used to improve the relevance of the simple capacity problem,

which is solved again. This iterative process continues until convergence, at which point the simple capacity

optimization provides the capacity of the full network. A second key aspect of the technique described is that

the method leverages the huge body of research focused on the graph theoretic problem of finding the maximum

weighted independent set. The wealth of results on this problem have yet to be fully exploited.
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