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Abstract. In the networking research literature, the problem of net-
work utility optimization is often converted to the dual problem which,
due to nondifferentiability, is solved with a particular subgradient tech-
nique. This technique is not an ascent scheme, hence each iteration does
not necessarily improve the value of the dual function. This paper exam-
ines the performance of this computational technique in realistic mesh
network settings. The traditional subgradient technique is compared to
a subgradient technique that is an ascent algorithm. It is found that
the traditional subgradient techniques suffers from poor performance.
Specifically, for large networks, the convergence is slow. While increasing
the step size improves convergence speed, due to stability problems, the
step size cannot be set arbitrarily high, and suitable step sizes result
in slow convergence. The traditional subgradient technique also suffers
from difficulties when used online. The ascent scheme performs well in
all respects, however, it is not a distributed technique.
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1 Introduction

There has been extensive effort focused on finding time division multiplexing
schedules that maximize the capacity of wireless networks [1]- [10]. A common
approach is to maximize the sum of flow utilities subject to constraints related
to interference. Specifically, we consider

min−
X
φ∈Φ

Uφ(fφ) (1)

subject to:
X

{φ|l∈P (φ)}
fφ ≤

X
v∈V

αvR(v, l) for all l and
X
v∈V

αv = 1, αv ≥ 0.

where fφ is the data rate of flow φ, Uφ (fφ) is the utility of flow φ when the flow
rate is fφ, P (φ) is the set of links that flow φ traverses (i.e., P (φ) is the path
of flow φ), R (v, l) is the data rate over link l when assignment v is used, and
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αv is the duration that assignment v is used. We define an assignment to be a
specification of which links transmit and the transmit power. Thus, a schedule
is a weighted combination of assignments where the weights are αv. We let V
denote the set of considered assignments. If power control is not used, then there
are 2L distinct assignments, where L is the number of links in the network, and
if power control is used, the space of assignments is [0, 1]L. In [1], a technique
is presented that generates a small set V that results in nearly optimal utility.
Hence, currently, utility optimization is tractable for networks with hundreds of
links. Most efforts to solve (1) use dual or primal-dual techniques. Specifically,
after some manipulation, the dual function is written as

q (µ) =
X
φ∈Φ

inf
fφ≥0

⎛⎝−Uφ(fφ) + fφ
X

l∈P(φ)
µl

⎞⎠−max
v∈V

LX
l=1

R(v, l)µl, (2)

where µl is the Lagrange multiplier associated with link l. The dual problem is

max
µ≥0

q (µ) . (3)

Due to the termmaxv∈V
PL

l=1R(v, l)µl, the dual function, q, is not differentiable
for all µ. Hence, computational methods based on the gradient are not available.
To circumvent this difficulty, supergradient1 techniques can be employed. In the
networking literature [2]- [10], the most popular supergradient technique is to
iterate

µl (k + 1) =

⎛⎝µl (k) + γk

⎛⎝ X
{φ|l∈P(φ)}

f∗φ (µ (k))−R (v (k) , l)

⎞⎠⎞⎠+

(4)

where
v (k) ∈ argmax

v∈V

X
R (v, l)µl (k) , (5)

γk is a step size, and f∗φ (µ (k)) is the optimal flow given µ (k), i.e., f∗φ is the
solution to the infimum in (2). Since this scheme is widely used, it will be referred
to as the traditional supergradient scheme.
This paper examines the practical performance of (4) through extensive com-

putational experiments. The conclusions are that the traditional supergradient
scheme suffers from poor performance. Specifically, for large networks, the con-
vergence is slow. While increasing the step size improves convergence speed,
due to stability problems, the step size cannot be set arbitrarily high, and suit-
able step sizes result in slow convergence. On the other hand, this method does
not find the exact solution, but merely oscillates around the optimal solution.
However, the oscillations are small, hence in terms of error, (4) works well. Of-
ten the traditional supergradient techniques are used for online and distributed

1 Subgradient is a more common term. However, subgradient and supergradient tech-
niques are the same, the only difference is that the former refers to minimization
while the later refers to maximization, which is the focus here.
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computation. However, this approach suffers from several problems. Finally, an
alternative ascent algorithm is also investigated. While this approach does not
appear to lend itself to distribution, it does perform well in all other aspects.
The remainder of the paper proceeds as follows. In the next section, a few

theoretical aspects of supergradient based optimization are presented. In Section
3, some details of the computational experiments are provided. The rest of the
paper is focused on the performance of the traditional supergradient scheme,
specifically, Section 4 examines the convergence rate, Section 5 examines the
error, Section 6 examines stability, and Section 7 examines the performance
when the traditional supergradient scheme is used as an online and distributed
computational method. Finally, Section 8 provides some concluding remarks.

2 Theoretical Results on Supergradient Optimization

The performance of (4) has been extensively investigated (e.g., see [11]). In [9],
the following is proved.

Theorem 1. Let γk be a constant γ and let G = maxµ k∂q (µ)k, where k∂q (µ)k
is the norm of the largest element in the superdifferential ∂q (µ) and let u (k) be
given by (4). Then

lim
K→∞

sup
1

K

KX
k=1

|q (µ (k))− q (µ∗)| < γG2/2.

Thus, one can expect that if a fixed step size is used, then µ (k) will enter a
ball around µ∗ and remain in this ball, where µ∗ is the solution to (3). Hence,
using the terminology of [9], we can consider that the µ (k) has stochastically con-
verged when it enters this ball. The ball can be made smaller by using a smaller
step size. In fact, by slowly decreasing the step size, this scheme will converge.
However, in order to guarantee convergence, the step size must converge slowly.
Specifically, in general, we must have limk→∞ γkgk = 0 and

P∞
k=1 1/ (γkgk)

2 =

∞, where gk =
µP

l

³P
{φ|l∈P(φ)} f

∗
φ (µ (k∆t))−R (v (k) , l)

´2¶1/2
[11].

When q (µ) is not differentiable, the superdifferential, ∂q (u) , is a set of vec-
tors. The algorithm (4) arbitrarily selects one element from the superdifferential
and uses it as if it was a direction of ascent. As just mentioned, if the step size
is selected correctly, then this scheme will converge. However, it is possible to
more carefully select the direction so that it is a direction of ascent2.

Theorem 2 (Thm 1.11 in [11]). Let ∂q (µ) be the superdifferential of q at µ.
Suppose 0 /∈ ∂q(µ) and let η be the element of ∂q(µ) that is nearest to the origin,
i.e.,

η = argmin kgk2 (6)

subject to: g ∈ ∂q (µ) .

Then η is a direction of steepest descent at µ.
2 Note due to convexity, there must be a direction of ascent, unless µ (k) = µ∗.
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Fig. 1. Example of the convergence of (4) for a 60 link network.

Therefore, steepest ascent is an alternative computational scheme to the tra-
ditional supergradient scheme (4). However, as is well known, steepest ascent
can lead to oscillations that result in slow convergence. The steepest ascent al-
gorithm can be further improved by using space dilation (see page 69 in [11]).
We refer to this approach as the ascent algorithm. More details on the ascent
algorithm can be found in [1]. Section 4 compares the convergence rate of this
ascent algorithm to the traditional supergradient algorithm (4). In the other
sections, this ascent algorithm is used to find µ∗, the optimal solution to (3) as
well as optimal flow and link rates.

3 Experiment Set Up

The performance of (4) and the ascent algorithm were examined in realistic mesh
network scenarios that were based on downtown Chicago. Specifically, random
mesh networks were generated by placing one infrastructure node randomly on
each block in a region of downtown Chicago. A centrally located infrastructure
node was designated as the base station. All other nodes were set to be wireless
relays. These wireless relays were also set as destinations. Hence, for each relay,
there was one flow from the base station to the relay. Shortest path routing
was used, where the channel loss along each hop was required to be no more
than 55 dB. The propagation was determined from the UDelModels ray-tracing
tool [12]. If some relays were disconnected from the network, then the relay
was excluded from the topology. Finally, by adjusting the size of the region of
Chicago where the mesh network was constructed, the number of links could
be approximately controlled. Topologies were grouped together based on the
number of links. Twenty topologies were generated for each number of links,
where the number of links ranged from 16 to 75 links in steps of five links.

As mentioned in the Introduction, when there are L links, there are 2L pos-
sible assignments. Hence, for large topologies it is intractable to consider all
possible assignments. Instead, the scheme described in [1] was used to construct
a good set of assignments. In [1], it is shown that this technique results in net-
work utility that is with 0.05% of optimal. Thus, the set V in the Introduction
was set to be this set of good assignments.

Finally, the utility function used was U (f) = log (f) and data rates were
given by Shannon’s Theorem, i.e., log2 (1 + SNIR) bits/Hz.
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Fig. 2. Left: Number of Iterations until convergence. Right: Computation time on an
2.8GHz 64 bit PC until convergence.

4 Convergence Rate

There are few theoretical results on the convergence rate of (4). However, it
is intuitive that a smaller step size results in a slower convergence. Figure 1
shows examples of kµ (k)− µ∗k for (4) with several step sizes and for the ascent
algorithm. Note that the ascent algorithm will eventually converge, hence the
curve representing the ascent algorithm is only shown for the iterations before
convergence.

We will say that the traditional supergradient scheme has converged the
when

kµ (k)− µ∗k ≤ lim
k→∞

E (kµ (k)− µ∗k) .

Once this condition has been met, we can assume that µ (k) remains in a ball
around µ∗ and the flow and link rates will be approximately correct.
Figure 2 shows the number of iterations until convergence and the compu-

tation time until convergence. Here we assume the computation is performed
centrally. Thus, the computation time for one iteration is the time to update µl
for each link.
The left-hand frame of Figure 2 shows that the convergence time does not

grow exponentially with the number of links. However, the right-hand frame
shows a superlinear growth in the convergence time with the number of links.
On the other hand, the ascent algorithm shows a slower growth than the tra-
ditional supergradient method. To see this, note that for γ = 2, the traditional
supergradient method converges in less time than ascent algorithm when the
number of links is small, but requires more time when the numbers of links
is large. Similarly, while γ = 6 takes less time than the ascent algorithm when
there are 75 or fewer links, it takes more time for large networks. For example, we
found for a set of networks with 280 links, the traditional supergradient method
with γ = 6 takes approximately 800 seconds, whereas the ascent algorithm takes
approximately 550 seconds.

5 Error

The relationship between the number of iterations to reach convergence and the
step size indicates that if γ is selected very large, then convergence will be very
fast. On the other hand, Theorem 1 indicates that the error kµ (k)− µ∗k grows
with γ.
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Fig. 3. Left: The relative error of µ. The mean is over all topologies with L links. Right:
The ratio of average flow rates to optimal flow rate.

To investigate this, we consider the average relative error after convergence
(i.e., the average value of kµ (k)− µ∗k / kµ∗k for very large k). The left-hand
frame of Figure 3 shows that the relative error is quite small and decreases with
the number of links.
The right-hand frame of Figure 3 provides another view of the error. To

understand this plot, recall that given µ (k), the flow rates, fφ (k), can be deter-
mined. If µ (k) differs from µ∗, then fφ (k) will differ from f∗φ . To examine the
size of this difference, we compare f∗φ and f̄φ, the average value of fφ (k) for k
very large, i.e., after convergence. Specifically, we examine

mean
over all topologies

max
φ
max

Ã
f∗φ
f̄φ

,
f̄φ
f∗φ

!
.

Note that the inner maximization forces the ratio to always be greater than
one. The outer maximization is the maximization over all flows, i.e., the worst
case flow. The mean averages over all topologies.
In both views of the error, we see that the error decreases with the number

of links. Further investigation is required to understand why this is the case.
Nonetheless, in both cases the error is quite small.

6 Stability

Section 4 showed that the time to convergence decreases when the step size, γ,
is increased. Furthermore, the previous section showed that the error is quite
small even for γ = 6. Moreover, the error decreases with the number of links.
Hence, increasing the step size may improve convergence while maintaining ac-
ceptable error. However, we find that large step sizes can lead to instability and
divergence.
For a particular topology, we define γ̄ to be the maximum value of γ such

that (4) is stable. Figure 4 shows minimum value of γ̄ where the minimum is
over all topologies with L links. Figure 4 also shows the median value of γ̄ over
all topologies with L links. While Figure 4 indicates that in some cases large
values of γ might not cause instability, there are other topologies such that γ
must be rather small. Indeed, from Figure 4, we conclude that it is not possible
to reliably set γ larger than 6.
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Fig. 4. The median and minimum value of γ, the maximum allowable value of γ such
that the traditional subgradient method is stable, i.e., does not diverge. The median
and minimum are over all topologies with L links.

7 Online and Distributed Supergradient Optimization

In this section the possibility of distributing the supergradient optimization in
such a way that it supports online computation of assignments. By online we
mean that at each iteration, the assignment v (k) is used, i.e., the link bit-rates
are R (v (k) , l). This assignment is used for ∆t seconds before a new assignment,
v (k + 1), is generated. Note that ∆t is not necessarily the same as γ. However,
here we assume that γ = ∆t.
We assume that the computation of a new assignment requires communica-

tion with neighboring nodes. Recall that we assume that the v (k) ∈ argmaxv∈V
P

R (v, l)µl (k).
Thus, in order to compute v (k) , each link must be aware of µl (k) for all other
links. Consequently, each iteration can be expensive in terms of bandwidth, the
resource that is being optimized. In order to preserve bandwidth, one can set
∆t large. In this section, the values of ∆t studied range from 500 msec. to 6
sec. Refer to Figure 2 for the number of iterations required for convergence.
For example, with 75 links and ∆t = 500 msec, it will take 50000 seconds until
convergence.
Besides slow convergence, there are two performance problems with the online

approach, namely, the actual link utilization of congested links may be small and
queues occupancies can be very large. These problems are discussed next.

7.1 Link Utilization

When using TDM, a link is not able to transmit at all times. However, for
some time-slots, the link is able to transmit and it is expected that the link will
transmit continuously during that time-slot. If the link is unable to transmit
data throughout the entire time-slot, then it might be possible to either increase
the flow rates or use different assignment so that other can links to transmit. If
either of these options is possible, then the network utility can be increased. On
the other hand, it is possible that at optimality a link will have more bandwidth
allocated to it than is required to transmit the data passing over it. However,
from complementary sensitivity, for links l where this occurs, we must have
µ∗l = 0. Thus, if µ

∗
l > 0, then we expect that link l will always send data when

it is allocated bandwidth, that is, the link will be fully utilized.
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Since a radio cannot simultaneously transmit and receive on the same band-
width, when a node is transmitting, it must transmit data that is stored in its
queue. Thus, letting Ql (k) denote the queue occupancy of link l at the beginning
of the kth time-slot, a link is underutilized if Ql (k) < ∆tR (v (k) , l), i.e., more
data can be sent than is available in the queue. Thus, we define the utilization
of a link to be

ρl :=

P
{k:R(v(k),l)>0}

min (Ql (k) ,∆tR (v (k) , l))P
{k:R(v(k),l)>0}

∆tR (v (k) , l)
,

where {k : R (v (k) , l) > 0} is the set of time-slots for which link l is transmitting.
In the analysis that follows, the utilization is computed once the algorithm has
stochastically converged.
We approximate the queue occupancy with the following

Ql (k + 1) = min
³
Qmax, (Ql (k) + µl (k + 1)− µl (k))

+
´

(7)

where Qmax is the size of the queue. Note that if Qmax =∞ and µ (0) = Q (0),
then µl (k) = Ql (k) for all k. Also, note that (7) is only an approximation
of the queue occupancy since it assumes that the arrival flow rate for link l isP
{φ:l∈P(φ)} f

∗
φ (µ (k)). However, upstream queue overflows could result in arrival

rates less than
P
{φ:l∈P(φ)} f

∗
φ (µ (k)). Nonetheless, the analysis that follows uses

(7).
There are two ways in which the traditional supergradient method results

in congested links having utilization that is less than one. First, as shown in
Figure 3, the larger that γ is, the larger the variations experienced by µ (k), and
hence the larger the variations experienced by Q (k). Consequently, when µ∗l is
small for some link l, variations in µl (k) around µ∗l will occasionally result in
µl (k) = 0. Similarly, occasionally Q (k) = 0, and hence ρl < 1.
While Q (k) = 0 will result in ρl < 1, this problem is most significant for

links with small µ∗l . Considering sensitivity analysis
3 , these links with small µ∗l

are not as critical as links with larger µ∗l . Hence, if these less critical links do not
reach full utilization, it will not have a significant impact on the network utility
unless ∆t is quite large (in which case, occasionally we will have Ql (k) = 0 for
links with large µ∗l ). However, as discussed in Section 6, due to instability, it is
difficult to have ∆t large.
Finite queue sizes is a second cause of reduced link utilizations. For example,

since a node cannot send and transmit at the same time, if the maximum queue
size is zero (i.e., there is no queue), then ρ = 0. In general, finite queue size is not
a problem if Qmax ≥ maxlmaxv∈V ∆tR (v, l). This condition can be conservative

3 By sensitivity, the Lagrange multiplier µl is related to the change in the network
utility due to a change in link resources. Hence, if µl is small, then decreasing the
data rate across link l will only have a small impact on the network utility. Thus, if
µ∗l is small, then link l is less critical to the network utility.
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Fig. 5. Traditional subgradient methods can result in link utilization of less than one for
congested links (i.e., links with µl > 0). The above shows the median link utilization
where the median is over all links and all sampled topologies with L links. As the
Qmax →∞, the median link utilization converges.

since links with very high data rates might not be critical links (i.e., µ∗l = 0),
and not all assignments v are used.
Figure 5 shows the median link utilization for different maximum queue sizes,

Qmax (only links with µ∗l > 0 are considered). As expected, for very small sizes
of Qmax, the utilization is quite low. This is due to Qmax < ∆tR (v, l) for some l
and some v that is used by the schedule. When Qmax =∞, then the utilization
is less than one due to Ql (k) = 0 for some k and l. As can be seen, the median
link utilization is far from one in all cases.

7.2 Queue Size and Delay

An important drawback of the online implementation of the supergradient method
is that the link cost, µl, is tightly associated with the queue occupancy, Ql. In
the typical approach, µl = Ql. This is problematic since if the link cost is high,
then the queue occupancy will be large, resulting in long delays and consuming
large amounts of memory resources. For example, in our experiments, it was not
uncommon to have µ∗l > 100 bits/Hz. If the bandwidth is 20 MHz, as is the
case in 802.11b/g, this would result in nominal queue occupancies of 2Gb. As
discussed above, limiting the queue to smaller values decreases link utilization.
Another possible option is to somehow force Ql (k) = µl (k) − µ∗l . In this

case, the queue is nominally empty and only grows when µl > µ∗l . In this case,
delay is only caused by positive variations in µl. However, as shown in Figure 6,
even in this ideal situation, we find that the queue must be large. Indeed, when
∆t = 500 msec and the bandwidth is 20 MHz, we have some queue occupancies
that exceed 10 Mb.

8 Conclusions
It is common to use a particular supergradient technique to maximize network
utility. This paper examines the performance of the traditional supergradient
technique and finds that in practice, it performs poorly. Specifically, conver-
gence is slow, and instability results if the step size is increased in an attempt
to improve convergence speed. An alternative ascent algorithm is found to con-
verge much faster. Another problem with the traditional supergradient approach
is that if it is distributed, then queue occupancies can become very large and
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link utilization of critical links is below one. On the other hand, while the super-
gradient methods do not provide the exact solution (they oscillate around it),
the error is small.
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