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Abstract—By posing the problem of bandwidth allocation as a
constrained maximization problem, it is possible to study various
features of optimal bandwidth allocation, and hence the capacity
of the network. However, since the typical approach to this
problem requires optimizing over a space that is exponential
in the number of links, the problem has appeared to be
computationally intractable for all but small networks. In this
paper, the problem of computing optimal bandwidth allocation is
examined and a new approach is presented. While the resulting
allocation cannot be guaranteed to be optimal, we find that in the
networks where checking optimality is computationally feasible
(i.e., networks with fewer than 23 links), the performance of the
found allocation is indistinguishable from the optimal allocation.
In essence, the proposed iterative scheme focuses on the space of
useful bandwidth allocations. The Lagrange multipliers are used
to find useful allocations.

I. INTRODUCTION

The capacity of multihop wireless networks has been the
subject of intense research ([1], [2], [3], [4], [5]). There is ex-
tensive motivation for this research. For example, in the mesh
network setting, determining capacity is useful for network
planning. Also, routing and capacity are closely related, and
hence, the performance of routing protocols can be greatly
improved if the capacity that results from a particular routing
can be determined. The optimal capacity provides an upper
bound on heuristic techniques, and provides a means to judge
the quality of the heuristic. Also, there is theoretical interest
in capacity; for example, there has been interest in how the
capacity varies as a function of the number of nodes [6].

Generally, there have been two approaches to maximize
the capacity of a wireless network, namely, a heuristic-
based approach and an optimization-based approach. In the
optimization-based approach, which is the focus of this paper,
an objective function is defined and this objective is maxi-
mized subject to the constraints imposed by interference. For
example, it is common to define an objective function to be a
concave increasing function of flow rates; this function is often
referred to as a utility function and it can be shown that max-
imizing such functions results in fairness among flows ([7],
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[8], [5]). This paper focuses on this class of problems. Other,
non-utility-based approaches include [3], which minimizes a
linear function of transmission powers subject to a link bit-
rate constraint and other constraints imposed by interference.
A different capacity problem is related to maximizing an
objective function when the traffic demands are stochastic [9].

A critical problem with the optimization-based approaches
is that the resulting problem is computationally difficult, if not
intractable. More specifically, in order to maximize capacity,
the optimal allocation of resources must be determined. This
allocation is defined by a schedule that dictates when links
transmit and at which frequencies and powers they transmit.
However, the space of schedules is extremely large. For
example, if power control is not used, then one must maximize
over a polytope with 2L extreme points, where L is the
number of links. More specifically, we define an assignment
to be a specification of which links are transmitting and
which links are not transmitting. A schedule is the convex
sum of assignments; hence the assignments are the extreme
points of the space of schedules. If power control is not
used, then the space of assignments contains 2L elements.
If power control is used, then an assignment specifies not
only which links are transmitting, but also the transmission
power. In this case1, the space of assignments is [0, 1]L. If
one attempts to approximate this continuous space with a
discrete grid such as {0, 0.33, 0.67, 1}L, then the space has 4L
elements. To comprehend the size of 2L, consider a network
with only 88 links, which is far smaller than the mesh networks
being deployed throughout the world. However, 288 nsec is
the approximate age of the universe. Hence, it is intractable to
even initialize the problem. Due to the exponential dependence
on the number of links, after considerable reduction of the
problem, [3] reports being unable to compute the optimal
schedule for a network with more than 15 links.

This paper focuses on the optimization-based approach,
however, in order to make the problem tractable, the size
of the space of assignments is reduced. Through exhaustive
search, we find that if power control is not permitted2, then
the proposed technique determine schedules that are either

1It is important to note that in some scenarios, it can be proved that power
control is not required. Hence, if one considers power control, the space over
which the optimization is performed still only has 2L elements. See [3] for
details.

2Exhaustive search is not tractable when power control is permitted.
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Algorithm 1 Estimate of network capacity
0: Select an initial set of assignments to consider.
1: Given a set of considered assignments, optimize the
utility.
2: Use the Lagrange multipliers found in solving the
optimization in Step 1 to form a linear test.
3: Search for an assignment that satisfies this linear test.
if an assignment is found then

add it to the set of considered assignments and go to
Step4.

else
if no assignment exists that satisfies the linear con-
straints, then stop, the optimal solution has been found.

end if
4: Remove any redundant assignments within the space
of considered assignments. Then go to Step 1.

optimal, or nearly optimal (e.g., within 0.5% of optimal).
There are two key theoretical results that underpin this

approach.
• While the optimization may be performed over a space

with 2L assignments (if power control is used, the space
is [0, 1]L), the optimal solution is the combination of
no more than L assignments. Therefore, if these L
assignments were somehow known in advance, then the
optimization could be performed over a space with L
assignments and the result would be identical to the one
found by optimizing over the space of all assignments.

• Guided by this result, we focus on searching for these
special L assignments. This search is greatly aided by
a linear test that the unknown special assignments sat-
isfy. This linear test is a by-product of performing the
optimization over an arbitrary set of assignments.

Algorithm 1 implements these ideas.
An important contribution of this paper is that the central

challenge of the problem of computing the optimal schedule
is not the optimization, which is performed in Step 1, rather,
the main difficulty is Step 3, finding an assignment that passes
the test constructed in Step 2.

One approach to Step 3 is to perform an exhaustive search.
If power control is not used and the network is relatively small,
then exhaustive search can be performed. In this case, the lack
of existence of an assignment that passes the linear test found
in Step 2 can be verified, and hence it is possible to guarantee
the optimality of the schedule, and hence the capacity of the
network can be determined. However, such an approach is
only tractable when power control is not used and when the
network is relatively small (e.g., less than 23 links). In this
case, some other search methods must be used.

This paper presents several methods to search for assign-
ments that pass the linear test. One approach reduces to
searching for the maximum weighted stable set (MWSS) on
an adapted contention graph. To estimate the MWSS, an algo-
rithm developed by Kako et al [10] is employed. Along with

searching for a MWSS, other techniques are used to search
for an assignment. Section VII examines the performance of
these search methods when an exhaustive search is tractable.
It is found that if the proposed search techniques fail to find an
assignment, then either the exhaustive search fails to find an
assignment (i.e., the schedule is optimal), or the assignments
found through the exhaustive search have only a marginal
impact on the performance. Thus, the techniques presented
here constitute a tractable algorithm that finds the optimal or
near optimal schedule.

The remainder of the paper proceeds as follows. In the
next section, the system model and notation are presented.
The optimization performed in Step 1 of Algorithm 1 is
discussed in Section III and the computational details are
explained in [11]. The details and justification for the linear
test are explained in Section IV. Section V describes methods
to search for new assignments. Section VII presents the results
of numerical experiments. We note that these experiments
are based on ray-tracing based propagation models of urban
mesh networks [12], hence, the results are applicable to the
mesh networks currently being deployed. Finally, Section VIII
provides some concluding remarks.

This paper is focused on computing capacity. The approach
discussed is centralized. Decentralized version of the compu-
tation is outside the scope of this paper.

An implementation of the algorithms presented is available
online [13]. Due to space limitations, proofs and some algo-
rithmic details cannot be included in this version, but can be
found in the extended version [11].

II. NOTATION AND SYSTEM MODEL

Let fφ be the flow rate of flow φ. The techniques presented
can easily be extended to the case where the flow φ is divided
among several paths, each with rate fkφ . However, to reduce
notational clutter, we focus on the single path case. Let wφ

be the utility weight for flow φ. The objective considered in
this paper is to maximize the utility,

P
φ∈ΦwφU (fφ), where

Φ is the set of all flows, and U is a concave increasing
utility function. While a wide range of functions meet these
conditions, to make the presentation more concrete, we will
focus on U (f) = log (f), but this approach can be extended
to any smooth concave increasing U . Let P (φ) denote the
set of links that flow φ traverses. Hence, to support flow rates
{fφ}, the bit-rates for link l must exceed

P
{φ:l∈P(φ)} fφ.

Define an assignment to be a vector v =
£
v1 · · · vL

¤
,

where vl ∈ [0, 1], indicating the transmission power of link l
and vl = 0 implies that link l is not transmitting, and there
are L links in the network. If power control is not permitted,
then vl ∈ {0, 1}. For a particular assignment, we get a vector
of link bit-rates r, via,

rl = log2

Ã
1 +

Hl,lvlP
k 6=lHk,lvk +N

!
, (1)

where N is the thermal noise and Hk,l is the normalized
channel gain from the transmitter of link k to the receiver
of link l. Hence, Hl,l is the channel gain over link l, and
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Hj,lvj is the strength of the interference from the transmitter
of link j to the receiver of link l. H is normalized so that
the full transmission power is achieved by vl = 1. Due to the
close connection between an assignment and the link bit-rates
that result from the assignment, we refer to both v and r as
assignments with the implicit understanding that r is the set of
link bit-rates that arise from the assignment v. Similarly, if V is
a set of assignments, we let R denote the set of vectors of link
bit-rates that result from the assignments in V . Specifically,
we denote the bit-rate of link l when assignment v is used as
R (v, l).

While it is common to use TDM scheduling, here a FDM
scheme is used. As in the TDM case, a FDM schedule is a
convex sum of assignments. Specifically, the total bandwidth
is divided into slices and each assignment used is allocated a
slice of bandwidth. The width of the bandwidth slice allocated
to an assignment depends on the schedule. For example, let r
be the vector of link rates when the assignment v is used,
and s be the link rates when the assignment w is used.
Then, 0.5r + 0.5s is the bandwidth assignment where the
assignment v is applied to the lower half of the bandwidth, and
w is applied to the upper half of the bandwidth. To enhance
succinctness, we may sometimes refer only to the assignments,
hence, a schedule may be written 0.5v + 0.5w. Specifically,
letting V be a set of assignments under consideration. Then
a schedule may be written as

P
v∈V αvv with

P
v∈V αv = 1

and αr ≥ 0. In this case, the vector of link bit-rates achieved
is
P

v∈V αvR (v, :) , where we use the notation R (v, :) to
denote the row vector of link bit-rates that result from using
the assignment v.

We do not allow assignments to have a node simultaneously
transmitting and receiving on the same slice of bandwidth.
However, by scheduling multiple assignments, we permit a
node to simultaneously transmit and receive over different
slices of bandwidth. Note that 802.16 also allows nodes
to simultaneously transmit and receive over different slices
of bandwidth. Also, a practical implementation of a FDM
schedule would require a multiple carrier approach; in fact,
many physical layers employ multiple carriers.

III. PROBLEM FORMULATION AND LAGRANGE
MULTIPLIER-BASED SOLUTION

The techniques developed are based on Lagrange Multiplier
Theory (e.g., see [14]). While Lagrange Multiplier Theory
for optimizing networks has been extensively examined in
the literature (e.g., [7], [15], [16]), the techniques developed
here are based on insights into Lagrange Multiplier Theory,
and hence, further examination is required. Specifically, as
mentioned above, the Lagrange Multipliers form a linear
constraint on the set of assignments that will increase the
utility. On the other hand, this problem has been well studied
and is relatively straightforward, so we neglect issues related
to existence of a unique solution, regularity, etc.

As mentioned above, and as is common throughout the
research literature, we focus on maximizing the utility. Specif-

ically, we seek to solve

min−
X
φ∈Φ

wφ log (fφ) (2)

subject to:
X

{φ:l∈P(φ)}
fφ ≤

X
v∈V

αvR (v, l) for all l

X
v∈V

αv = 1, αv ≥ 0.

In order to solve this problem, define the Lagrange function

L (f, α, µ, λ)=−
X
φ∈Φ

wφ log (fφ) + λ

ÃX
v∈V

αv − 1
!

+
LX
l=1

µl

 X
{φ:l∈P(φ)}

fφ −
X
v∈V

αrR (v, l)

 . (3)

After some manipulations, the dual function is found to be

q (µ, λ) = inf
f,α≥0

−
X
φ∈Φ

log (fφ)wφ − λ

+
LX
l=1

µl
X

{φ:l∈P(φ)}
fφ −

X
v∈V

αv

Ã
LX
l=1

R (v, l)µl − λ

!
.

We immediately note that if
PL

l=1R (v, l)µl−λ > 0 for some
v, then q (µ, λ) = −∞. Hence, we restrict the domain of q,
to be such that

PL
l=1R (v, l)µl − λ ≤ 0. On the other hand,

when solving the dual problem, an objective is to maximize q
with respect to λ. It is not hard to see that this is equivalent
to minimizing λ over the domain

PL
l=1R (v, l)µl − λ ≤ 0.

Thus,

λ∗ = max
v∈V

LX
l=1

R (v, l)µl. (4)

Therefore, we can rewrite the dual function as3,

q (µ) = inf
f≥0
−
X
φ∈Φ

log (fφ)wφ (5)

+
LX
l=1

µl
X

{φ:l∈P(φ)}
fφ −max

v∈V

LX
l=1

R (v, l)µl,

where αv has been eliminated since λ∗ results in the infimum
being achieved for αv = 0.

We denote µ∗ as the solution to the dual problem, i.e.,

µ∗ = argmax
µ≥0

q (µ) . (6)

The problem of computing µ∗ is addressed in [11]. Briefly,
while the term maxveV

PL
l=1R (v, l)µl results in q being

undifferentiable for some µ, subgradient techniques can be
employed. Specifically, the dilation technique [17], which is
similar to the conjugate gradient approach, can be used to
efficiently compute µ∗. (An implementation is available online
[13]). Therefore, as mentioned above, the central challenge is

3There are other, more straightforward ways to arrive at (5). However, these
methods do not provide the important expression (4).
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not to solve (6), but to reduce the size of V . Before examining
this problem, a few observations can be made.

It is important to note that there may be several assignments
v ∈ V that achieve maxv∈V

PL
l=1R (v, l)µl. Define V ∗ (µ)

be the set of such assignments, i.e.,

V ∗ (µ) :=

(
v :

LX
l=1

R (v, l)µl = max
v∈V

LX
l=1

R (v, l)µl

)
. (7)

Applying the economic interpretation of the Lagrange frame-
work, µ is the link price per bit, hence,

P
{l:vl=1}R (v, l)µl

is the revenue generated by the assignment v. In order to
maximize revenue, only assignments v ∈ V ∗ (µ) are utilized.
At optimality, V ∗ (µ∗) typically contains several assignments.
We refer to these assignments as active assignments. Next,
we show that the active assignments are important for solving
the optimization (2). Later, we use the active assignments to
search for a better assignment.
Proposition 1: Given µ∗, the link costs that solve the dual

problem, the optimal schedule can be found by solving the
following linear programming problem

min
X
v∈V ∗

αv (8)

subject to:
X

{φ:l∈P(φ)}

wφP
{m:m∈P(φ)} µ∗m

≤
X

v∈V ∗(µ∗)
αvR (v, l) for each l

αv ≥ 0
Remark 2: We will soon see that V ∗ has no more than L

elements. Hence, (8) is a low dimensional linear programming
problem.

IV. CONSIDERED ASSIGNMENTS

A. Introduction
The problem above suffers from the drawback that the set of

all assignments, which we denote by V ∗∗, has 2L elements if
power control is not permitted, and is [0, 1]L if power control
is allowed. While obvious assignments can be eliminated (e.g.,
a node simultaneously receiving and transmitting on the same
slice of bandwidth), the size of the set of all reasonable
assignments is very large and results in the problem being
intractable. One approach is to reduce the size of V . Indeed,
under a slightly different problem formulation [18] follows
this approach. We refer to this reduced set of assignments as
the set of considered assignments. The two key questions are
1. what is the impact on the value of (2) when a reduced set
of considered assignments is used, and 2. how can the set of
considered assignments be constructed so that the value of (2)
with the reduced sized V is the same as or is near to the value
when V contains all possible assignments? The answer to the
first question is provided next, and much of the rest of the
paper is devoted to this second question.
Theorem 3: There exists Ṽ with L assignments such that

the solution to (2) with V replaced with Ṽ yields the same
solution if V is replaced with the V ∗∗.

This result, which follows from Caratheodory’s Theorem
(e.g., Theorem B.6 in [14]), implies that the optimal schedule
can be found by considering a set, Ṽ , that is relatively low
small. To emphasis the reduction in the size of V , consider
L = 88, then #V ∗∗ = 288, and #Ṽ = 88, where the first
problem is obviously intractable, while the second can be
solved with limited computational effort. Clearly, the key to
computing the optimal schedule is determining the set Ṽ .

B. Evaluating Candidate Assignments
A brute force approach to constructing a good set of

assignments is to start with a particular set of assignments, V ,
select an assignment v+ /∈ V , and evaluate the resulting utility
with the set of assignments v+ ∪ V . However, this approach
is computationally complex in that (2) must be repeatedly
solved. Furthermore, it is not clear if the utility of v+ is only
apparent when it is added to V along with a particular set of
other assignments. Next a technique is provided to efficiently
determine whether an assignment should be added to the set of
considered assignments. Other aspects of determining a good
set V include selecting the initial set V 0, selecting which
v+ /∈ V to consider, and removing assignments from V . These
issues are addressed in sections VI, V, and IV-C, respectively.

The question of whether an assignment v+ /∈ V will
increase the utility when the set of considered assignments
is changed from V to v+ ∪ V is answered by the following
theorem.
Theorem 4: For the set of assignments V , let µ∗ and λ∗ be

the optimal values of the multipliers when (2) is solved with
this V . Now consider an assignment v+ /∈ V , where the link
bit-rates provided by v+ is r+ (by applying (1)). Then, the
utility provided by v+ ∪V is greater than that provided by V
if

r+µ∗ − λ∗ > 0. (9)
Corollary 5: If there is no assignment in V ∗∗ such that

r+µ∗−λ∗ > 0, then Ṽ ⊂ V , that is, the optimal schedule has
been found.
Corollary 6: Let µ and λ denote the multipliers found when

solving (2) with the set of considered assignments V , and
suppose that V ∗, which is defined by (7), has exactly L
elements and is such that no element is in the convex hull of
the other elements. Then the optimal schedule, r∗∗, satisfies
r∗∗µ ≥ λ.

Theorem 4 provides the main tool for constructing a good
set of assignments. Figure 1 provides a geometric view of
Theorem 4. Several comments are in order.
• Under a slightly different problem formulation, [18]

considered arbitrarily adding assignments to the set of
considered assignments. Theorem 4 provides a more
sophisticated technique to decide whether assignments
should be added.

• In the proof of Theorem 4, it is seen that a linear
approximation of the improvement of utility is given by
r+µ∗ − λ∗. Hence, the larger r+µ∗ − λ∗, the larger
the expected improvement in the utility. Therefore, if
several suitable assignments are found, it is reasonable
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Fig. 1. A geometric view of the optimal scheduling problem. The above
shows the region of bit-rates, where we assume that there are only two links,
and hence the space of bit-rates is the plane. The Lagrange multipliers found
from optimizing over the set of considered assignments divides the space of
bit-rates, r, into two regions, according to whether rTµ < λ or rTµ >
λ. The active assignments and the schedule found by optimizing over the
considered assignments are on the boundary of this division. An assignment
will only improve the performance if rTµ > λ. The goal is to find the two
desired assignments. The optimal schedule is a convex combination of these
assignments.

to only add the assignment that maximizes r+µ∗ − λ∗.
Through numerical experiments, Section VII confirms
this relationship between r+µ∗−λ∗ and the improvement
in utility.

• Corollary 5 provides a means to determine whether the
current schedule is optimal. However, its practical impli-
cation is moderate since verifying that (9) does not hold
for any assignment in V ∗∗ requires iterating through all
possible assignments, which, if power control is not used,
has complexity O

¡
2L
¢
. On the other hand, evaluating (9)

can be performed quickly, and hence an exhaustive search
of V ∗∗ for moderate sized networks (e.g., with fewer than
23 links) is feasible. Also, it is far easier to evaluate
(9) 2L times than it is to solve (2) with V containing
all 2L elements. Note that if L is 15, it takes about
two minutes to evaluate (9) 2L times, whereas, under
a slightly different problem formulation, [3] developed a
method that was unable to compute the optimal schedule
for a network with more than 15 links.

• Step 2 in Algorithm 1 is now justified.

C. Removing Assignments from the Set of Considered Assign-
ments

The chief goal of this approach is to solve problem (2),
where V is a small set of assignments. The motivation of this
is that if V is small, then (2) can be solved quickly. However,
as more assignments are added to V , then its size will grow,
defeating this goal. Thus, it is useful to remove assignments
if they are guaranteed to never be used as active assignments.
To see how this is done, suppose that V , the set of considered
assignments, yields a set of considered link bit-rates, R, and
let r be an element in R. Then, to see if the assignment r can
be removed from R, we check whether

r ∈ interior of Co (R\r) , (10)

where Co (R\r) is the convex hull of R\r and R\r is the set R
with r removed. If (10) holds, then the link bit-rates achieved

by r can also be achieved by using a set of bit-rates in R\r.
Hence, the assignment r can be removed without impacting
Co (R). Figure 1 illustrates a redundant assignment that can
be removed.

From Theorem 3, we know that the optimal vector of bit-
rates is the convex sum of no more than L assignments.
Similarly, the vector of bit-rates that solves (2) for any set
of assignments is also the convex sum of no more than
L assignments. Therefore, the set of active assignments,
V ∗ (µ∗) , should contain no more than L elements. If V ∗ (µ∗)
does contain more than L elements, then there must be
some redundancies in the set of considered assignments, and
hence some assignments can be removed. Hence, Step 4 in
Algorithm 1 checks whether#V ∗ (µ∗) > L or if more than 10
assignments have been added to V since the last time a check
for redundant assignments was performed. If either of these
conditions is true, a check of redundancy in the considered
assignments is performed.

Determining if (10) is true for some r ∈ R can be
determined by solving a linear programming problem. Hence,
a check for redundancy requires solving #V LP problems.
See [13] for details.

V. CONSTRUCTING THE SET OF CONSIDERED
ASSIGNMENTS

Theorem 4 shows how to decide whether the addition of
an assignment into the set of considered assignments might
improve the performance. Unless the network is relatively
small, it is not possible to iterate through all possible assign-
ments in search of one that obeys (9). Here, several techniques
are described that search for assignments that satisfy (9).
These techniques cannot guarantee to find the best assignment,
and hence, if they fail to find any assignment that improves
the performance, it does not imply that the current schedule
is optimal. Section VII examines the performance of these
methods.

A. The Case Where Power Control is Not Permitted
1) Maximum Weighted Stable Set and an Adapted Con-

tention Graph : In [18], it was shown how contention due
to interference could be represented with a contention graph.
Here, the contention graph is extended to support multiple
bit-rates. Then, it is shown that finding an assignment that
improves the performance is the same as finding the max-
imum weighted stable set (see below for a definition) over
the contention graph. We apply a well known algorithm for
estimating the maximum weighted stable set. However, there
are a large number of techniques to approximate, or perhaps,
solve the maximum weighted stable set problem (e.g., see [19]
and references therein).

a) Weighted Adapted Contention Graph: A contention
graph is formed by representing a link that transmits at a
particular bit-rate with a vertex. From (1), it is clear that in
order to achieve a particular bit-rate we require that the noise
and interference must be small enough. In fact, even if there
is no interference, due to thermal noise, some bit-rates are not
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link C
bit-rate=1

weight=µ(C)
link C

bit-rate=2
weight=2µ(C)

link B
bit-rate=1

weight=µ(B)
link B

bit-rate=2
weight=2µ(B)

link B
bit-rate=4

weight=4µ(B)

link A
bit-rate=1

weight=µ(A)
link A

bit-rate=2
weight=2µ(A)

link A
bit-rate=4

weight=4µ(A)

Fig. 2. Contention graph. Link A is unable to transmit at 2 or 4 bps if
link B is transmitting. However, link A may transmit at 1 bps if link B is
transmitting. On the other hand, link B cannot transmit at 4 bps if link A
is transmitting or if link C is transmitting. Link C is unable to transmit at 4
bps even if no other links are transmitting, so this vertex is not included. The
edges between vertices representing the same link are not shown.

feasible. A bit-rate that cannot be achieved even when no other
links are transmitting is not included in the contention graph.
On the other hand, some bit-rates can be achieved only if some
links are not transmitting. For example, if link A is unable
to transmit at 4 bps if link B is transmitting, then edges are
drawn between the vertex that represents link A transmitting
at 4 bps and the vertices that represent link B transmitting at
any bit-rate. See Figure 2 for an example. Since we assume
links are not able to transmit simultaneously at two bit-rates
over the same bandwidth, there are edges between all vertices
that represent the same link. To reduce clutter, these edges are
not shown in Figure 2.

Referring to Figure 2, link A is able to transmit at 1 bps even
if link B or link C is transmitting. What is not captured by the
contention graph is the possibility that link A is not be able to
transmit at 1 bps if both links B and C are transmitting. The
adapted contention graph is better at capturing this effect. An
adapted contention graph is adapted to a given assignment.
The adapted contention graph is made in the same way as
the non-adapted version, but the bit-rates that a link can
achieve take into account the links that are transmitting in
the given assignment. For example, if link C is selected to be
transmitting in the given assignment, and link A is not able to
transmit at 1 bps if both B and C are transmit, then an edge
is drawn between link A at 1 bps and link B at all bit-rates.

Finally, a weighted adapted contention graph applies the
weight µ (l)×b to the vertex that represents link l transmitting
at b bps, where µ is given by (6).

In order to construct a contention graph, a discrete set of link
bit-rates must be selected. This is done as follows. Given the
set of considered assignments, determine the range of bit-rates
at which a particular link transmits. The contention graph is
formed by including a vertex for each of these bit-rates, as well
as for these bit-rates divided by two and multiplied by two.
However, if noise or interference from the given assignment
results in some bit-rates not being feasible, the bit-rate is
reduced to a value that is feasible.

b) Maximum Weighted Stable Set and Kako’s Algorithm:
An assignment is a selection of links that transmit simultane-
ously. A link bit-rate can be achieved if the vertex representing
the bit-rate does not have any neighbors in the contention
graph that are also transmitting. Therefore, an assignment and

the bit-rates achieved by the assignment can be represented by
a selection of vertices such that no vertex in the selection is a
neighbor of another vertex in the selection. Such a selection is
known as a stable set or an independent set. Now, the revenue
generated by the assignment/bit-rate combination is given byPL

l=1 r (l)µ (l) which is the sum of the vertex weights of
the selected vertices. Therefore, the goal of finding a good
assignment is the same as finding a stable set with maximum
total weight. This problem is the maximum weighted stable
set problem.

Extensive research has focused on the maximum stable
set, and its dual, the maximum clique. In general these
problems are NP-hard, however, in specialized cases (e.g.,
perfect graphs) they can be solved in polynomial time [20].
Here we apply a technique to find a good weighted stable set
developed by Kako et al [10]. Kako’s algorithm is a greedy
algorithm and is as follows.

For each non-selected vertex, compute the weighted degree,
which is defined as the sum of a vertex’s neighbors’ weights
divided by the vertex’s weight. Hence, a vertex has a small
weighted degree if its weight is large and it has only a few
neighbors and/or its neighbors’ weights are small. Once the
weighted degrees are computed, the vertex with the smallest
weighted degree is selected, and all of the selected vertex’s
neighbors are removed from the graph. The process is repeated
until there are no vertices left in the graph. The performance
of Kako’s method depends on the inductiveness of the graph,
see [10] for details.

We propose two ways to use Kako’s algorithm. First, we
form a contention graph and apply Kako’s algorithm, we refer
to this method as Simple Kako. Alternatively, once a vertex is
selected, the adapted contention graph is reformed, reflecting
the impact that the selected links have on the other link bit-
rates. We refer to this method as Adapted Kako. Section VII
shows that Adapted Kako provides the best performance.
2) Modifying Existing Assignments: A straightforward way

to construct new assignments is to make small changes to
a currently considered assignment. For example, for each
assignment, the state of a single link could be changed (i.e., the
link could be switched from transmitting to not transmitting
or vice versa). Rule (9) can be applied to determine whether
the new assignment provides better performance. One could
also consider allowing the state of two or more links to be
changed. However, the performance of such extensions was
not investigated. The reader is referred to [13] for further
details on modifying the existing assignments.

B. The Case Where Power Control is Permitted
When power control is allowed, a link is not merely turned

on or off, but its transmission power may vary. Nonetheless,
the techniques described above can be extended to the case
where power control is permitted. Specifically, an adapted
contention graph can be constructed in a fashion similar to
what is described in Section V-A.1. The only difference is that
a vertex represents a link transmitting at a particular bit-rate
and with a particular transmission power. Figure 3 illustrates
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bit-rate=1
power=1

weight=µ(A)

link A
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power=1

weight=µ(A)
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bit-rate=1
power=0.5

weight=µ(A)

link B
bit-rate=2
power=1

weight=2µ(A)
Fig. 3. Contention graph with power control.

this graph. In Section V-A.1, it was noted that the bit-rates that
are included in the contention graph are related to the bit-rates
that are found in the set of currently considered assignments.
We take the same approach with transmission powers, i.e., we
include vertices that represent transmission powers that are
twice and one half of the transmission powers found in the
set of currently considered assignments4. Kako’s algorithm can
then be applied to this contention graph as described above.

It is also possible to modify the assignments found in the
currently considered set of assignments. Specifically, note that
(9), the rule to determine whether an assignment will improve
the utility, can be written as G (v) > λ where

G (v) :=
LX
l=1

µ (l) log2

Ã
1 +

H (l, l) v (l)P
k 6=lH (k, l) v (k) +N

!
,

and where v (l) is the transmission power of link l. Hence,
a new assignment can be found by maximizing G, and if
maxv∈[0,1]L G (v) = λ, then the optimal schedule has been
found. Unfortunately, G is difficult to maximize; it has many
local maximums. Nonetheless, by selecting an initial condi-
tion, v0, one can apply steepest ascent to find a local maximum
of G. Therefore, the performance of an assignment can be
improved by using this assignment as an initial condition to
steepest ascent.

Since active assignments provide the best performance (i.e.,
for these assignments rµ = λ), it is sensible to maximize
G by using an active assignments as the initial condition.
If the maximization fails to find a better assignment (i.e.,
the active assignment is a local maximum of G), then all
considered assignments can be used as initial conditions for
the maximization.

At the expense of exponential computational complexity, a
more thorough search is achieved by trying each of the 2L
initial conditions v0 that has each link transmitting at either
full power or not transmitting at all. While such a search is
more thorough, unlike the case where transmission power is
fixed, we cannot guarantee that if such a search fails to produce
a better performing assignment, then the current schedule is
optimal. Clearly, further work in this area is required.

VI. INITIAL ASSIGNMENTS AND PAIR-WISE
COMPATIBILITY

Through numerical experiments, we have found that the
initial set of considered assignments has a significant impact
on the number of iterations until no new assignments can

4Of course, the transmission power is not permitted to exceed 1.
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Fig. 4. Nine block region of Downtown Chicago. The base stations are
displayed as triangles and the mesh nodes are circles. The buildings are shown
as rectangles.

be found. Two types of initial assignments are used. First,
assignments that have a single link transmitting are included.
Second, assignments composed of links such at any pair
of links that are turned on in the assignment are pair-wise
compatible.

To understand this pair-wise compatibility, consider two
links, a and b. Let Ra

a be the bit-rate across link a when only
link a is transmitting, and let Ra,b

a be the bit-rate across link
a when both links are transmitting. We say that links a and b
are pair-wise incompatible if there exists an 0 ≤ α ≤ 1 such
that Ra,b

a < αRa
a and Ra,b

b < (1− α)Rb
b, that is, the same bit-

rate that is achieved by a and b simultaneously transmitting
can be achieved by correctly multiplexing between the two
links individually transmitting. Hence, the assignment where
a and b simultaneously transmit should never be consider.
Interestingly, the pair-wise incompatibility of a, b and c does
not imply that the assignment where all three links transmit
simultaneously should not be considered. Hence, pair-wise
compatibility only provides a partial view of compatibility.

The second set of initial assignments is constructed in
a greedy way such that all links that are turned on in an
assignment are pair-wise compatible. Details of the greedy
selection do not seem to impact the quality of the initial set
of assignments, and hence for details on the algorithm, the
reader is referred to [13].

VII. NUMERICAL EXPERIMENTS

In order to gauge the performance of the proposed algo-
rithm, we examine the utility of a part of an urban mesh
network. Specifically, Figure 4 shows the 9 block region of
downtown Chicago. The mesh nodes are indicated in the
figure. Ray tracing was performed to determine the channel
gain between the mesh nodes (See [12] for details). In order to
examine the performance, various randomly selected networks
were generated. In each case, there was a single base station
that was selected at random from the base stations marked
with triangles. Then, a random set of destinations was selected.
However, only one destination was selected form each block;
hence, no more than 24 destinations were selected. Finally, the
number of destinations was varied so that the total number of
links in the randomly generated topologies ranged from 14 to
22. Approximately 200 topologies were examined.

We first focus on the case where power control is not used.
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Fig. 5. Examples of the variation of utility as new assignments are considered.
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Fig. 6. The left-hand frame shows the distribution of the ratio of the average
flow rate after adding assignments until the proposed search methods found
no new assignments and the average flow rate the was determined from
the initial set of considered assignments. The upper right frame shows the
ratio of the average flow rates found from exhaustive search and the average
flow rates after adding assignments until the proposed search methods found
no new assignments. The lower right frame shows the probability that the
exhaustive search finds a better assignment. Power control was not used in
this experiment.

Figure 5 shows a set of typical variations in the utility as
a function of the iterations. Note that in all cases, no new
assignments could be found after 15 iterations. The left frame
in Figure 6 shows a histogram of the difference between
the initial flow rates found by optimizing over the initially
considered assignments described in Section VI, and the final
flow rates once no more new assignments could be found.

The upper right frame in Figure 6 shows the ratio of the
flow rates found after no more assignments could be found and
the flow rates after an exhaustive search was performed. Note
that the exhaustive search increases the flow rate by no more
than a few tenths of a percent. We conclude that the methods
described in this paper are able to find good assignments
in the sense that an exhaustive search results in a minor
improvement in performance. On the other hand, the search
methods typically do not find the best assignment. To see this,
consider the lower right frame in Figure 6, which shows the
probability that the exhaustive search finds an assignment that
provides an improvement in performance. Figure 6 shows that
for the probability of finding a better assignment through ex-
haustive search typically exceeds 0.5. Therefore, these results
support the conclusion that the proposed method either finds
the optimal schedule (this occurs with a probability between
0.5 and 0.25), or finds a schedule that is nearly optimal.

The rule for adding assignments is rµ − λ > 0. From the
proof of Theorem 4, it can be seen that the difference rµ− λ
is a linear approximation of the improvement in performance.
Based on this, it is reasonable to first add assignments that have
large rµ−λ to the set of considered assignments before adding
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Fig. 7. The left frame shows the probability that a particular search method
finds an assignment with the largest rµ−λ. The right frame shows different
values of rµ − λ and the corresponding difference in the utilities when the
assignment r is added to the set of considered assignments.

assignments with small rµ − λ. The right frame in figure 7
confirms this idea and shows that the resulting improvement in
utility is well predicted by the size of rµ− λ. Exploiting this
relationship helps the method converge quickly, as displayed
in Figure 5.

Section V developed several techniques for searching for
new assignments. The left frame in Figure 7 shows the prob-
ability that a particular method finds an assignment with the
largest rµ− λ. Clearly, the adapted Kako algorithm provides
the best performance. However, the other methods have some
merit, and hence, these methods should be used to search for
new assignments.

Next, the impact of power control is investigated. The left-
hand frame of Figure 8 shows the distribution of the ratio of
the utility found after searching for new assignments that may
use power control and the utility that results from searching
for assignments without power control. The left-hand frame of
Figure 8 shows that allowing power control has only a small
impact on performance. To further investigate the impact of
power control, a thorough search was performed as described
at the end of Section V-B. This search failed to produce any
significant improvement in performance. Note that in [3], a
slightly different problem was investigated and it was proved
that power control has no impact, that is, with the optimal
schedule, either a node transmits at full power or does not
transmit at all. Figure 8 demonstrates that this is not the
case here; power control does have a positive impact on
performance. However, while [3] showed that allowing power
control has no impact, here we find that power control has
only a small impact.

The right-hand frame Figure 8 provides further insight
into power control. This plot shows the distribution of the
transmission power of the active assignments. This plot does
not show the probability that the link transmission power
is zero or one. The reason for this omission is that these
probabilities are far larger than the ones shown in the plot.
In fact, the probability that a link transmission power in an
active assignment is zero or one exceeds 0.99. However, as
this plot shows, if the power is not zero of one, then it is
fairly uniformly distributed between zero and one, but has a
slight tendency to be close to zero.

To demonstrate the ability to estimate the optimal schedule
for large networks, we consider the 6 × 6 block region of
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Fig. 8. The left-hand frame shows the distribution of the relative improvement
in average flow rates offered by power control. The right-hand frame shows
the distribution of the transmission power of the active assignment, however,
the probability of the transmit power being one or zero is not shown.
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Fig. 9. The left frame shows the nodes positions in a network with three
base stations and 56 destinations. The right frame shows the average flow rate
when the optimal schedule is found. The rates that result from not using and
using power control are shown. The rates that arise when power control is
used are nearly the same as those found without using power control.

Chicago shown in the left-hand frame of Figure 9. Figure 9
shows the set of destinations and also an example of three
base station locations. As a toy problem, the role of number of
base stations was explored. Specifically, between one and four
base stations were randomly distributed throughout the region
occupied by destination. The resulting networks had between
63 and 73 links, in particular, there were 71, 72, 70, and 63
links for the case where there were 1, 2, 3, and 4 base stations,
respectively. An estimate of the optimal utility was found for
each network for the case where power control is permitted
and for the case where power control is not permitted. The
resulting average flow rate per destination is shown in the
right-hand side of Figure 9. In these experiments it is assumed
that the bandwidth is 20 MHz wide (as is the case in 802.11g).

Like the results shown in Figure 8, Figure 9 shows that
power control has a minimal impact on the utility. Figure 9 also
illustrates that arbitrary distribution of base stations may lead
to poor performance, specifically, the scenario with four base
stations resulted in worst performance than two or three base
stations. This behavior is likely due to the increased congestion
due to the fewer links used in the four base station case.
This example demonstrated that the proposed computational
technique can support capacity estimates for moderate size
networks. We believe that with further effort, the proposed
techniques can support networks with several hundred links.

VIII. CONCLUSIONS

Extensive research has focused on the capacity of a multihop
wireless network. In this paper a tractable computational
technique was presented to estimate the optimal schedule. In

the cases where exhaustive search is tractable, the presented
method was found to either find the optimal schedule or find
a schedule that results in utility that is within 0.5% of the
optimal schedule. The key to the approach is to focus on
determining the set of bandwidth assignments over which the
optimization is performed. Several techniques were presented
to search for good assignments.
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