
Tractable Computation of Optimal Schedules and
Routing in Multihop Wireless Networks

Peng Wang Stephan Bohacek
pwangee@udel.edu bohacek@udel.edu

Department of Electrical and Computer Engineering
University of Delaware

Abstract— Interference and collisions greatly limit the through-
put of mesh networks that used contention-based MAC protocols
such as 802.11. Significantly higher throughput is achievable
if transmissions are scheduled. However, traditional methods
to compute optimal schedules are computationally intractable
(unless co-channel interference is neglected). This paper presents
a tractable technique to compute optimal schedules and routing
in multihop wireless networks. The resulting algorithm consists
of three layers of optimization. The inner-most optimization
computes an estimate of the capacity. This optimization is a
linear or nonlinear optimization with linear constraints. The
middle iteration uses the Lagrange multipliers from the inner
iteration to modify the space over which the inner optimization
is performed. This is a graph theoretic optimization known as
the maximum weighted independent set problem. The outer-
most optimization uses the Lagrange multipliers from the inner-
most optimization to find optimal routes. This optimization
requires solving several least cost paths problems and several
maximum weighted independent set problems. The impact of
optimal scheduling and routing is examined on realistic models
of mesh networks where it is found that the capacity provided
by optimal scheduling and routing is between a factor of 5 and
15 greater than that provided by 802.11’s CSMA/CD with least
hop routing.

I. INTRODUCTION

802.11-based mesh networks are being deployed or planning
to be deployed in over 300 cities [1]. One motivation for
802.11-based mesh networks is that mesh routers can be
densely deployed with relatively low cost. A dense deployment
of routers results in the typical mobile user being close to
at least one router, allowing high data rate communication
between the user and the router. However, a dense distribution
of routers also results in significant interference. Due to the
poor performance of CSMA/CD in environments with high
interference, it is unclear if 802.11 with CSMA/CD will
provide sufficient data rates for future mobile applications. An
alternative to CSMA/CD is to schedule some fraction of the
transmissions.

Achieving high capacity in the face of interference has been
an active area of research for at least 25 years [2]. However,
nearly 20 years ago it was shown that computing optimal
schedules is potentially NP-complete [3]. On the other hand,
it has never been shown that the cases where the capacity
maximization is NP-complete actually arise in wireless net-
works. Notably, it has been proved that if there is no co-
channel interference, then optimal schedules can be computed
in polynomial time [4]. Co-channel interference arises when

two nodes transmit simultaneously and, due to the interference,
impede the ability of the receivers to correctly decode the
messages. Under the assumption that co-channel interference
does not arise, tremendous progress has been made (e.g.,
[4]–[14]). Unfortunately, with the dense deployment of mesh
routers, co-channel interference is expected to be significant.
Moreover, schedules generated under the assumption that co-
channel interference does not arise, tend to perform quite
poorly when there is co-channel interference (e.g., [15], [16]).

This paper presents tractable techniques for computing
optimal schedules even when co-channel interference exists.
On networks small enough, the optimality has been confirmed
through exhaustive search. Furthermore, the ability to compute
the schedules of a 500 node network densely covering down-
town Chicago is demonstrated. There are two key theoretical
results that underpin this approach.
• Letting L be the number of links in the network, a brute-

force approach requires optimization over a space with
2L elements. However, the optimal solution requires no
more than L elements. If these L special elements were
somehow known in advance, then the optimization could
be performed over a space with L elements and the result
would be identical to the one found by optimizing over
the space of all elements.

• From a solution of the optimization problem over an
arbitrary set of L elements, either

– a new set of elements can be found that will improve
the solution, which, in turn, leads to a better set of
elements, and so on,

– or, if no set of better elements exists, then the current
set of elements is optimal.

Tractable computation of optimal schedules is required for
tractable computation of optimal routing. However, in the
worst case, the number of routes between a source-destination
pair is exponential in the number of nodes. Thus, as an
alternative to optimizing over all paths, an iterative scheme is
developed that adds paths to a set of considered paths, where
the paths added depends on the Lagrange multipliers from the
computation of the optimal schedule.

The performance impact of optimal scheduling and routing
is investigated on a realistic model of a mesh network in
downtown Chicago that was developed with the UDel Models
urban network simulator [17]. When compared to 802.11



with CSMA/CD, optimal scheduling typically increases the
capacity by a factor of 4 to 12, depending on the density of
the wired gateways. When compared to least hops routing,
the impact of optimal routing ranges from 20% to 65%. Thus,
as compared to 802.11 with CSMA/CD and least hop routing,
the combined impact of optimal scheduling and routing ranges
from a factor of 5 to 15.

The remainder of the paper proceeds as follows. In the next
section, the system model, notation, and problem definition
are given. Optimal scheduling is discussed in Section III
while optimal routing is described in Section IV. Numerical
experiments on scheduling are discussed in Section III-D and
numerical experiments on optimal scheduling and routing are
given in Section V. Concluding remarks are given in Section
VI. Proofs can be found in the Appendix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A router-to-router connection is denoted by φ, with Φ
denoting the set of all such connections. A connection may
make use of several flows with each flow using a different
path; the kth flow for connection φ is denoted (φ, k). The
data rate of flow (φ, k) is denoted fφ,k, and the path fol-
lowed by flow (φ, k) is denoted P (φ, k). The set of paths
used by connection φ is denoted with P (φ), i.e., P (φ) =
{P (φ, k) : k = 1, ..., |P (φ)|}, where |P (φ)| is the number of
paths used by connection φ. The set of all considered paths
is P . Using this notation, the total data rate over connection
φ is

P|P(φ)|
k=1 fφ,k, and the total data rate sent over link x

is
P
{(φ,k)|x∈P (φ,k)} fφ,k, where {(φ, k) |x ∈ P (φ, k)} is the

set of flows that cross link x. All links are directional.
We define an assignment to be a vector v =£
v1 · · · vL

¤
, where there are L links in the network

and where vx ∈ {0, 1} with vx = 1 implying that link x
is transmitting during assignment v. It is possible to extend
this approach to accommodate links with multiple bit-rates and
multiple transmit powers. The set of considered assignments is
denoted by V , while the set of all assignments is denoted V . In
the simple case where vx ∈ {0, 1}, V has 2L assignments. The
size of V is the main challenging facing optimal scheduling.
Thus, typically, V $V .

The data rate across link x during assignment v is denoted
by R (v, x). In general R (v, x) is a complicated function.
However, here a simple binary relationship is used to define
R (v, x). Specifically,

R (v, x) =

½
Rx if vy = 0 for all y ∈ χ (x)
0 otherwise , (1)

where χ (x) is a set of links that conflict with x, i.e., y ∈ χ (x)
if simultaneous transmissions over x and y are not possible.
Rx is the nominal data rate over link x. Note that this
definition of R (v, x) neglects the possibility that the aggregate
interference from transmissions from several links not in χ (x)
can result in a transmission failure over link x. However, as
discussed in [18], such problems can easily be addressed. All
computations in this paper use this technique, and hence the
computed capacities account for multiple interferers.

The set of conflicting links, χ (x), depends on the commu-
nication model. Arguably, the SINR protocol communication
model is the most relevant and is the model that is used
in this paper. Let SINR (x, y) be the SINR at the receiver
of link x when link y is also transmitting. Then, the SINR
model specifies that y ∈ χ (x) if SNIR (x, y) < T (x) or
SINR (y, x) < T (y), where T (x) and T (y) are thresholds
that depend on the modulation schemes.

A schedule is a convex combination of assignments. Specif-
ically, a schedule is a set {αv : v ∈ V} where

P
v∈V αv ≤ 1

and αv ≥ 0. With this notation, the total data rate that the
schedule α provides over link x is

P
v∈V αvRxvx. Finally,

the capacity optimization problem is

max
α,f

G (f) (2a)

subject to:X
{(φ,k)|x∈P (φ,k)}

fφ,k ≤
X
v∈V

αvR (v, x) for each link x (2b)

X
v∈V

αv ≤ 1 (2c)

0 ≤ αv for each v ∈ V, (2d)

where f is the vector of flow rates. The function G is referred
to as the capacity metric. Several different capacity metrics
are possible. In some cases, the capacity metric is the same
as the network utility and G (f) =

P
φ∈Φ Uφ (

P
k fφ,k),

where Uφ is the utility function for connection φ. Pop-
ular utility functions include Uφ (f) = wφ log (f) [19]–
[21] and Uφ (f) = wφf

1−γ/ (1− γ) [22], where wφ are
administrative weights. Another widely used capacity metric
is G (f) = minφ∈Φwφ

P
k fφ,k [23]. Note that when a utility-

based capacity metric is used, (2a) is a nonlinear optimization
with linear constraints. We assume that Uφ is continuously
differentiable, is concave, and increasing. In this case, (2a) is
a convex optimization. the solvability of such a problem is
detailed in [24]. If G (f) = minφ∈Φwφ

P
k fφ,k, then (2a)

can be written as a linear programming problem, which is
extensively studied in [25].

In theory, Problem (2a) is solvable. However, there are
two computational challenges. First, if V is the set of all
assignments, then the vector α has 2L elements. Second, if all
paths are considered, then the number of elements in the vector
f might be exponential in the number of nodes in the network.
Thus, the size of the space over which the optimization is
performed must be reduced. This idea of considering a reduced
space was considered in [23] and [26], however, the space was
constructed arbitrarily. In this paper the space is constructed so
that the capacity found by optimizing over the reduced space is
the same capacity found by optimizing over the entire space.
The next section focuses on the scheduling problem while
Section IV focuses on the routing problem.



III. OPTIMAL SCHEDULING

A. Introduction

The objective of this section is to compute optimal schedules
by optimizing over a set of considered assignment V $V . The
key questions are 1) is it possible to reduce the size of V
without impacting the solution, and 2) if so, how can the set
of considered assignments be constructed so that the value of
(2a) with the reduced sized V is the same or near to the value
when V =V? The answer to the first question is provided next
and the following subsections focus on the second question.

Proposition 1: Proposition 2: There exists V with L as-
signments such that the solution to (2a) is the same as the
solution to (2a) when V = V

This result, which follows from Caratheodory’s Theorem
(e.g., Theorem B.6 in [24]), implies that the optimal schedule
can be found by considering a set, V , that is relatively small.

B. Considered Assignments

1) Basics: It is well known that Lagrange multiplier theory
can be applied to Problem (2a) (e.g., see [24]). Specifically,
associated with each link constraint (2b) is a Lagrange multi-
plier denoted µx. Similarly, associated with the constraint (2c)
is a Lagrange multiplier denoted λ. Employing the economic
interpretation of Lagrange multipliers, µx can be interpreted as
the price/bit of sending data over links x, or from the network’s
point of view, µx is the revenue that is collected for each
bit that crosses link x. Under this interpretation, the revenue
generated by assignment v is

LX
x=1

R (v, x)µx.

The multiplier λ can be interpreted as the maximum revenue
generated by any assignment in V . Specifically,

Proposition 3: Under the conditions given in Section II,

λ = max
v∈V

LX
x=1

R (v, x)µx. (3)

Typically, there are many assignments in V that generate
revenue λ. The set of such assignments is referred to as the
set of active assignments and is denoted V∗, i.e.,

V∗ (µ) :=
(
v :

LX
x=1

R (v, x)µx = max
v∈V

LX
x=1

R (v, x)µx

)
.

(4)
The reason that V∗ is referred to as the set of active as-
signments is that the optimal schedule multiplexes between
assignments that are in V∗.

Proposition 4: If v /∈ V ∗, then αv = 0.
Since the revenue generated by active assignments is λ, the

optimal schedule also generates revenue λ. Specifically, let R∗x
be the optimal data rate across link x, that is

R∗x :=
X
v∈V

α∗vR (v, x) , (5)

where α∗ specifies the optimal schedule. Then, it can easily
be shown that

λ =
LX

x=1

R∗xµx.

2) Evaluating candidate assignments: A brute force ap-
proach to constructing a good set of assignments is to start
with an arbitrary set of assignments, V , select an assignment
v+ /∈ V , and evaluate the resulting capacity with the set of
assignments v+∪V . However, this approach is computationally
complex in that (2a) must be repeatedly solved. Furthermore,
it is not clear if the utility of v+ is only apparent when it is
added to V along with a particular set of other assignments.
Alternatively, the question of whether an assignment v+ /∈
V will increase the capacity when the set of considered
assignments is changed from V to v+ ∪ V is answered by
the following theorem.

Theorem 5: For the set of assignments V , let µ and λ be the
Lagrange multipliers associated with constraints (2b) and (2c)
when (2a) is solved with this V . Now consider an assignment
v+ /∈ V , The capacity provided by v+ ∪V is greater than that
provided by V if and only if

LX
x=1

R
¡
v+, x

¢
µx − λ > 0. (6)

Corollary 6: If V is such that the Lagrange multipliers that
result from optimizing over V are such that no assignment
exists that satisfies (6), then the schedule found by optimizing
over V is optimal.

Theorem 5 provides the main tool for constructing a good
set of assignments. Several comments are in order.
• Employing an economic interpretation of the Lagrange

multipliers, Theorem 5 implies that an assignment v+

will increase the utility if it generates more revenue per
second than any other assignment in the set V .

• In the proof of Theorem 5, it is seen that a linear approx-
imation of the improvement of the capacity is given byPL

x=1R (v
+, x)µx−λ. Therefore, if several assignments

are found that satisfy (6), then it is reasonable to only
add the assignment that maximizes

PL
x=1R (v

+, x)µx.
Numerical experiments have confirmed this behavior.

• Corollary 6 provides a means to determine whether the
current schedule is optimal. For example, it is possible
to evaluate (6) quite quickly. Hence, for moderate values
of L, it is possible to evaluate (6) for all assignments. In
this way, an exhaustive search can be performed in order
to verify whether a schedule is optimal. However, with
today’s computational abilities, this approach cannot be
applied for networks with more than 23 links.

3) Algorithm to Maximize the Capacity: Based on Theorem
5, Algorithm 1 can be used to iteratively add assignments to
V such that the added assignment satisfies (6). The initial set
of assignments can be found using a greedy approach given
by Algorithm 2. In our computational experiments, Algorithm
1 converges after O (L) iterations. Therefore, solving the opti-
mization (2a) over V can be accomplished with relatively low



Algorithm 1 Computing an Optimal Schedule
1: Select an initial set of assignments V (0), set k = 0.
2: Solve (2a) for V = V(k) and compute µ(k) and λ(k), the

Lagrange multipliers associated with constraints (2b) and
(2c), respectively.

3: Search for an assignment v∗ /∈ V(k) such that
LX

x=1

µx (k)R (v
∗, x) > λ(k). (7)

4: if such an assignment is found then
set V (k + 1) = V (k) ∪ v∗, set k = k + 1, and go to
Step 2.

5: else
if no such assignment exists, then stop, the optimal
schedule has been found.

6: end if

Algorithm 2 Selecting an Initial Set of Assignments
1: Set V = 0.
2: Start an assignment w with wx = 0 for all x.
3: Select a link x such that vx = 0 for all v ∈ V . Set wx = 1.
4: Randomly select a link y such that vy = 0 for all v ∈ V

and y /∈
S

{x|wx=1}
χ(x).

5: if such a y exists then
set wy = 1 and go to Step 4.

6: else
set V = V ∪ w.

7: end if
8: if for all x there exits a v ∈ V such that vx = 1 then

stop. V is the set of initial assignments.
9: else

go to Step 2
10: end if

computational complexity. On the other hand, it is unclear how
to find assignments that satisfy (6). This topic is investigated
in the next section.

C. Finding New Assignments
Algorithm 1 changes the challenge of solving (2a) over

a large set of assignments to the challenge of finding as-
signments that satisfy (6). According to the discussion after
Theorem 5, the best assignment to add to V is the one that
solves

max
v

LX
x=1

R (v, x)µx. (8)

As will be shown next, solving this maximization is equivalent
to finding the maximum weighted independent set of the
weighted conflict graph.

The utility of the conflict graph for finding schedules has
been demonstrated in several previous works (e.g., [3], [23]).
The conflict graph is constructed as follows. Each link in the
network induces a vertex in the conflict graph. Thus, a link

x in the network is associated with a vertex in the conflict
graph; this vertex is denoted with x, where whether x refers
to a link in the network or a vertex in the conflict graph is
clear from the context. There is an edge between vertices x
and y if y ∈ χ (x), where, as discussed in Section II, x and
links in χ (x) cannot simultaneously transmit. The weighted
conflict graph is constructed by assigning the weight Rxµx to
vertex x, where Rx is the nominal data rate across link x and
µx is the Lagrange multipliers associated with constraint (2b).

An independent set (or stable set) of a graph is a set of
vertices where no two vertices in the set are neighbors. Letting
I be an independent set, the weight of I is the sum of the
weights of the vertices in I . Thus, an independent set of the
conflict graph is a set of links that are not in conflict and
hence able to transmit simultaneously. Therefore, if I is an
independent set and v (I) is the assignment generated by I
via vx (I) = 1 is x ∈ I , then under assignment v (I) the
data rate across link x is Rx. Furthermore, the weight of I isP

x∈I Rxµx. By (1),
P

x∈I Rxµx =
PL

x=1R (v, x)µx. Thus,
the goal of solving (8) is the same as finding the maximum
weighted independent set (MWIS).

Unfortunately, in the worst case, finding the MWIS is
NP-hard. On the other hand, the MWIS problem has been
extensively studied. For example, it is known to be solvable
in polynomial time for many classes of networks including
perfect graphs [27], interval graphs (which arise when a
wireless network is confined to a road) [27], disk graphs [28],
claw-free graphs [29], fork-free graphs [30], trees [31], sparse
random graphs [32], and circle graphs [33]. Moreover, there
has been extensive work on approximating the MWIS (see [34]
for a review) and specialized algorithms have been developed
for exactly computing a MWIS [35], [36], [37], [38]–[40],
[41]. However, after evaluating several alternative approaches,
we have found that a generic integer linear programming
(ILP) solver provides the fastest way to find a MWIS. For
example, the MWIS for a 500 link network is computed in
approximately 250 msec on a PC with a 2.4MHz AMD FX-
53 processor. The MWIS problem can be formulated as an
ILP via

max
v

LX
x=1

Rxµxvx (9a)

subject to: vx + vy ≤ 1 if y ∈ χ (x) (9b)
vx ∈ {0, 1} .

However, in large networks, there are many constraints (9b).
The computation time can be dramatically improved if a
clique decomposition is used. Specifically, a set of cliques
{Qi, i = 1, 2, ...M} are found such that if y ∈ χ (x), then
there is a clique Qi such that x ∈ Qi and y ∈ Qi. Then,



Problem (9a) becomes

max
v

LX
x=1

Rxµxvx

subject to:
X
x∈Qi

vx ≤ 1 for i = 1, 2, ...,M

vi ∈ {0, 1} .

While an optimal clique decomposition might further improve
the computation time, a simple greedy clique decomposition
results in a factor of ten improvement over (9a).

Remark 7: This paper focuses on the SINR binary-conflict
communication model. If co-channel interference does not
arise, then the node exclusive model can be used. Under the
node exclusive model, y ∈ χ (x) if link’s x transmitter or
receiver are the same as y’s transmiter or receiver. In this case,
the conflict graph is a line-graph, and the MWIS problem de-
composes to a maximum weighted matching (WMM) problem
[27]. The WMM problem is considerably less computationally
complex than the MWIS. For example, in the general case,
polynomial complexity algorithms exits (e.g., see [42] for an
O
¡
N · L+N2 log (N)

¢
complexity algorithm where N is the

number of nodes and L is the number of links). In the case of
a tree (which is typical for today’s mesh networks), optimal
matching are possible with simple greedy algorithms and
message passing algorithms [43]. In the general case, simple
approximation is also possible since maximal matching are
within a factor of two of optimal [44]. There exists distributed
algorithms with approximation ratios of 1/2 [45], [46] and 2/3
[47]. However, since the node exclusive model neglects co-
channel interference, the schedules produced under this model
perform poorly when applied to actual networks where co-
channel interference exists.

D. Numerical Experiments in Optimal Scheduling
1) Experimental Set-Up: As discussed above, determining

the optimal capacity has a theoretical worst-case computa-
tional complexity that makes computing capacity intractable
for even small networks. However, the theoretical worst-case
performance provides little insight into the typical perfor-
mance that occurs in mesh networks. Thus, it is imperative
that the performance be examined in realistic mesh networks.
To this end, the UDel Models [17] were employed. Along with
a realistic mobility simulator, the UDel Models includes a map
builder, a realistic propagation simulator, and large collection
of data and trace files. The propagation simulator is based
on ray-tracing and accounts for reflections off of the ground
and off of buildings, transmission through building walls, and
diffraction around and over buildings [48]. It also accounts
for the impact that different materials have on reflections off
of walls and transmission through walls. Data sets for several
urban areas is available online.

For this investigations, two types of mesh network topolo-
gies were investigated. One class of topologies was generated
from 6x6 city block regions of downtown Chicago. The 6x6
city block regions were randomly located in the 2 km2 region.

Various nodes densities were investigated. Specifically, the
number of gateways was 1, 2, 3, 6 and the number of wireless
routers was 18, 36, 54, 72, and 90. The wireless routers and
gateways were uniformly distributed throughout the 6x6 city
block region. Ten samples of each topology were generated
(hence, 200 topologies in total). Besides these, another 100
topologies were examined (with 4 and 5 gateways). The results
from these topologies can be interpolated from the behaviors
from the other numbers of gateways, hence, these results are
not included. Along with these random topologies a single
large topology was considered. This topology had 500 nodes
and 12 gateways and covered a 2 km2 region of Chicago. This
is currently the largest mesh network that the UDelModels has
generated. Furthermore, it is larger than the largest currently
deployed mesh network1.

In these experiments, all traffic flow from gateways to
destinations (i.e., downstream traffic), where each mesh router
in the topology was a destination of a flow. The routing was a
single path least hop routing, where each link had a receiver
signal strength of at least 75 dBm. Among paths with the same
number of hops, the path selected was the one that had the
highest minimum link channel gain, where the minimization
is over each hop along the path. Each flow originates at the
gateway such that the best route from the gateway to the
destination of the flow is no worse than any route from any
other gateway in terms of the minimum channel gain along
the route. In Section V, the performance of optimal multipath
routing is examined. In that case, the single path routing
described above is used as a baseline.

Finally, 802.11a data rates were used. Specifically, for each
link, the SNR was evaluated. This SNR yields a link data rate
based on 802.11a relationship between data rates and SNR.
Furthermore, it is assumed that 802.11a relationship between
SNR and data rate is the same as the relationship between
SINR and data rate.

2) Results from Numerical Experiments: Figure 1 shows
how, in the 500 node topology, the capacity increases as the
more assignments are added. The plots end when the integer
programming failed to find a better assignment. Since the
integer programming yields a MWIS, if a new assignment is
not found, then the schedule is optimal. Thus, in the 500 node
network, the optimal schedule was found after 117 iterations
when the capacity is in terms of

P
φ∈Φ log (fφ) and after 225

iterations when the capacity is minφ∈Φ fφ.
Figure 1 shows the average number of iterations required

for convergence for the 6×6 block topologies. As expected,
as more routers are added and as more gateways are added
the topology becomes more complex and more iterations are
required for convergence. For a fixed number of gateways, it
appears that the number of iterations increases linearly with
number of nodes in the network. Moreover, the number of
iterations is rather small. For example, in all cases but 6
gateways with the maxφ∈Φ fφ metric, the number of iterations

1The largest mesh network currently deployed is Corpus Christi with 300
mesh routers [49].
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Fig. 1. Variation in the computed capacity as assignments are added. In (a) the capacity is the total utility, i.e., φ∈Φ log(fφ). In (b) the capacity is
minφ∈Φ fφ. These plots are for the 500 node topology.
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Fig. 3. For each iteration of Algorithm 1, a MWIS must be computed. The
above shows the time required to compute the MWIS at each iteration for
several different techniques to compute MWIS.

required for convergence is less than the number of links in
the network. Note that small number of iterations to reach
convergence is partly due quality of the initial assignments
found by Algorithm 2.

Another important aspect of the performance of Algorithm
1 is the time that each iteration takes, specifically, the time it
takes to compute a MWIS. Figure 3 shows the time require to
compute the MWIS for each iteration for several methods to
compute MWIS. Kako’s method is an approximate method that
was presented in [50]. WMin is another approximate methods
presented in [51]. Ostergrad’s method was presented in [41]
and is regarded as one of the top performing methods to com-
pute MWIS [40]. Finally, the ILP with a clique decomposition
discussed in Section III-C. Here the CPLEX [52] optimization
package was used for ILP. From Figure 3, it is clear that ILP
finds the MWIS the fastest and takes about 250 msec to find
a MWIS for a 500 node mesh network.

With the ability to compute optimal schedules, the impact of
optimal schedules on the capacity as compared to 802.11 with
CSMA/CD can be investigated. Figure 4 shows the ratio of
the optimal capacity to the capacity that 802.11 CSMA/CD
can achieve. Here the capacity metric is min fφ. Qualnet
was used to estimate the capacity of 802.11. Here RTS/CTS
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Fig. 4. Comparison between optimal scheduling and 802.11 in mesh networks
covering 6×6 block regions of downtown Chicago.

and Qualnet’s automatic rate fallback scheme were used. The
802.11 CSMA/CD capacity was determined by sending data
to each destination at a constant rate (1000 B packets were
used). The sending rate was adjusted until the maximum of
minφ∈Φ fφ was found. Confidence intervals were generated
via bootstrapping [53] to ensure that the estimated capacity
was accurate within 10%.

Figure 4 shows that for networks with a large number of
gateways, optimal scheduling can have a dramatic improve-
ment in the capacity. On the other hand, when there is only
one gateway in a 6×6 block region, only is factor of four
improvement is observed. While a factor of four is large, in
this comparison, a standard version of 802.11 CSMA/CD was
used. It is conceivable that if 802.11 is better tuned (e.g., by
tuning CCA [54]) and a better virion of the ARF is used, that
the performance of 802.11 could be improved.

IV. OPTIMAL ROUTING

With tractable computation of optimal schedules, it is pos-
sible to consider optimal routing. A naive approach to optimal
routing is to let each connection φ to use all possible routes.
That is, for each φ, P (φ) = {P (φ, k) : k = 1, 2, ... |P (φ)|} is
the set of all possible paths between the source and destination
of connection φ. With this set of paths, the optimal schedule
can be found. The schedule will determine the portion of
the flow

P|P(φ)|
k=1 fφ,k that uses path P (φ, k). In this way,
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Fig. 2. Mean number of iterations until convergence for different topologies in different 6×6 block regions of downtown Chicago . In (a), the capacity is

φ∈Φ log fφ while in (b) the capacity is minφ∈Φ fφ

optimal scheduling also performs optimal routing. While such
an approach is possible in theory, in practice, it is not tractable
since the number of possible paths between a source and
destination grows exponentially with the size of the network.

As an alternative, we consider adding paths only when
they will improve the performance. Specifically, suppose that
connection φ uses the set of paths P (φ). Now consider the
candidate path P (φ, k+) /∈ P (φ). This path should be added
to the set of considered paths only if the addition of this path
improves the capacity. The question of whether including the
path P (φ, k+) into the set of considered paths will increase
the network capacity is answered by the following.

Proposition 8: Let P (φ, k+) /∈ P (φ) be the path of a
candidate path potentially to be added to P (φ). Furthermore,
let P (φ, ko) ∈ P (φ) be such that fφ,ko > 0. Then, adding the
candidate path P (φ, k+) to P (φ) will increase the capacity
if and only if X

x∈P (φ,k+)
µx <

X
x∈P (φ,ko)

µx, (10)

where µx is the Lagrange multiplier associated with constraint
(2b) that arises from solving Problem (2a) without the inclu-
sion of the path P (φ, k+).

Employing the economic interpretation of Lagrange mul-
tipliers, Proposition 8 says a flow that uses path P (φ, k+)
should be included into the set of considered paths if its end-
to-end cost

P
x∈P (φ,k+) µx is less than the end-to-end cost of

the currently used paths.
Following the approach of the proof of Proposition 8, it is

can be shown that data is only sent down paths where the cost
is minimum.

Proposition 9: If
P

x∈P (φ,k1) µx <
P

x∈P (φ,k2) µx, then
fφ,k2 = 0.

Corollary 10: If fφ,k1 > 0 and fφ,k2 > 0, thenP
x∈P (φ,k1) µx =

P
x∈P (φ,k2) µx.

Since Problem (2a) is convex, it is straightforward to show
that if there does not exist a path that improves the capacity,
then the current routing is optimal. Thus, Algorithm 3 can be
used to incrementally add paths until no further improvement
is possible, at which point the optimal capacity has been
determined.

Algorithm 3 Optimal Routing
0: Select an initial set of paths, P(0). Set m = 0.
1: Compute the optimal schedule for the set of Considered
paths P(m).
1.a: Solve Problem 2a
1.b: As a byproduct of solving Problem 2a, compute the
Lagrange multiplers µx associated with Constraint (2b).
2: Search for a path P (φ, k+) /∈ P(m) that satisfies (10).
if such a path exists then

Add this path to the set of considered paths for connec-
tion φ. Set m = m+ 1, and go to Step 4.

else
If no such path exists, then stop, the optimal routing
has been found.

end if
4: Remove any unecessary paths from consideration. Then
go to Step 1.

There are several challenges facing the application of Algo-
rithm 3. A critical one is related to determining µx for all links.
This issue is addressed in the next section. Another important
issue is related to removing unnecessary paths as discussed
in Step 4. One approach is to remove paths that carry no
data. That is, if the optimal schedule dictates that fφ,k = 0,
then the path P (φ, k) can be removed from consideration
without impacting the capacity. However, as discussed in the
next sections, in some cases, the removal of paths is more
complicated.

In [55], the idea of updating routing based on the sum
of the end-to-end Lagrange multipliers was investigated for
wired networks. However, the focus there was on single path
routing and on the conditions under which single path routing
is optimal. Note that in the wired case, µx is typically know
for all links x.

A. Evaluating the Path Cost

1) Approaches to Evaluating the Path Cost: One significant
drawback of Algorithm 3 is that it requires µx to be known
for each link x. However, the scheduling algorithm will only



compute µx if there is a path in P that uses link x. Hence, if
there are some links that are not used by any path, then µx is
unknown for some x, and, hence (10) cannot be computed for
all candidate paths P (φ, k+). There are three ways to address
this drawback. First, Algorithm 3 can be applied but neglecting
links that are not used by any path in P . The result will be
suboptimal. Specifically, only links considered by the initial
routing will be used when the algorithm terminates. Based
on computations with realistic mesh networks (See Section
III-D.1), we have found that this approach performs poorly,
especially when the network is dense (i.e., when there are
many links that have high channel gain and are not included
into the routing).

A second approach to accommodate Algorithm 3’s need for
µx for all links is to ensure that at each iteration, the routing is
such that each link is used by at least one path. This brute force
suffers from high computational complexity since there maybe
a large number of links. On the other hand, this approach is
guaranteed to yield the optimal routing.

A third approach is to find an upper bound, µ̄x such that
µx ≤ µ̄x for the links that are not included in any path and
µ̄x = µx for links that are included in at least one path. If
such a bound is known (one is given in the next section), then
from Proposition 8 we have the following.

Corollary 11 (Sufficient Condition to Include a Path): Let
µx ≤ µ̄x. Let P (φ, k+) /∈ P (φ) be the path of a candidate
path potentially to be added to P (φ). Furthermore, let
P (φ, ko) ∈ P (φ) be such that fφ,ko > 0. Then, adding the
candidate path P (φ, k+) to P (φ) will increase the capacity
if X

x∈P (φ,k+)
µ̄x <

X
x∈P (φ,ko)

µx. (11)

Note that since the path P (φ, ko) is already included in P ,
µx is known for all x ∈ P (φ, ko), and hence, the right-hand
side of (11) can be computed. Of course, the drawback of
using a bound µ̄x is that some paths P (φ, k+) might satisfy
(10), but not (11). Such paths would not be included into
P . Therefore, replacing condition (10) with condition (11) in
Algorithm 3 results in suboptimal routing. On the other hand,
at each iteration of Algorithm 3, more paths are added to P .
Thus, if, due to the inaccuracy of µ̄x, a path is not added, it
might be added at later iterations once µx is determined for
more links.

The performance of Algorithm 3 with condition (11) can
be improved by adjusting when paths are removed in Step 4.
On the one hand, if more links that are included in the P ,
then µx is known for more links x, and hence the decision of
which paths to include can be made more accurately. On the
other hand, the computational complexity of the scheduling
problem is closely related to the size of P . Thus, Algorithm
4 was developed to determine when paths should be removed
from consideration. Roughly speaking, Algorithm 4 removes
paths after they have not been used by the routing algorithm
in any way for more than M iterations. As demonstrated in
Section V, M = 5 works well.

In summary, as an alternative to ensuring that each link is

Algorithm 4 Heuristic for Removing Paths from Considera-
tion

The path P (φ, k) is not removed from the set of consid-
ered paths if any of the following holds.
0: The path P (φ, k) was added to the set of considered
paths within the past M iterations.
1: fφ,k 6= 0 during at least one of the past M iterations.
2: There exists a link y ∈ P (φ, k) such that y /∈
P (ϕ, j) for any other flow (ϕ, j) and µy has been used
in computing the upper bound µ̄z for some link z at least
once during the past M iterations.

Algorithm 5 (Sub)Optimal Routing
Use Algorithm 3 with the following changes.
1: In Step 2, Condition (10) is replaced with Condition
(11) where µ̄x in Condition (11) is computed with (12).
2: In Step 4, Algorithm 4 is used.

used by some route, Algorithm 5 is used.
2) An Upper Bound on µx: Let L be

the set of links used in any path, i.e.,
L = {x : there exists a P ∈ P such that x ∈ P}. Thus,
for each x ∈ L, µx is determined by the scheduling. Denote
by CG [L] to be the conflict graph induced by the links L.
Furthermore, the subgraph of the conflict graph induced by
removing link x is denoted with CG [L\x]. Assign the weight
µxRx to the vertex in the conflict graph that corresponds
to link x, where, as in Section II, Rx is the data rate over
link x when there are no links y ∈ χ (x) are transmitting.
Let MWIS (CG [L]) denote the links in the maximum
weighted independent set of the weighted conflict graph
CG [L]. Similarly, let MWIS (CG [L\ ({z} ∪ χ (z))]) be the
set of links in a maximum weighted independent set of the
conflict graph CG [L\ ({z} ∪ χ (z))], which is the conflict
graph derived from the set of link L, excluding link z and
all links in conflict with z. Employing this notation, we have
the following.

Proposition 12: Let z /∈ L, then µ̄z ≥ µz where

µ̄z =

⎛⎝λ−
X

x∈MWIS(CG[L\({z}∪χ(z))])
µxRx

⎞⎠ /Rz. (12)

The economic interpretation of Lagrange multipliers can
be used to intuitively explain (12). Specifically, µx is the
price to transmit a bit across link x. Let v ∈ {0, 1}L be an
assignment without conflicts (i.e., vx = 1 implies vy = 0 for
all y ∈ χ (x)). Then the revenue per second generated by this
assignment is

PL
x=1Rxµxvx. Recall from Proposition 3 that

the best assignments are those that achieve λ =
P

xRxµxvx.
Thus, the network is "willing" to multiplex between any
assignments as long as the revenue per second generated by
the assignments is λ. Thus, the network is willing to allow
transmission over z if the price per bit to transmit across link
z is (12).
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Fig. 5. Capacity found from optimal and suboptimal routing for urban
topologies with 18 and 36 nodes and one and three gateways. Since the two
computed capacities are the same, only one set of points is visible.

While (12) yields an useful bound on µ, it requires the
computation of a maximum weighted independent set. While
we have found that in realistic networks, such set can be
computed relatively quickly, computing a maximum weighted
independent set for a large number of links is computational
complex.

V. NUMERICAL EXPERIMENTS WITH JOINT SCHEDULING
AND ROUTING

In this section, the behavior of the different routing al-
gorithms is compared. In all cases, optimal scheduling is
used. Hence, only the routing is changed. In the following
computational experiments, the capacity metric is G

³
�f
´
=

minφ∈Φ wφ

P|P (φ)|
k=1 fφ,k. However, the results for G

³
�f
´
=P

φ∈Φwφ log
³P|P (φ)|

k=1 fφ,k

´
have been examined and yield

qualitatively similar results. The topologies used here are the
6×6 city block topologies described in Section III-D.1. The
baseline routing is also described in Section III-D.1.

A. Comparison of Algorithms
As discussed in Section IV-A, Algorithm 3 yields optimal

routing if the Lagrange multiplier for each possible link in the
network is always included into some path. Typically, there
are many possible links in the network, hence, this approach
is computational complex. Algorithm 5 is less computational
complex, but is suboptimal. On the other hand, since Algo-
rithm 4 is conservative in removing a path from the set of
considered paths, Algorithm 5 tends to include a fairly large
number of links, and hence has the potential to accurately
determine which paths to include.

Figure 5 compares the capacity found by these algorithms
for topologies with 18 and 36 mesh routers and with 1
and 3 gateways. For each number of routers and gateways,
ten samples were considered (hence, 40 topologies in total
were considered). As can be observed, Algorithm 5 yields
the same capacity as the optimal algorithm. We have found
that Algorithm 4 is critical to the performance of Algorithm
5. On the other hand, Algorithm 5 tends to include a large
number of links, increasing the computational complexity.
Nonetheless, Algorithm 5 is considerably more efficient than
including all possible links, and hence optimal routing with
all possible links is not considered in the remainder of this
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Fig. 6. The median of the ratio of the capacity with (sub)optimal routing
and the capacity with the least hop routing. Also shown is the maximum and
minimum value of the ratio when there are three gateways. The maximum
and minimum for other numbers of gateways are similar.

paper. Nonetheless, since we have not verified that Algorithm
5 is indeed optimal for all topologies, the capacity found by
Algorithm 5 is referred to as (sub)optimal.

B. The Impact of Optimal Routing
The left-hand side of Figure 6 shows the improvement in

the capacity of (sub)optimal routing as compared to least hop
routing. As can be observed, optimal routing can significantly
improve the capacity. In Section III-D.2, the same topologies
used here were considered and it was found that, as compared
to 802.11’s MAC, optimal scheduling yields an improvement
in the capacity by between a factor of four and ten (depending
on the topology). Hence, we conclude that joint optimal
routing and scheduling provides between a factor of 5 and 15
improvement over 802.11 CSMA/CD with least hop routing!

C. Path Length
It is often claimed that high performance can be achieved

by taking many short hops where, since each hop is short, it
has a high SNR, and hence can support high bandwidth. While
high data rates might be possible over a single short hop, a
connection composed of many short hops will require many
transmissions, and hence, will experience self-interference and
interference with other connections. In this way, perhaps,
shorter paths and longer hops might be preferable [56].

Figure 7 shows the average number of hops for (sub)optimal
routing and least hop routing while Figure 8 shows the ratio
of the path lengths. We observe that question of whether paths
should be short or long depends on the details of the topology.
For example, in the case of one gateway in a 6×6 city block
region, (sub)optimal routing uses significantly longer paths
than least hop paths. However, as shown in Figure 8, the ratio
of the length of the (sub)optimal path and the length of the
least hop path decreases as the density of gateways increases,
and this ratio increases as the density of destinations increases.

Note that since multipath routing is used and since the
scheduling may assign small data flow to some paths, the path
lengths used in Figure 7 and 8 are weighted by the amount
of data flow that crosses the path. Specifically, the path length
for connection φ is 1

|P(φ)|
k=1 fφ.k

P|P (φ)|
k=1 fφ,k (|P (φ, k)|− 1),

where |P (φ, k)|− 1 is the length of path P (φ, k).
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D. Multipath versus Single Path Routing
There has been extensive work on multipath routing (e.g.,

[57] and [58]). One motivation for using multipath routing is
that multiple paths can increase robustness to disconnection
and improve load balancing. It is expected that load balancing
can increase capacity. While there is some evidence of this
behavior in single connection ad hoc routing [59], the behavior
in mesh networks at full capacity is unclear. In theory, optimal
multipath routing is more general than optimal single path
routing, and hence multipath routing cannot provide any lower
capacity than single path. However, it is unknown the degree
to which multipath routing is required for maximum capacity.
Figure 9 shows the fraction of connections that use multiple
paths. Note that while Algorithm 5 might generate multiple
paths, the scheduling algorithm might not allocate data flow
to some paths. Thus, we say that a connection φ uses multiple
paths if there exists k and j with k 6= j and fφ,k > 0 and
fφ,j > 0

2. As can be observed in Figure 9, a large majority of
the connections require multiple paths. Note that a significant
number of the paths were only a single hop. Thus, Algorithm
5 even chooses to augment paths that are one hop paths with
multi-hop paths.

While Figure 9 indicates that optimality makes significant
use of multiple paths, it does not indicate the impact of
multipath routing on capacity. Since optimal single path rout-
ing is a non-convex optimization [55], a precise comparison
between optimal multipath routing and optimal single path
routing is computationally complex. Nonetheless, an idea of
the performance of optimal single path routing can be gleaned
by considering a single path routing that is a "quantized"

2Due to numerical quantization, a path was declared to have no data flow
if fφ,k ≤ 10−8.
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Fig. 10. Ratio of the (sub)optimal capacity and the capacity provided by a
single path routing that is a quantized version of (sub)optimal routing.

version of multipath routing as follows. As mentioned above,
even when there are multiple paths between a single source-
destination pair, the scheduling algorithm need not allocate
data flow to all available paths. For the paths that do have non-
zero data flow, each path does not necessarily have the same
data flow. Thus, for each connection φ, we select a single path
P (φ, k) such that fφ,k ≥ fφ,j for all j. If there are multiple
paths with the same maximal data rate, then one is selected
arbitrarily. Once the paths have been selected, the scheduling
algorithm is used to compute the optimal capacity under the
single path routing. Figure 10 shows the ratio of the capacity
given by this single path routing and the capacity provided
by the (sub)optimal multipath routing. As can be observed,
the (sub)optimal routing provides no more than 20% higher
capacity and generally less than 15% higher capacity than the
single path routing.

Note that when multipath routing is used, the address of the
destination does not specify the route (or next hop). Hence, a
labeling scheme or full source routing must be used. Moreover,
if a single TCP flow is split over multiple paths, packet
reordering is likely to occur. If packets are reordered by more
than three, then TCP will assume a packet has been dropped
and will decrease the congestion window and sending rate.
While solutions to this problem exist (e.g., [60]), they are
not widely deployed. Thus, when including the reduction in
capacity due to the overhead to support multipath routing,
the difficulty in that multipath routing has on TCP, and the
minimal increase in capacity provided multipath routing, there
appears to be little motivation to deploy multipath routing.



VI. CONCLUSIONS

This paper presented tractable computational techniques
were to compute optimal schedules and routing for multihop
wireless networks. While optimal schedules can be quickly
computed, optimal routing is computationally complex for
large networks. Thus, a suboptimal scheme was developed. In
the cases where optimal routing was computed, the suboptimal
and optimal routing were the same. The impact of optimal
scheduling and routing is significant. For example, as com-
pared to 802.11’s CSMA/CD with least hop routing, optimal
scheduling and routing improves performance by between a
factor of 5 and 15, with the improvement increasing as the
density of gateways increases. The impact of power control
and multiple bit-rates was not studied.

VII. APPENDIX

A. Proof of Propositions 3 and 4
Proof: The Lagrange function is

L (f, α, µ, λ)=−
X
φ∈Φ

wφ log (fφ) + λ

ÃX
v∈V

αv − 1
!

+
LX
l=1

µl

⎛⎝ X
{φ:l∈P(φ)}

fφ −
X
v∈V

αrR (v, l)

⎞⎠ . (13)

After some manipulation, the dual function is found to be

q (µ, λ) = inf
f,α≥0

−
X
φ∈Φ

log (fφ)wφ − λ (14)

+
LX
l=1

µl
X

{φ:l∈P(φ)}
fφ −

X
v∈V

αv

Ã
LX
l=1

R (v, l)µl − λ

!
.

We immediately note that if
PL

l=1R (v, l)µl−λ > 0 for some
l, then q (µ, λ) = −∞. Hence, we restrict the domain of q,
to be such that

PL
l=1R (v, l)µl − λ ≤ 0. On the other hand,

when solving the dual problem, an objective is to maximize q
with respect to λ. It is not hard to see that this is equivalent
to minimizing λ over the domain

PL
l=1R (v, l)µl − λ ≤ 0.

Thus,

λ∗ = max
v∈V

LX
l=1

R (v, l)µl, (15)

proving Proposition 3. Furthermore, for this λ, thePL
x=1R (v, x)µx − λ < 0 for v /∈ V , thus, the infimum in

(14) must have αv = 0 for v /∈ V , proving Proposition 4.
Therefore, we can rewrite the dual function as3,

q (µ) = inf
f≥0
−
X
φ∈Φ

log (fφ)wφ (16)

+
LX
l=1

µl
X

{φ:l∈P(φ)}
fφ −max

v∈V

LX
l=1

R (v, l)µl,

3There are other, more straightforward ways to arrive at (16). However,
these methods do not provide the important expression (15).

where αv has been eliminated since λ∗ results in the infimum
being achieved for αv = 0.

Proof: [Theorem 2] The optimal average data rates over
each link is a convex sum of the links rates from differ-
ent assignments, that is, the optimal bit-rate over link x
is
P

v∈V α
∗
vR (v, x), where α∗ defines the optimal sched-

ule. In other words, the set of feasible link bit-rates is a
convex set where the extreme points some of the rows of
R. Obviously, the vector of optimal link rates is the vectorP

v∈V α
∗
vR (v, :) ∈ RL, the space of vectors with L elements.

Due to Caratheodory’s Theorem (e.g., Theorem B.6 in [24]),
a point within a convex hull in RL is specified by at most
L+1 extreme points. That is, there exists a set, V 0 with L+1
elements such thatX

v∈V
α∗vR (v, :) =

X
v∈V0

α0vR (v, :) ,

where α0 might be different set of weights from α∗. Hence, the
optimal link bit-rates found by optimizing over V ∗∗ , the set
of all possible assignments, can be achieved by only using the
set of assignments V 0. Thus, the resulting utility is unchanged
when V 0 is used as opposed to V∗∗.

Now it is shown that V 0 can be selected so that V 0 has less
than L+1 elements. Suppose otherwise, that is, V 0 has exactly
L + 1 elements V 0 is the smallest set such that the optimal
schedule is in Co ({R (v, :) : v ∈ V 0}), the convex hull of
{R (v, :) : v ∈ V 0}. Since the faces of Co ({R (v, :) : v ∈ V 0})
are defined by no more than L extreme points, the assumption
that the optimal bit-rates cannot be specified by L points
implies that the optimal bit-rates must be in the interior of
Co ({R (v, :) : v ∈ V 0}). That is, there is an open set that
contains the optimal point and this open set is in the interior of
Co ({R (v, :) : v ∈ V 0}). For example, letting r∗∗ be the vector
of optimal bit-rates, the vector r∗∗+εr∗∗ is also in the interior
of Co ({R (v, :) : v ∈ V 0}), where ε > 0 is small enough.
Since r∗∗ is the optimal vector of bit-rates over the interior
of Co ({R (v, :) : v ∈ V 0}), the utility of r∗∗ must be higher
than the utility of r∗∗+ εr∗∗. However, this is a contradiction
since the link bit-rates r∗∗ + εr∗∗ result in uniformly large
flow rates than r∗∗, which will increase the capacity. Hence,
V 0 can be selected to have fewer than L+ 1 elements.

Proof: [Theorem 5] We slightly modify Problem (2a) to

minG (f)

subject to:
X

{φ:x∈P (φ)}
fφ −

X
v∈V

αvR (v, x) ≤ ρxX
v∈V

αv − 1 = A,

so (2a) is the case where ρ = 0 and A = 0. We will denote
the value of the optimal solution of the above problem as
G∗ (ρ, A). From sensitivity analysis (e.g., [24]), we have

µ∗x =
∂U∗ (ρ,A)

∂ρx
(17)

λ∗ =
∂U∗ (ρ,A)

∂A
. (18)



Equation (17), implies that if the amount of bit-rate that is
applied to link x is increased by an small amount ε, then the
total utility will increase by µxε. It is critical to note that in
this analysis, the bit-rate applied to link x does not come at
the expense of bit-rates of other links.

Now consider the multiplier, λ∗. The constraint
P

v∈V αv =
1 + A can be interpreted as the allowing the total bandwidth
of size 1 + A to be shared among all assignments. Thus, if
the bandwidth is increased from size 1 to size 1+ ε, then the
capacity will increase by λε. Similarly, if the bandwidth is
decreased by ε, then the utility will decrease by λε.

While the analysis above assumed that the extra bandwidth
is allocated to link x without impacting the bit-rate of the
other links, we now consider the more relevant problem
where this extra assignment comes at the expense of other
links. Specifically, if we allocate assignment v+ with ε of
the bandwidth, then the total bandwidth allocated to the
other assignments must be decreased by ε. In particular,
let V 0 = {v1, ...vN} and when optimizing over the set of
assignments V 0, let the associated optimal bandwidth allocated
to vi be of size α∗i , where, of course,

PN
i=1 α

∗
i = 1.

Now in order to allocate bandwidth ε to assignment v+,
we adjust the allocation to α+i = (1− ε)α∗i , and hence the
assignments {v+, v1, v2, ..., vN} are allocated bandwidths of
width {ε, (1− ε)α1, (1− ε)α2, ..., (1− ε)αN}, respectively.
Based on the discussion above, the change in capacity is

ε

Ã
LX

x=1

µ∗xR
¡
v+, x

¢
− λ

!
, (19)

which is positive if (6) holds.

B. Proof of Proposition 8 and 12

Proof: [Proof of Proposition 8.] We consider the opti-
mization with nonlinear objective function. The specialization
to the linear objective function follows the same approach.

Consider the optimization problem

max
X
φ∈Φ
φ6=φ+

Uφ

ÃX
k

fφ,k

!
+ Uφ+

⎛⎝X
k 6=k+

fφ+,k + fφ+,k+

⎞⎠
(20)

subject to:
X

{(φ,k)|x∈P(φ,k)}
fφ,k ≤

X
v∈V

αvR (v, x) ∀x

fφ+,k+ ≤ bφ+,k+

0 ≤ fφ,kX
v∈V

αv ≤ 1

0 ≤ αv for each v ∈ V.

Setting bφ+,k+ = 0 results in flow
¡
φ+, k+

¢
not being used,

and hence, in this case, the solution is the same as the original
optimization (e.g., the multipliers µ and λ are unchanged). The

Lagrangian for is (20) is

L
³−→
f ,−→α , γφ+,k+ ,

−→µ , λ,−→σ
´

= −Uφ+

⎛⎝X
k 6=k+

fφ+,k + fφ+,k+

⎞⎠
+
X

µl

⎛⎝ X
{(φ,k)|x∈P (φ,k)}

fφ,k −
X

αvR (v, x)

⎞⎠
+γφ+,k+

¡
fφ+,k+ − bφ+,k+

¢
− σφ+,k+fφ+,k+

+λ

ÃX
v∈V

αv − 1
!
−
X
φ∈Φ
φ6=φ+

Uφ

ÃX
k

fφ,k

!

−
X

(φ,k)6=(φ+,ko)

σφ,kfφ,k

where all Lagrange multipliers, γφ+,k+ ,µ, λ,σ are non-
negative. The dual function is

q
¡
γφ+,k+ ,µ, λ,σ

¢
(21)

= inf
fφ+,ko

−Uφ+

⎛⎝X
k 6=k+

fφ+,k + fφ+,k+

⎞⎠
+fφ+,k+

⎛⎜⎝ X
x∈P(φ+,k+)

µx + γφ+,k+ − σφ+,k+

⎞⎟⎠+D

where D represents other terms that do not depend on fφ+,k+ .
From (21), fφ+,k+ is such that

0 =
d

dfφ+,k+

⎛⎝−Uφ+
⎛⎝X
k 6=k+

fφ+,k + fφ+,k+

⎞⎠
+fφ+,k+

⎛⎜⎝ X
x∈P(φ+,k+)

µx + γφ+,k+ − σφ+,k+

⎞⎟⎠
⎞⎟⎠

or

U 0φ+

⎛⎝X
k 6=ko

fφ+,k + fφ+,k+

⎞⎠ (22)

=
X

l∈P(φ+,k+)

µl + γφ+,k+ − σφ+,k+ ,

where U 0
φ+
(f) = d

dfUφ+ (f).
Now we consider the case where bφ+,k+ = 0. In

this case, at the optimal point, fφ+,k+ = 0, and hence,
U 0
φ+

³P
k 6=ko fφ+,k + fφ+,ko

´
= U 0

φ+

³P
k 6=ko fφ+,k

´
. Thus,

from (22), if

U 0φ+

⎛⎝X
k 6=k+

fφ+,k

⎞⎠ <
X

x∈P(φ+,k+)

µx (23)



then γφ+,ko > 0. Thus, by sensitivity analysis of Lagrange
multiplier theory, if and only if (23) holds, then the capacity
will increase if bφ+,k+ is increased. That is, the capacity will
increase if data is allowed to be sent over path P

¡
φ+, k+

¢
.

Next we show that

U 0φ+

⎛⎝X
k 6=k+

fφ+,k

⎞⎠ =
X

l∈P(φ+,ko)

µl. (24)

To see this, the same analysis as above can be done but with
k+ replaced with ko. Furthermore, since data is allowed to
flow over flow

¡
φ+, ko

¢
we have bφ+,ko = ∞. Hence, the

constraint fφ+,ko ≤ bφ+,ko is not active, and hence γφ+,ko =
0. Moreover, since fφ+,ko > 0, the constraint fφ+,ko ≥ 0 is
not active, and hence σφ+,ko = 0. Hence, (22) implies (24).
Finally, substituting the right-hand side of (24) into the left-
hand side of (23) results in (10).

Proof: [Proposition 12] In Problem (2a), not all flows
are considered. We denote the set of considered paths P . We
define a shadow problem where all possible paths are included,
but the data rate along any path not in P are restricted so
that the data rate crossing these flows is no greater than ε.
Hence, as ε → 0, the solution to the shadow problem and
the original problem are the same. However, in the case of
the shadow problem, the Lagrange multipliers for each link is
known. Specifically, let L be the set of links used by any path
in P and let A be the set of all links. Then, by computing
the optimal schedule when the paths P are considered, we
can determine µx for x ∈ L. And, from the optimal schedule
where all paths are considered, µx is known for all links x ∈
A. It is straightforward to verify that the for x ∈ L, the µx is
the same in both cases. Moreover, λ is also the same.

Let z ∈ A\L. An assignment that includes z is {z} ∪
MWIS (CG [A\ ({z} ∪ χ (z))]). By Proposition 3,

µzRz +
X

x∈MWIS(CG[A\({z}∪χ(z))])
µxRx ≤ λ.

Since X
x∈MWIS(CG[L\({z}∪χ(z))])

µxRx

≤
X

x∈MWIS(CG[A\({z}∪χ(z))])
µxRx

we have

µzRz ≤ λ−
X

x∈MWIS(CG[L\({z}∪χ(z))])
µxRx

which is the desired result.
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