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Abstract:

Linear dynamically varying (LDV) systems are introduced as a way to approximate
nonlinear dynamical systems running over a compact set. Sub-optimal linear state
dependent H, controllers are introduced and shown to stabilize both LDV systems
and chaotic systems about any trajectory on the whole attractor. However, since the
controllers are based linear approximations, the chaotic system is guaranteed to be
stable only if the initial error between the actual and desired orbit is small enough.
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1. INTRODUCTION

Recently there has been much research on control-
ling chaotic systems. The objective of this effort
is to take advantage of sensitive dependence on
initial conditions and achieve control with very
small control force. There has been much success
when the desired orbit is a fixed or periodic orbit.
In these cases the controller has been designed
by applying control techniques of linear time in-
variant or linear periodically varying systems to
the linear approximation of the nonlinear chaotic
system. The aim of in this paper is to apply
state dependent linear control techniques to the
linear approximation of the chaotic system along
every orbit. Along a particular orbit, such a linear
approximation is a time varying linear system
whose parameters vary according to the chaotic
system. Such linear systems are called linear dy-
namically varying (LDV) systems. Much of the
control theory for linear time invariant systems
can be extended to the LDV case. This results
in a time invariant, but spatially varying linear
controller which is defined on the whole attractor.
This controller is applicable to most chaos control
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scenarios. For example, controlling to a periodic
or fixed point (Hammad et al. 1996), targeting
(Shinbrot et al. 1992), anti-control (Garfinkel et
al. 1992) are all achievable with a single LDV con-
troller. Synchronization (Pecora and Carroll 1990)
can be achieved with an LDV observer. However,
since an LDV system is a linear approximation of
a nonlinear system, the control system is locally
stable in the sense that the initial error between
the actual and desired states must be small.

The optimal LDV quadratic controller was de-
veloped in (Bohacek and Jonckheere n.d.). The
present paper presents the LDV H., controller.
The paper proceeds as follows: Section 2 models
the control of chaos problem as an LDV control
problem. Section 3 formally develops LDV sys-
tems. Section 4 presents the LDV H,, controller
and section 5 briefly describes of an example of
"anti-control.’

2. CONTROLLING DYNAMICAL SYSTEMS
WITH LINEAR DYNAMICALLY VARYING
CONTROL

Consider the nonlinear system

Tk +1) = f(2(k),u(k))



where

f-,0):5—=S5

is a dynamical system map with the following
properties:

f(9,0) =5, ie. S is f-invariant,
S is a compact subset of R™,

and f € C1(R" x R™ R").

The chaotic features of f are not used in this
paper, and thus, the results present here apply to
any f satisfying the above requirements. However,
if f is chaotic, useful techniques to synthesize
controllers developed in (Bohacek and Jonckheere
n.d.) can be applied. Note that for simplicity

f(x) = f(z,0).

The objective is for & to follow some desired
trajectory Terqjec defined by

xtraject(k + 1) — f (xtraject(k)vo) )
with Tiraject (0) = Ttrajecto-
The problem of forcing Z to follow a periodic orbit
fits into this framework by setting Z4rqject(0) to be
a point on the periodic orbit. If the objective is
for & to follow an aperiodic orbit, then Ztrqject(0)
is set to be a point on this aperiodic orbit. As
discussed in (Bohacek and Jonckheere n.d.), with

minor modifications, targeting and anti-control
also fit into this framework.

The error dynamics can be approximated by a lin-
ear dynamically varying system as follows: Define

z(k) = (k) — Trajeet (k)

so that

2(k+1) ey
= f (i(k),u(k)) — f (xtraject(k)70) .

The first degree Taylor approximation of f (Z(k),w)
around Z(k) = Traject (k) and u(k) = 0 yields

z(k+1) (2)
= Airtmject(k)x(k) + B2mtmject(k) u(k)
_H7 (.’IJ(]C) ? u(k)v Ttraject (k))

where

53]
Azt,«aject(k) - % (xtraject70) 5

of

B2mtmject(k) = % (xtraj60t70)
and 7 accounts for nonlinear terms. Since f € CT,
the nonlinear term 7 can be written as a nonlinear

gain, i.e.

77(957“7 xtraject) (3)

- 77;1:(1'7 u, xtr@jf%t)x + 77u(1'7 u, xtr@jfiCt)u
Furthermore, since f € C* and S compact, ||7,]|
and ||,]| can be made as small as necessary by
limiting the size of © and x. We conclude that if

u and x are small, then the error dynamics 1 can
be approximated by

a(k+1) (4)
= Ailftmject(k)x(k) + B2 U(]C)

Tiraject (k)

System 4 is a linear system with coeflicient matri-
ces A and By that vary as Zyraject(k) varies.

The objective is to design a feedback F' such that

xz(k+1)
= <Aztmject(k) + B2mtraject(k)FItTajECt(k)) .’L’(k)

is uniformly exponentially stable. It is then possi-
ble to show that for ||z (0)|| small enough

x(k+1) (5)
- <Azt7‘aject(k) + Bthraject(’c)Fm"“jec’s(k)) .’IJ(]C)
(1 + 0Py ecaty)  (R)

is a stable system. That is, z (k) = Z(k) —
Ztrajeat(k) — 0. The task of minimizing the effect
of the nonlinear term 7 is well suited for H,
controllers, the main topic of this paper.

3. LINEAR DYNAMICALLY VARYING
SYSTEMS

Before discussing H., controllers for system 4 it is
necessary to formally develop linear dynamically
varying systems. A linear dynamically varying
(LDV) system is defined as follows:

z(k
a(k+1) | _ | Aor) Buogy Bzog w((k)) 6)
(k) Cotky Doy D2ogry u(k)

0+ 1) = £(0(1))
with 8(0) =6, and z(0) =z,

where

f:5— S8, is a continuous map,

S C R™ is compact,

A:S >R, B, : S —->R"™ By: 8§ —R™™,
C:8—-RP*", D :S—-RP* and Dy : S —
RP*™ are maps that need not be continuous,

0 € S is the state of the dynamic system,
x(k) € R™ is the state of the linear system,
u(k) € R™ is the control input, w(k) € R! is the



disturbance input, and 2(k) € RP is the output
to be controlled.

Although f need not be chaotic, LDV systems are
most relevant when considering chaotic systems
and LDV systems are more intuitively motivated
when f is chaotic.

Thus a linear dynamically varying system consists
of two connected systems. One system is linear
with state z. This linear system has parameters
that vary according to a second system. The
second system is a dynamic system with state
0. Tt is assumed that both states z(k) and (k)
are known at time point k. An LDV system can
also be thought of as an uncountable family of
time varying linear systems indexed by the initial
condition 6 (0).

It is often assumed that the system coeflicient
matrices A, By, By, C, D; and Dy are contin-
uous. We will refer to such systems as continuous
LDV systems. In section 2 it was assumed that
f € C" and A and B are derivatives of f. Thus the
tracking error system 2 can be approximated by
a continuous LDV system. However, if a feedback
F : S — R™" is used to stabilize a continuous
LDV system, then the resulting closed loop system
is a continuous LDV systems if and only if F
is continuous. Although this paper will focus on
stabilizing continuous LDV systems, the continu-
ity of the feedback must be proven. Therefore
the definition of an LDV system must allow for
possible discontinuous coeflicient matrices.

Continuous linear dynamically varying systems
are similar to the more general linear parametri-
cally varying (LPV) systems found in (Becker and
Packard 1995). In the case of LPV systems, the
future values of the parameters are unknown, but
confined to a known bounded set, with possibly
some bound on the rate of change (Watanabe et
al. 1996). The better knowledge of the parameters
in the LDV case allows for stronger results than in
the LPV case. For example (Becker et al 1993),
stability of LPV systems can be guaranteed via a
single quadratic Lyapunov parameter X € R™"*™
that satisfies a Lyapunov inequality. In the LDV
situation, f is known and a continuous function
X : S — R™" is found that satisfies a Lyapunov
equation.

Since a linear dynamically varying system is an
uncountable collection of linear time varying sys-
tems, the concept of stability is slightly more
complex in the dynamically varying case than it
is in the time varying case.

Definition 1. The linear dynamically varying sys-
tem 6 is uniformly exponentially stable if for u =0
and w =0, there exist an 0 < a < 1 and a § < 00
such that for all #(0) € S

l2(k)] < Ba* [l2(0)]]-

System 6 is exponentially stable, if for u = 0,
w = 0 and for each 0(0) € 9, there exists an
0 < a(6(0)) < 1 and a 5(A(0)) < oo such that for
all z(j) and 7 < %

l2(k)] < B(0(0)a(0(0)" 7 [l2 ()]l -

System 6 is asymptotically stable if for © = 0 and
w =0, any ||z(0)]| < oo and any 8(0) € S

[[z(B)]| — 0.

Note that an exponentially stable system is stable
uniformly in time %k, but not uniformly in the
initial condition @ (0). That is, along any given
positive trajectory {fk (0(0)) : k > 0} an expo-
nentially stable system is (uniformly in time)
exponentially stable. The parameters, a(f) and
B(0), may vary discontinuously with each trajec-
tory, but remain constant along a positive tra-
jectory; ie. a(f(0)) = a(f). It is possible that
a(0;) — 1 while o (lim; 6;) < 1 for some sequence
{6; € S : i > 0}, in which case the system is expo-
nentially stable, but not uniformly exponentially
stable.

In the case of continuous LDV systems, asymp-
totic, exponential and uniform exponential stabil-
ity are equivalent (Proposition 2 in (Bohacek and
Jonckheere n.d.)). Since uniformly exponentially
stable systems are inherently more robust than
exponentially stable systems, it is preferable to
remain within the confines of continuous LDV
systems. Thus when synthesizing a feedback con-
trolling a continuous LDV system, it is important
to ensure that the feedback is not only asymptot-
ically stabilizing, but also continuous. However,
to maintain generality, the stabilizability of an
LDV system does not require continuity of the
feedback.

Definition 2. System 6 is stabilizable if there ex-
ists a, not necessarily continuous, map F : N x
S — R™*™ such that for all #(0) € S and for all
k, ||F(k,0(0))|| < F(6(0)) < oo, and

x(k+1) = (Agry + By, F(k,0(0))) (k)
o(k) = f* (6(0))

is exponentially stable.

Thus a linear dynamically varying system is stabi-
lizable if every linear system in the family of linear
systems indexed by 6(0) is stabilizable. There is no
assumption about a global stabilizing feedback F'.
Thus, the feedback that exists via the definition
of stabilizability may not be a bounded or con-



tinuous function. However, in the case of continu-
ous LDV systems, it was shown in (Bohacek and
Jonckheere n.d.) that a stabilizable system has a
well defined, continuous, uniformly exponentially
stabilizing feedback F': § — R™*™,

Along with stabilizability, uniform detectability is
needed:

Definition 3. System 6 is uniformly detectable if
there exists a, not necessarily continuous, map H :
S — R™P such that for 0 € S, ||Hg|| < H < o0
and

x (k+1) = (Aow) + HoCory) = (k)
(k)= r*(0)),

is uniformly exponentially stable. That is, there
exists an ag < 1 and a 8,; < oo such that for all
0(0) € S, ||lz (k)] < Baerg ||z (0]

Definitions 2 and 3 are slightly asymmetric. The
definition 3 is a uniform condition, whereas defin-
ition 2 is a point wise condition. If f is invertible,
then uniform detectability and detectability are
equivalent, where detectability is the dual of defi-
nition 2. However, to avoid extra assumptions on
f, uniform detectability will be assumed.

4. LINEAR DYNAMICALLY VARYING Hs
CONTROL

In the following, necessary and sufficient condi-
tions for the existence of LDV H,, controllers
will be presented. The proof rest heavily on the
proofs of the linear time invariant case found in
(Green and Limebeer 1995), (Stoorvogel 1992)
and (Stoorvogel and Weeren 1994). The linear
dynamically varying finite horizon case is closely
related to the linear time varying case. Proofs of
the time varying case can be found in (Halanay
and Tonescu 1994) and (Peters and Iglesias 1997).

The objective of the LDV H,, problem is to find
a uniformly exponentially stabilizing controller F'
such that if

i) = Fi0,) |15

then:

Ho, Objective: For z(0) = 0, there exists € > 0
such that for w € lg, 0, € 9,

2 2 2
12" = 9 el < =< Jlwl]

and if w =0 and z(0) # 0, then z(k) — 0.

[
fl]]

If this objective is achieved, then sup,, <.

The following assumptions on system 6 are
needed:

(1) The triple (A, Ba, f) is stabilizable.

(2) The system parameters A, By, By, C, Dy and
D9 are matrix valued continuous functions of
0 and S is compact.

(3) Dy, Dy, >0forall§ c8S.

(4) Dj, [Cs D1, | =0 and the triple (A, C, f) is
uniformly detectable.

(5) f:S — S is continuous.

Perhaps these assumptions could be weakened
(for example see (Stoorvogel 1992)), but they are
common.

Let [A9<k> Be(k)} _
ok) Dax)

_[r5 o0
=% %]

Theorem 1. Suppose assumptions 1-5 hold. There
exists a exponentially stabilizing controller u(k) =
Fu(k,0(0)) fu((];:c)) } satisfying the H,, objective if
and only if there exists a uniformly bounded map
XKoo 1 S — R™™ such that

AQ(k) Bl@(k) B26(k)
Cg(k) Dl@(k) D26(k) and
0 1 0

Xoo(0) (7)
=C)Ch 4+ ApXoo(f(0))Ag — LyR, 'Ly

where

R(0) =DyJDg+ ByXoo(f(0))Bs  (8)
L(8) = Dy Cy + By Xoo(£(8)) Ag,

and

x(k+1) (9)
= (Aowy = Boy R(O(K)) " L (0(k)) ) 2(k)
is uniformly exponentially stable and for some

e>0,and all 8 € S,

Xo0(0)>0 (10)
V(0) = R1(0) — Ry(0)R5 1 (0)Ra(0) < —el.

In this case the control

Uoo (K) (11)

=—R3 ' (0(k)) [ L2(0(k)) Ra(0(K))] [Z((]Z)) }

satisfies the H,, objective, X, is continuous and
the closed loop system with control 11, that is

z(k+1)
— Adl (7 (6.)) a(k) + N (f* (0)) w (),



is a uniformly exponentially stable system where

Acl(0) = (Ag By, Rs(0) " Ly (9)) and N (0) =
<Ble — By,Rs(0) "Ly (0)).

Since (A,C) is uniformly detectable, DDy > 0
and (A, By) is stabilizable, the optimal stabiliz-
ing LDV quadratic control exists (Bohacek and
Jonckheere n.d.). That is, there exists a unique,
continuous and bounded function X5 : § — R™**™

such that X}(0) = X3(¢) > 0 and

Xo(0) = CpCp + ApXa(f(0))Ag (12)
— (By, X2(f(0)Ag) T (0)™* (B, X2(f(0)) Ap) -
with T(0) = (DéeD% +BéeX2(f(0))B28>. Fur-

thermore, for w = 0,

inf ||2|]° = 2/ X5(0)z,
u€ls
and this infimum is attained with

u(k) = upq(k)
=T (0(k))"" By, X2 (f0 (k) Aggry (k)

and

:L’(]C + 1) = Ag(k)x (]C)
—Bay,, T (0(k)) " By, Xa (f(0 (k) Aggrya(k)
is uniformly exponentially stable.

Assume the conditions of theorem 1 are true. Let
X(k,N+1,8) > 0 denote the solution to the finite
horizon Riccati equation with terminal condition

X5 (fN+1 (:9)) That is,
X(k,N+1,0) =
_ _
A}k(Q)X(]C + 17N + 170)Afk(g) + ka(g)Jka(g)
—L'(k,N+1,0)R '(k, N+ 1,0)L(k,N + 1,6)

where

L(k,N+1,0)=

Dy gy Cr (o) + By X (B +1,N +1,0) Ayig),

R(k,N +1,0) =

D'y gy Dyroy + Bhgy X (K +1,N +1,0)Byes)
and

X(N+1,N+1,0) = Xo(fN11(0))

with Xs the solution to the functional Riccati
equation 12. It is possible to show that

Jim X(0,N +1,6) = Xeo (6)

solves equations 7 and 8, satisfies equations 10,
and that system 9 is uniformly exponentially
stable. If the map f is chaotic, the methods of
approximating X, developed in (Bohacek and
Jonckheere n.d.) and (Jonckheere and Bohacek
1998) can be used to approximate Xoo.

Remark 1. Theorem 1 can be extended to the
strictly casual feedback case where u (k) does not
depend on w (k).

Remark 2. Observe that the if 8 is a fixed point,
the Riccati equations 7 and 12 reduce to the
linear time invariant Riccati equations; if 8 is a
periodic point, equations 7 and 12 reduce to the
periodically varying Riccati equations. In case of
slow variation of 0, vis f (#) = 0, equations 7 and
12 reduce to the state dependent Riccati equation.

Remark 3. If f is chaotic, the continuity of X
and X is counterintuitive. Due to extreme sensi-
tivity to initial conditions, a small change in initial
conditions # (0) will lead to a drastic change in the
linear system (Ag(k),Bge(k)). For example, since
f is chaotic, fixed points are arbitrarily close to
transitive points. Thus the continuity of X, and
X2 imply that the cost to stabilize a time invariant
system is about the same as the cost to stabilize
a time varying system with system parameters
that are, eventually, very different from the time
invariant system parameters.

Remark 4. The controller F' is globally defined,
time invariant, but spatially varying. Thus, to
track Ziraject (k) = b (Ttrajeet (0)), it suffices to
implement v (k) = Fprasecs(®) (T (k) — Terajeat (K)).

5. ANTI-CONTROL

Once the controller is designed many control ob-
jectives can be implemented. One objective, *anti-
control’, is to prevent the state from entering a
certain forbidden region of the attractor. This
objective is of particular interest in physiology.
For example, it is currently believed that a healthy
heart is chaotic (Skinner et al 1990) and fib-
rillation is associated with a periodic orbit with
frequency of 8-10Hz (Gray et al. 1998), (7). There-
fore, it is postulated that avoiding fibrillation may
be accomplished by controlling the heart to avoid
the region around a periodic orbit.

Assume that f is chaotic, let F'B denote the for-
bidden region and assume that F'B has positive
measure. The objective of anti-control is to apply
small control force to keep the state from entering
FB. Due to sensitivity to initial conditions, a
small control force will have a noticeable effect on
the state only after a number of iterations. There-
fore, the control must be applied well in advance



Fig. 1. Anti-Control: Control is applied to prevent
the state (solid line) from getting too close
to the fixed point (dotted line at 0.63). If
no control had been applied, the state would
have neared the fixed point at time index 20
(dotted line).

to the state entering F'B. The further in advance
the control is applied, the smaller the necessary
control force. However, accurately predicting the
future state of a chaotic system is difficult. Thus a
compromise is made and control is applied only if
the state is predicted to enter F'B in L iterations
or less. Anti-control is implemented as follows:
Since FB has positive measure, | J;°, [~ (FB) =
S modulo a set of zero measure. Let Z (k) be
the current state and Z (k) € U2, f ' (FB).
Define I* = inf {I: % (k) € [~ (FB)}. If I < L,
then control is applied. The control is defined by
finding a y € S such that ||y — Z(k)|| < ¢ and
7 (y) ¢ FBfor 0 < j <I*. The control is applied
to force  (k+j) to track f7(y) for j < I*, ie.
w(k) = Frigy (@ (k+37)— 7 (y)). When j > I*
control is terminated until the state is once again
predicted to enter into F'B. Figure 1 shows a time
series plot of anti-control applied to the Hénon
map. In this example the forbidden region is a
region around the fixed point.
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