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1 Abstract

Stability of a data network topology, in which a source

updates its data transmission rate based on delayed

congestion information on its own path only, is ex-

amined. Delays associated with feedback information

are taken to be known constants and bounded uncer-

tainty is associated with feedback information. Use of

linear matrix inequality (LMI) and integral quadratic

constraint (IQC) techniques to derive su�ciency con-

ditions for stability of such systems is demonstrated.

2 Introduction

This paper deals with stability issues concerning

a class of interconnected systems arising in data

networks such as Internet. In the state-of-the-art

data networks, a user is guaranteed neither a �xed

data rate nor a �xed path during the lifetime of the

connection. Typically, a user does not have access to

the entire network state but has access to only a subset

of it through a direct or indirect feedback e.g. if the

transport protocol employed is a TCP/IP suite [2], [3],

[4], then the feedback information needed to enforce


ow control at the user end is derived from advertised

window size sent by destination node to source node

and computed round trip time (RTT). Because of the

possible queuing delays, the feedback is delayed and is

subject to uncertainty. In addition, the bu�er sizes at

the routers are �nite and the data transmission rate at

a source can be neither negative nor greater than the

link speed (or a pre-allocated upper bound if an RSVP

mechanism [5] is used). Thus, the stability analysis

of such a system is an instance of time-delay systems

with saturation nonlinearities.

Noting that 
ow control in such systems is em-

ployed in a decentralized manner relying on local

information, the analysis of such systems has been

formulated by [6] and [1] as a dynamic game theoretic

problem in which the choice of control laws that lead

to a stable operating point translates to a Nash equi-

librium solution. Therein, it is assumed that relevant

network dynamics can be modeled in continuous time

by ordinary di�erential equations, and that delays

and saturation nonlinearities can be neglected. In this

paper, the assumption that continuous time ordinary

di�erential equations hold is retained but, in addition,

the e�ect of nonlinearities and delays is taken into

account. As a rule, inferences drawn from robustness

stability analysis become less conservative when more

structure is placed on the system under investigation.

Therefore, a particular topology is chosen in which one

connection interacts with two mutually non-interacting

connections. The integral quadratic constraints (IQC)

framework with linear matrix inequalities (LMI) is

used to examine stability of this system.

This paper is organized as follows. In section

3.1, terminology is introduced and the problem is

posed formally. Relevant background material is

presented in section 3.2. In section 4, the main results

are stated. Discussion and conclusions are presented

in section 5.

3 Problem Formulation

3.1 Terminology and Network Topology

Information 
ow in data network consists of two types

of 
ows, viz. data 
ow and acknowledgment 
ow.

These 
ows are quantized in the form of packets.

The network is comprised of three types of nodes,

viz. a source i.e. the end-host which generates data

and receives acknowledgment, destination i.e. the

end-host which receives data and generates acknowl-

edgment, and router which schedules and forwards

the data/acknowledgment from an end-host to an

end-host, or from an end-host to another router, or

from a router to another router, or from a router to

an end-host. The link connecting two nodes n1 and

n2, if it exists, is denoted as n1� n2. The link n1� n2
is said to exist in the functional sense; i.e., it exists

only if there is a connection set up on it, otherwise it

is assumed nonexistent even if it is physically present.



Unless otherwise speci�ed, n1 � n2 is equivalent to

n2 � n1. If a source n1 is connected to destination

n4 via say n1 � n2; n2 � n3, a path n1 � n2 � n3 � n4
is said to to exist. The path taken by data from

source to destination is referred to as a feedforward

path and the path taken by acknowledgment from

destination to source is referred to as a feedback

path. A packet sent from one node to another is

subject to transmission delay (due to �nite link

speeds), processing delay (due to �nite server capacity

at a node) and queuing delay (due to �nite link

speeds, �nite server capacity and, possibly, interfer-

ing interfering tra�c competing for the same resource).

Let ~xij denote the rate of data 
ow from ni to

nj . We consider deviations of sending rate about

an operating point as given by xij
:
= ~xij � x�

ij
for

some x�
ij
. Due to rate limitations, which may exist

purely because of the �nite bandwidth of the outgoing

link at a node or because of a quality of service type

limitations imposed by an RSVP type scheme, the

actual transmission rates are given by

~xij =

�
uij if jxijj > uij
xij if jxijj � uij:

(1)

Consider the network topology shown in Fig 1. Let

q3(t) and q5(t) denote instantaneous queue sizes at n3
and n5 respectively. We assume that an estimate of

queue sizes (instantaneous or averaged over short in-

terval) at only those the routers over which its data

packets are traversing is available at a source. If the

total queuelength experienced over feedforward loop in-

creases (i.e., if delay in the feedforward loop increases),

then the source decreases its rate of transmission. The

control law considered is as follows.

_x13(t) = �x13(t) +K(q3(t� �1(t)) + q5(t� �2(t))) (2)

_x23(t) = �x23(t) +Kq3(t� �3(t)) (3)

_x65(t) = �x56(t) +Kq5(t� �4(t)) (4)

Delays �i(�) (�i 2 [0; ��
i
]) associated with feedback

information are state dependent. For ease of analy-

sis (primarily, notational convinience), they are taken

to be a known constant � and qi(t � �i(t)) replaced

by �i(t)qi(t � � ) where �i(�) is a time-varying scalar

(i = 3; 5), thereby associating an uncertainty with

qi(t � � ). Note that �i(t) (2 [��; �] 8t) is inversely

proportional to outgoing link bandwidth available at ni
and is directly proportional to queue size at ni. Also,

note that the smaller the value of �i(t), the smaller

the value of �i which implies greater con�dence in the

qi(t� � ) and hence its uncertainty will be smaller. The

queue dynamics are given by

_q3(t) =8<
:

maxf~x13(t) + ~x23(t) � �3; 0g if q3(t) = �q�

~x13(t) + ~x23(t) � �3 if jq5(t)j < q�

minf~x13(t) + ~x23(t) � �3; 0g if q3(t) = q�
(5)

_q5(t) =

8<
:

maxf~x35(t) � �5; 0g if q5(t) = �q�

~x35(t) � �5 if jq5(t)j < q�

minf~x35(t) � �5; 0g if q5(t) = q�
(6)

where �3; �5 are the respective service capacities at

n3 and n5 for the deviations, dominated mostly by

the outgoing link capacity if �rst-in-�rst-out queuing

policy is used.

Our goal here is to examine stability of the net-

work. Several related practical questions can now be

posed. For example, having decided on uncertainty

bounds, it would be of interest to �nd the minimum

destabilizing delay �� associated with them. Alterna-

tively, having �xed the nominal delay �� associated

with feedback information, the associated minimum

destabilizing uncertainty bound could be found out.

The problem to be solved depends on the degree of

con�dence placed in the these variables. In order to

pose the problem formally, we present the necessary

background material in the next subsection.

3.2 Mathematical Preliminaries

Let Ln
2
[0;1) denote the space of signals x(�) 2 Rn

square integrable on [0;1) with inner product de-

�ned as < x; y >Ln
2

:
=

Z 1

�1

y�(t)x(t)dt and induced

norm given by jjxjjLn
2

:
=
p
< x; x >Ln

2
. Unless oth-

erwise speci�ed, Ln2 refers to Ln2 [0;1) and jjxjj de-
notes jjxjjLn

2
. Given a signal x(�) 2 Rn, x̂(j!) denotes

its Fourier transform. An operator denotes a function

F : Ln2 �! Lm2 and its gain is given by

jjF jj
:
= sup
f2Ln

2
;f 6=0

fjjF (f)jj=jjf jjg: (7)

If jjF jj is �nite, F is said to be bounded . F is said to

be stable if there exist 
 � 0 and � such that

jjFujj2 � 
jjujj2 + � 8u 2 L2: (8)

De�nition 1 Let �(�; t) : R �! R denote a function

such that

�u2 � �(u; t) � �u2 ; 8u 2 R; 8t � 0: (9)

Then, � is said to belong to sector f�; �g.

De�nition 2 Two signals w 2 Lm2 [0;1) and v 2
Ln2 [0;1) are said to satisfy the IQC de�ned by �(j!)

if Z 1

�1

�
v̂(j!)

ŵ(j!)

��
�(j!)

�
v̂(j!)

ŵ(j!)

�
d! � 0: (10)

De�nition 3 A bounded operator � : Rn �! Rm is

said to satisfy IQC de�ned by �(j!) if (10) holds for

all w = �v where v 2 Ln2 .
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Figure 1: The �gure shows network topology under examination. Nodes n1; n2; n6 are source nodes with n8; n4; n7
as the corresponding destinations. Nodes n3; n5 are routers.
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Figure 2: The interconnection I1. T is the linear time-invariant plant seen by the uncertainty �.

Modulo change of variables, most robust control anal-

ysis problems can be studied as an instance of the

canonical uncertain system I1, shown in Fig 2 where

� 2 � (� diagonal) represents the uncertainties and

T denotes the plant (augmented by controller, if any)

seen by the uncertainty [7], [11]. The robustness anal-

ysis problem can be interpreted as a 'topological sepa-

ration' of the graph of T (j!) and the inverse graph of

�(j!) as follows (rephrased from [9]).

Theorem 1 Suppose T contains all its poles in the

open left half s-plane. Let � be a bounded causal op-

erator and assume that 8� 2 [0; 1], I1 is well-posed

(in the sense of [9]). Consider a measurable Hermitian

function � : jR �! C(l+m)�(l+m) where l is the size

of T and m is the size of �. Let IQC de�ned by � be

satis�ed by �� 8� 2 [0; 1]. Then, I1 is stable if�
T (j!)

I

��
�(j!)

�
T (j!)

I

�
< 0 (11)

holds 8! 2 R.

We redraw system represented by (1)-(6) as shown in

Fig 3.

N1

:
= diag(sat(�); sat(�); sat(�)) denotes the rate satu-

ration nonlinearity, N2

:
= diag(�1;�2) captures the

queue saturation nonlinearity, N3

:
= diag(�3;�4) cap-

tures the uncertainty associated with queue informa-

tion and �N4

:
= e��sI is the known delay (where I is

the identity matrix). Write N4

:
= (2��s

2+�s
� e��s)I The

system in Fig 3 can be seen to be an instance of I1
with

�
:
= diag(N1;N2;N3;N4) (12)

T
:
=

2
664

0 0 q(s) P1(s)

I 0 0 0

0 P2(s) 0 0

0 0 I 0

3
775 (13)

where q(s) = 2��s

2+�s
, P1(s) is a 3�3 matrix of controller

dynamics and P2(s) = diag(1=s; 1=s). Then, the prob-

lem of determining stability of the system can be stated

as that of determining an IQC �(j!) which gives the

desired topological separation.

4 Main Result

First, IQCs for component nonlinearities are stated.
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Figure 3: A block digram decomposition of the investigated network topology.

Lemma 1 Saturation nonlinearity in N1 satis�es IQC

given by

�1(j!)
:
=

�
0 1 +H(j!)

1 +H(�j!) �2(1 + Re(H(j!))

�
(14)

where H 2 RL1 such that l1 norm of H is less than

unity.

Proof. N1 is a slope bounded monotonic odd

nonlinearity with slope equal to 1. The result follows

from [10] (see also [9]).

Lemma 2 Nonlinearity in N2 satis�es IQC given by

�2(j!)
:
=

�
0 1

1 �2

�
: (15)

Proof. N2 is a sector bounded nonlinearity with � =

0; � = 1. The IQC follows from [10], [9].

Lemma 3 Time varying uncertainty in N3 satis�es

IQC given by

�3(j!)
:
=

"
(1 + �)(H�H +

 (H;d)
2

�
I) 0

0 �H�H

#
(16)

where  (H; d)
:
=

Z 1

�1

jjh(t)jjminf2; Djtjgdt and D

is the bound on rate of change of variation and H

is a stable, causal transfer function and � > 0 is the

parameter to be adjusted.

Proof. See [9].

Lemma 4 Delay term in N4 satis�es IQC given by

�4(j!)
:
=

�
p(j!) 0

0 1

�
(17)

where p(j!)
:
= 2(1� 4�!

2
�
2

4+!2�2
cos(!� )� 4!�

4+!2�2
sin(!� )).

Proof. Follows from algebraic manipulations and

is omitted.

Combining the above IQCs, su�ciency conditions for

the stability of this system can be checked by using dif-

ferent IQC parameters. Use of linear matrix inequal-

ity (LMI) techniques to analyze stability of dynami-

cal systems subject to �xed unknown delays (see [8],

[12]) or bounded norm disturbance ([8]) has been vig-

orously pursued over the last few years. If the sys-

tem de�ned by (1)-(6) is put in state-space form, it is

possible to use standard LMIs for its stability analy-

sis. Let x(t)
:
= [x13(t) x23(t) x65(t) q3(t) q6(t)]; w(t)

:
=

[~x13(t) ~x23(t) ~x65(t) ~q3(t) ~q6(t)]. Let �
:
= �i(t)� � . For

small �, Taylor series expansion of q(t� � + �) gives

q(t� � + �) = q(t� � ) + � _q(t � � ) (18)

as the �rst order approximation so that, for example,

_x23(t) = �x23(t) +Kq3(t � �2(t))

can be written as

_x23(t) = �x23(t) +Kq3(t� �2) +

�2(t)(x13(t� �2) + x23(t � �2))

which is of the form

_x23(t) = �x23(t) +Kq3(t� �2) + w2(t� �2)

where w2(t)
:
= �2(t)C2x(t) and C2

:
= [W2 W2 0 0 0].

Likewise, wi(t)
:
= �i(t)Cix(t) for appropriate Ci (i =

1; 3). Note that
jjwijj

jjxjj
� 1 (i = 1; 2; 3). With this

substitution, (1)-(6) can be rewritten as

_x(t) = Ax(t) +

3X
i=1

Aix(t� �i) +

3X
i=1

Biwi(t� �i) (19)

where matrices A, Ai and Bi are de�ned appropriately

from (1)-(6), Then, stability can be examined by com-

bining LMIs for delays with LMIs for norm bounded

disturbances (see [8]) . A su�ciency condition for sta-

bility is �
X Y

Y 0 Z

�
< 0

� � 0 and P; Pi > 0 i = 1; 2; 3 (20)



where X
:
= A0P + PA +

3X
i=1

Pi, Y
:
=

[PA1 : : : PA3 PB1 : : :PB3] and

Z
:
=2

664
�P1 + �C0

1
C1 0 0 0

0 �P2 + �C0
2
C2 0 0

0 0 �P3 + �C0
3
C3 0

0 0 0 �I

3
775

5 Discussion and Conclusion

Stability analysis of the state-of-the-art data networks

is a formidable problem because they exhibit a high

degree of interaction and have nonlinear uncertain dy-

namics. In the present note, we have formulated the

problem such that realistic constraints are accounted

for. For example, it is assumed that a source exerts


ow control law based on the knowledge of the queue

sizes at the routers on its own path to destination only.

The case of rate updates based on a function of queue

sizes (instantaneous or average) can easily be handled.

Assuming next generation routers can handle this func-

tionality, tolerance of a connection to (un-modeled) in-

terfering tra�c can be characterized using appropriate

IQCs. This assumption is not unrealistic since cur-

rently, it is possible to set a bit in a packet header

to 0 if the queue size is below a certain threshold or

to 1 if it is above a certain threshold (see DEC bit

scheme [13]). The adherence to ordinary di�erential

equations is not too restrictive since data transmission

is observed to be a reasonably continuous process, on

a coarse time scale, for bulk data transfer connections,

even for acknowledgment clocked transport protocols

such as TCP/IP suites though it is unsuitable to de-

scribe dynamics of short lived acknowledgment clocked

connections. In the prevalent literature, it is custom-

ary to analyze data networks by considering the case

of a single source and its bottleneck router, i.e. the

most congested router on the feedforward path to des-

tination, subject to random, usually i.i.d. packet losses

([14]). The present work explicitly takes into account

the e�ect of interfering tra�c and of other routers on

the feedforward path to destination in addition to bot-

tleneck router.
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