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ABSTRACT. Linear quadratic controllers for dynamical systems with
complicated dynamics are developed. Systems with complicated dynamics are
those that run over compact sets and have such features as nontrivial recur-
rence, periodic and aperiodic orbits. The controllers are based on modeling the
nonlinear dynamical systems as linear dynamically varying systems. Necessary
and sufficient conditions for the existence of such controllers are linked to the
existence of a bounded solution to a functional algebraic Riccati equation. Sev-
eral methods to solve the functional Riccati equation are presented. Finally,
an example of controlling the Hénon map to avoid certain regions is presented.

1. INTRODUCTION
This paper develops a control strategy for systems with complicated dynamics. By
complicated dynamics, we mean a discrete-time, nonlinear dynamical system running
over a compact set ©. By control, we mean tracking one of the natural periodic or
aperiodic orbits of the dynamics .

A specific feature of tracking a natural periodic or aperiodic motion is that the
objective can be achieved with low cost control. Therefore, the control is taken to be a
very small perturbation of the parameters of the nominal dynamics. More specifically,
the nominal and perturbed dynamics are, respectively,

0(k+1) = f(O(k), 0(0)=0 €0
pk+1) = flpk),u(k)), ¢0)=¢€®

where f : R” x R™ — R" is differentiable, © C R" is compact, and f(©,0) C ©.
Thus {0 (k) : k > 0} is the desired trajectory and ¢ (k) is the state of the system under
control. The objective is to find a control w such that limy_,« ||¢ (k) — 0 (k)| = 0.
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This paper develops a controller of the form wu (k) = Fyw) (¢ (k) — 0 (k)), where
the feedback Fy is designed from a linearized approximation of f(y,w) around (6, 0),
and the gain Fjy is “scheduled” so as to follow the desired trajectory. The controller
Fy exists if a solution to a functional algebraic Riccati equation (FARE) exists. The
mathematical difficulty with this functional equation is to prove that the relevant
solution is continuous, in which case Fj is continuous.

Typically there is no closed form solution to the FARE. However, dynamical
systems on compact sets, subject to some mild additional conditions, are known to
have such ergodic properties as recurrence, which can be put into use to construct an
approximate solution of arbitrary accuracy.

The proofs of the results in this paper are provided in [1], [3] and [4].

2. CONTROLLING DYNAMICAL SYSTEMS WITH LINEAR DYNAMICALLY
VARYING CONTROL

Consider a slightly generalized version of the problem posed in Section 1:

0(k+1) = £ (6(k),0) + v(k), with 6(0) = 6, (1)

p(k+1)=f(pk),u(k))+wk), with ¢ (0) = @o. (2)
Here we required that v(k) and w (k) are either zero or are small and infrequent
enough with §(k+1), ¢ (k+1) € ©. The purpose of v is to allow the desired
trajectory to occasionally jump from a point on one orbit to a nearby point on another
orbit. The purpose of w on the other hand is to allow for some modeling inaccuracies.

The popular problem of getting ¢ to follow a periodic orbit fits into this framework
by setting v = w = 0 and 0(0) € P(f), where P (f) is the set of periodic points.
However, if the objective is for ¢ to follow an aperiodic orbit, then v = w = 0 and
0(0) e NW(f)\ P(f), where NW (f) is the set of nonwandering points.

The targeting problem also fits within this framework [12], [13]. Initially, the state
is forced to follow a targeting trajectory that originates near the current state, and
ends near a point of the desired orbit. If the system is transitive, such a targeting
trajectory exists. Once the state has reached the end of the targeting trajectory,
a second control is applied to force the system to follow the desired orbit. This
switching of trajectories is accomplished by allowing for occasional small jumps in
0 (k). The exogenous input v accounts for such jumps.

Now we define the tracking error

z(k) = p(k) — (k).
The linear approximation of f (¢(k),u) around ¢(k) = 6(k) and u(k) = 0 yields
z(k+1) = Agwz(k) + Bogwyu(k) (3)
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+n (z(k), u(k), 0(k)) — v(k) +w (k)

where

a=26.0, B=3 00

and

n(z(k), u(k),0(k)) = 7. (z(k),u(k),(0))z(k) (4)
+1u (z(k), u(k), 0 (K)) u(k)

Furthermore, |9, (z,u,0)| and |7, (z,u,0)|| can be made as small as necessary by
limiting the size of v and .

If uw and x are small and v = w = 0, then we can approximate the error dynamics
as

z(k+1) = Awz(k) + Bogyu(k) (5)
0(k+1) = f(0(k)

This is a linear system with coefficient matrices A and B that vary as 6(k) varies.
Since 6(k) varies according to equation (1), system (5) is a Linear Dynamically Vary-
ing (LDV) system.

Our objective is to not only force the tracking error to go to zero asymptotically,
but go to zero uniformly exponentially fast. We distinguish the different forms of
stability as follows.

Definition 1. The linear dynamically varying system (5) is uniformly exponentially
stable if for u(k) = 0, there exist an 0 < o < 1 and a § < oo such that for all §(0) € ©

lz(k)|| < Ba* [|z(0)]].

System (5) is exponentially stable, if for u(k) = 0 and for each 6(0) € ©, there exists
an 0 < a(A(0)) < 1 and a $(6(0)) < oo such that for all z(j) and j < k

l=(k)Il < B(6(0))ax(6(0))" [|lz(5)]] -

In the case of continuous LDV systems, exponential and uniform exponential
stability are equivalent:

Proposition 2. Assume the function A : © — R™*" is continuous and © is compact.
Then exponential and uniformly exponential stability are equivalent.
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Since uniformly exponentially stable systems are inherently more robust than ex-
ponentially stable systems, it is preferable to remain within the confines of continuous
LDV systems. Thus when synthesizing a feedback for controlling a continuous LDV
system, it is important to ensure that the feedback is not only stabilizing, but also
continuous. However, to maintain generality, an LDV system is considered stabiliz-
able if there exists an exponentially stabilizing feedback, that is:

Definition 3. System (5) is stabilizable if there exist a, not necessarily continuous,
function F': N x © — R™ " such that for all 6 (0) € © and for all k, || F'(k,0(0))| <
F(6(0)) < o0, and
a(k+1) = (Ag) + Bo F(k,0(0))) z(k)
(k) = f*(6(0))
is exponentially stable.

Our main result can now be formulated:

Theorem 4. The that system (5) is stabilizable. Then there exists a unique, bounded
solution X : © — R™ ™ such that Xy = X > 0,

Xo= Ay X0 Ao+ 1 (6)
~49X50Bs (I + ByXj0)Bs) " ByX oo + 1
and the feedback
w(k) = —(I+ By XsemyBooy) (7)
X Bo(y X so() Aoy (k)
uniformly exponentially stabilizes system (5). For ||z (0)|| < oo, this feedback mini-
mizes i |z (k)||’and X is a uniformly continuous function.

Conversely, if there exists a bounded solution, X, to equation (6) such that Xy =

Xy > 0, then system (5) is stabilizable and X is continuous. In this case, if X (k, N, )
solves the finite horizon Riccati equation, i.e.

X (k,N,0) = A}k(g)X (k+1,N,0) A (8)

x (1 + Bl X (k+1,N,0) Bfk(g))
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with
X (N,N,0) =1,

then X (0, N,6) — Xy uniformly in 6.

Remark 1. Stabilizability is a rather weak assumption. Indeed, stabilizability merely
assumes that every trajectory is stabilizable. Of course, one could not hope to sta-
bilize every trajectory if some trajectories are not stabilizable. Given this obviously
necessary condition, it is interesting that continuity and compactness are all that is
needed to prove the existence of a continuous and uniformly stabilizing controller.

Remark 2. The continuity of the cost X is counter-intuitive in the case where f is
sensitively dependent on initial conditions. Intuitively, this continuity means that,
although small changes in the initial conditions may lead to drastic changes in the
trajectories, the cost to stabilize these trajectories does not change very much.

Remark 3. Since the LDV controller yields a uniformly exponentially stable LDV
system, the LDV controller will locally stabilize the original nonlinear system (3).
Hence, if || (0) — 6 (0)|| is small enough and the control given by (7) is applied, then
(k) — 0(k) as k — oo where ¢ (k) and 0 (k) is given by (1) and (2) respectively.
Furthermore, if the perturbations w and v are small enough and /or infrequent enough,
then the system remains stable. See [1] for details.

3. EXPLOITING ERGODICITY TO SOLVE THE FUNCTIONAL ALGEBRAIC
RiccaTti EQuATION (FARE)

Solving any function equation is a difficult task. Here we take advantage of different
properties of complicated dynamics to solve the FARE.

3.1. Solving the FARE on a Transitive Orbit. A rather brute force method
is based on the finite horizon approximation of the infinite horizon linear quadratic
control problem. To this end, one simply defines X (0, N,0,) as the solution to the
finite horizon Riccati equation as in (8). It can be shown that X (0, N, 0,) — Xy, as
N — 00, uniformly in 6,. Hence, for N large enough, X (0, N,8,) is a good approxi-
mation of Xy, . Furthermore, if X (0, N, 6,) is known, then X (0, N — 1, f (6,)) is also
known, and if N —1 is large enough, then X (0, N —1, f (6,)) ~ Xy, ,. Similarly, we
compute X (0, N —k, f* (9)) ~ Xyrg,) for k < K where N — K is large. Now, if 0,
is a transitive point, then E = {f*(6,): 0 < k < K} is a &-net, and solving Xy on
E provides a good approximation of X everywhere. It is possible to show that this
approach will only fail if the LDV system is unstabilizable [1].

Remark 4. This method is appealing because all that is needed is a transitive tra-
jectory and Ag and By. The function f does not need to be known.
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3.2. Solving the FARE on Periodic Orbits. It is a generic property of dif-
feomorphisms on a compact set to have a dense set of periodic points [10]. In this
case, since the solution to the FARE is continuous, if we solve the FARE on the
set of periodic points, then we know the solution everywhere. Similarly, if we solve
the FARE on the set of periodic points with period less than N, where N is large
enough, then we approximately know the solution everywhere. It is possible to solve
the FARE on periodic points very efficiently.
Let 6 be a fixed point, i.e., f (§) = 6. Then, by equation (6), we have

Xp = A\ XgAg — Ay XoBy (I + ByXeBs) " ByXpAs + I

This can be written more succinctly as Xy = pg (Xg), where pg : R™*™ — R™*" and
depends on 6.
Similarly, if 8 is a periodic point with period N, we can write

Po © pri(g) © - - prr-1(g) (Xo) = Xo.

Hence, Xy is a fixed point of some map. It turns out that solving the above equation
is equivalent to solving the following invariant subspace problem [6],

N-1
|5 s ]) e <405 ]}
o L O Xo Xo
h ! is th gl f d wh
wnere Xe 1S € Span o .Xg ana wiere

Qp = Ae_la /60 = Ae_lBGBéa
Yo = A;l, (50 = Ie—f— Ag_lBgBé,

This invariant subspace problem can be solved very efficiently [14].
As in the case of solving the FARE along a transitive orbit, one can solve the
FARE along every periodic orbit if and only if the LDV system is stabilizable [1].

3.3. Solving the FARE on Recurrent Set. The previous two methods of solv-
ing the FARE provide some insight into the stabilizability and the relationship be-
tween the stabilizability of different orbits. However, these methods do not necessarily
lead to efficient computationally methods to solve the FARE. The method based on
transitive points has the difficulty that the convergence can be very slow. The method
based on periodic points has the drawback that it is not always possible to exactly
determine the periodic points. Now a method is presented that solves the FARE
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along a segment of a recurrent orbit and does not suffer from these drawbacks. It
should be noted that in many cases (e.g. hyperbolic systems [10]) almost all orbits
are recurrent. Hence, there is no difficulty in determining recurrent orbits.

The approach here is to approximate a segment of a recurrent orbit as a periodic
orbit. Once this approximately periodic orbit in hand, one can solve the FARE along
this orbit using the efficient methods based on periodic orbits discussed above. To be
more specific, define pg : R**™ — R™*™ as above and let 8 € R (f) where R (f) is the
set of recurrent points. Since 6 is recurrent, for 6 > 0 there exists an N < oo such
that HO — fy (0)H < 6. Since X is continuous, for  small enough, HXg - XfN(g)H <e€
and

lpo 0 pr@y © -0 pyv-re) (Xpnie) = Xpwig)|| <&
Therefore, Xy~ ) is "nearly” the fixed point of

po © pprg) 0 pen-1(g) (Y) =Y. (9)
In fact,

Theorem 5. Let 6 be a recurrent point and let € > 0. Then there exists a 6 > 0
and N < oo such that || f¥(8) — 6| < 6 and || Xg — Y|| < € where X solves the FARE
and Y solves (9).

Remark 5. The proof relies on the closing lemma and on the structural stability of
the FARE [3].

Remark 6. This method is appealing because all that is needed is a recurrent tra-
jectory and Ag and By. The function f does not need to be known.

3.4. Jump Linear Approximation. There is a strong connection between LDV
systems and jump linear systems [7]. Jump linear systems are described by

/b (k+1) = Ag&)x (k) + Bg(Lk)u (k)
where o (k) is a Markov chain. It is possible to approximate the LDV system as a jump

linear system as follows: Partition © into a finite set of cells R;, i.e. © = Ufil R;.

For each cell R; choose a point ; € R;. Define AL = A, and B/L = B,.. Define the
A(f(Ri)NR;)
A(R;)
The optimal jump linear controller for a jump linear system is given by u (k) =

Fox (k) where

transition probabilities p; ; = where ) is Lebesgue measure.

~ -1 ~
F, = (1 + B;YUBU) B.Y, A,
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and
Y, = AY, A +1 (10)
~ N -1 N
_A'Y,B, (1 + B(’,Y(,Bg> B.Y, A,

forallo=1,---,N and Y, = Z;VZI Po,;Yj. The equations given by (10) form a set
of coupled Riccati equations whose solution has been extensively investigated in [5].
In [4] it was shown that as max; diam (R;) — 0, the solution to the coupled Riccati
equations (10) approaches the solution to FARE.

4. EXAMPLE

In the following an LDV controller is devised for the Hénon system. The Hénon
{ 0y (k+1) ] _ { fu (0 (k) ,u(
02 (k+1) f2 (0 (k) ,u(
(

system is defined as
k)) }
k))
_ l 1— (a+u(k)) 6 (k)* + 05 (k) }
b61 (k)

with control input u. In this example a = 1.4 and b = 0.3. For these parameters
values, it is known that the Hénon function has an attractor [8]. It is not known
whether the Hénon function is chaotic, but numerical iteration indicates that the
attractor is transitive [11] and hence nonwandering. That is, it has been tested that
for many initial conditions the trajectory enters every e-neighborhood of every point
in the attractor for very small €. Thus we define © to be the attractor.

Define
df —2a0; (k) 1
A = — = 11
BT 40400 [ b0 (1)
_p2
and Bg(k) = ﬁ = 01 (k) .
du o(k),0 0

Since a trajectory that enters every e-neighborhood for small € is easily found, the
FARE may be solved using the methods from Section 3.1 or 3.3. In this way the
function F' : © — R'*2 is obtained and the closed-loop tracking error dynamics (as
discussed in Section 2) is

AR 12)

oo+ ot | 265 [+ [ 10
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Figure 1: Feedback Fy = [ Fy, Fp, } for the Hénon map. This shows that the
feedback is continuous in 6. A plot of the attractor of the Hénon map in the (0y, 65, —6)
plane is included for reference.

where 7 account for the error in linearization.

Figure 1 shows the feedback gain, F', for the LDV system (12). Note that the
feedback is continuous on O, the attractor of the Hénon map.

The objective in this example is to avoid a region around a fixed point of the
Hénon map. The fixed point has an unstable and a stable eigenvalue. Furthermore,
computer simulations show that any open set containing the fixed point is visited
infinitely often by a generic orbit [11], hence infy, || f* (¢ (0)) — Ofigeq|| = O for most
¢ (0).

Since the Hénon map is ergodic and has sensitive dependence on initial conditions,
a small control force will have a noticeable effect on the state only after a number
of iterations. Therefore, to avoid the fixed point, the control must be applied well
in advance to the state entering the forbidden region around the fixed point. How-
ever, accurately predicting the future state of a system with complicated dynamics
is difficult. Thus, a compromise is made, and control is applied only if the state is
predicted to enter the forbidden region around the fixed point in L iterations or less.

To be more specific, the objective is

Y (k) ¢ FB:=B (afimed7 RToo_Close) for all k,

where B (0 fized, Rroo_close) is the open ball around 6;zeq. Define [* = min {l c (ko) € f7 (FB)} )
If I* < L, then the control is initiated. The control is determined by finding a 6, € ©
such that [|6, — ¢ (k,)| < Rcapture and when ¢ (k, + 1) is controlled to track f*(6,),
llo (ko + 1) — Ofizeall > Rroociose for I < L. By careful choice of Rroociose and L, the
existence of such a 6, can be guaranteed.

In this example Rroo_ciose = 0.01, Regpture = 0.0005 and L = 20. Note that
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Figure 2: Avoidance: The first element of the state, ¢y, of the controlled (solid line),
the uncontrolled (dotted line) and fixed point (dashed line) of the Henon map is
shown. At time k = 0, it is determined that unless control is initiated, ¢ (20) will
enter the forbidden region around the fixed point. Therefore, at & = 0 control is
applied to keep ¢ from entering the forbidden region. At & = 20, ¢ is far from the
fixed point and control is terminated. Note that at £ = 20 the uncontrolled trajectory
is very close to the fixed point.

Rcapture is very small; this leads to a very small control force. The ability to control
with very small control force is specific of control of systems with sensitive dependence
on initial conditions. Figure 2 shows the trajectory of ¢; when control is applied,
when control is not applied, and the fixed point.

5. (CONCLUSION

Linear Dynamically Varying controllers for nonlinear dynamical systems running over
compact sets have been developed. These controllers are useful for tracking periodic
and aperiodic orbits. The necessary and sufficient conditions for the existence of such
controllers are rather weak and are equivalent to the existence of a positive semi-
definite solution to a functional algebraic Riccati equation (FARE). If the dynamical
system has adequate ergodic properties, there are many techniques for computing the
solution to the FARE.

The continuous-time counterpart of the present approach, with special emphasis
on the differential-geometric features inherent to a dynamical system running over a
manifold, is available in [9]. The H*™ counterpart is available in [2].
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